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The uniqueness of the Kottler/Schwarzschild-de Sitter solution (KSdS) of the vacuum Einstein equations
with positive cosmological constant is discussed and certain putative alternatives are shown to either solve
different equations or to be the KSdS solution in disguise. A simultaneous no-hair and cosmic no-hair
theorem for the KSdS geometry in the presence of an imperfect fluid is proved.
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I. INTRODUCTION

The Jebsen-Birkhoff theorem [1,2] stating that the
Schwarzschild geometry is the unique vacuum, spherically
symmetric, and asymptotically flat solution of the Einstein
equations is standard textbook material (see [3] for a
review). Almost-Birkhoff theorems studying small devia-
tions from spherical symmetry or vacuum have also been
discussed [4,5]. Relaxing the assumptions of the Jebsen-
Birkhoff theorem to allow for an infinite distribution of
matter leads to a variety of inhomogeneous universes [6,7],
which shows that there is no unique spherical solution with
Friedmann-Lemaître-Robertson-Walker (FLRW) asymp-
totics. However, it is straightforward to extend the proof
of the Jebsen-Birkhoff theorem to vacuum with a cosmo-
logical constant Λ to deduce that the unique spherical
solution of the vacuum Einstein equations in this case is
the Kottler/Schwarzschild-de Sitter metric [8] (hereafter
KSdS) if Λ > 0 and the asymptotics are de Sitter, or the
Schwarzschild-anti-de Sitter metric (SAdS) if Λ < 0 and
the asymptotics are anti-de Sitter. In locally static
Schwarzschild-like coordinates ðT; R; θ;φÞ the KSdS met-
ric has the form

ds2 ¼ −
�
1 −

2m
R

−H2R2

�
dT2 þ dR2

1 − 2m
R −H2R2

þ R2dΩ2
ð2Þ: ð1:1Þ

Herem andH ¼ ffiffiffiffiffiffiffiffiffi
Λ=3

p
are positive constants and dΩ2

ð2Þ ¼
dθ2 þ sin2θdφ2 is the line element on the unit 2-sphere.
The KSdS geometry plays the role of the prototypical black
hole embedded in de Sitter space. The latter is extremely
important for early universe inflation [9,10] and is the

late-time attractor of many dark energy and modified
gravity models attempting to explain the current acceler-
ation of the cosmic expansion [11] discovered in 1998 with
type Ia supernovae. Likewise, anti-de Sitter space plays a
prominent role in string theories and in the AdS=CFT
correspondence [12] which have been the subject of a large
amount of literature (see [13] for recent reviews). It is
surprising, therefore, that modern relativity textbooks do
not mention the Jebsen-Birkhoff theorem in the presence of
a cosmological constant, although occasionally one finds in
the literature an explicit statement about the uniqueness of
the Schwarzschild–(anti-)de Sitter space (e.g., [5,14,15]).
A proof of the Jebsen-Birkhoff theorem extended to include
a nonvanishing Λ is available in Synge’s 1960 textbook1 on
general relativity [16]. More mathematically sophisticated
proofs of the uniqueness of the KSdS and SAdS space are
contained in old and recent Ref. [17] (see [18] for a simpler
proof in null coordinates). Similar to the situation of the
Schwarzschild solution, uniqueness implies that the KSdS
and SAdS solutions are stable with respect to perturbations,
the stability being established in Refs. [19–22]. In spite of
all this evidence, various works purport the existence of
spherical solutions of the vacuum Einstein equations with
Λ > 0 which are alternatives to the KSdS one. This clearly
cannot be true, or else these solutions must reduce to KSdS
in disguise. There are also more general solutions of the
Einstein equations representing central inhomogeneities
embedded in FLRW spaces, which seem to reduce to
alternatives to the KSdS solution in the special case when
the FLRW “background” reduces to de Sitter. Again, this
cannot be the case. Although other authors presenting these
solutions do not claim that they are alternatives to KSdS,
nevertheless a situation was created which is unclear about
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1Synge does not mention Kottler’s paper [8], nor does he refer
to the KSdS solution as Schwarzschild-de Sitter but states that the
metric is properly called the “Schwarzschild solution” only when
Λ ¼ 0.
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the unique status of KSdS. To make matters worse, alter-
native gravity was introduced. There is much interest in
theories of alternative gravity to general relativity and in the
study of their spherical solutions for various reasons.
Although the Jebsen-Birkhoff theorem breaks down
already in simple scalar-tensor gravity, some no-hair theo-
rems persist and their relation with a positive cosmological
constant has been discussed in the literature [23–26]. In
particular, there are claims that spherical polytropic stars
cannot match the KSdS exterior in scalar-tensor and fðRÞ
gravity [27], although the situation is still unclear in this
regard [28]. Perhaps this happens because the KSdS solution
is not adequate to describe inhomogeneous universes in
these theories, but then one does not know which solution of
the relevant field equations should be matched with the
interior of a polytropic star, or with any local spherical
object. It does not help these investigations if the situation is
already confused in general relativity. Our purpose here is to
clarify the status of KSdS space in general relativity and to
reveal putative alternatives as KSdS in disguise due to the
use of nonstandard coordinate systems, or to identify them as
genuinely different solutions which obey different field
equations with matter sources. We then present a new no-
hair/cosmic no-hair theorem related to KSdS space in the
presence of an imperfect fluid. We use units in which
Newton’s constant G and the speed of light c are unity, and
we follow the notation of Ref. [29].

II. UNIQUENESS OF THE KSdS METRIC

The most general spherically symmetric line element in
four spacetime dimensions can be written in the form

ds2 ¼ −A2ðt; RÞdt2 þ B2ðt; RÞdR2 þ R2dΩ2
ð2Þ: ð2:1Þ

Here we provide a proof of the uniqueness of the KSdS
spacetime in the gauge (2.1) used throughout this work,
which employs the areal radius as the radial coordinate. The
vacuum Einstein equations

Gab ¼ −Λgab ð2:2Þ

yield, in the gauge (2.1),

2 _B
RB

¼ 0; ð2:3Þ

2B0

B3R
−

1

B2R2
þ 1

R2
¼ Λ; ð2:4Þ

2A0

AR
−
B2

R2
þ 1

R2
¼ −ΛB2; ð2:5Þ

A0B
A

− B0 −
RB2B̈
A2

þ R _A _BB2

A3
−
RA0B0

A
þ RA00B

A
¼ −ΛRB3; ð2:6Þ

where an overdot and a prime denote differentiation with
respect to t and R, respectively the [(3,3) Einstein equation
gives the same information as the (2,2) equation]. Using the
consequence of Eq. (2.3) that B ¼ BðRÞ, we drop the terms
containing _B or B̈ from Eq. (2.6). Equation (2.4) gives

�
R
B2

�0
¼ 1 − ΛR2; ð2:7Þ

which is integrated to

B2ðRÞ ¼ 1

1þ C
R −

ΛR2

3

; ð2:8Þ

where C is an integration constant. By imposing that the
Schwarzschild solution for a massm is recovered asΛ → 0,
one obtains C ¼ −2m and

B2 ¼ 1

1 − 2m
R − ΛR2

3

: ð2:9Þ

Equation (2.5) now gives

2A0

A
þ 1

R
þ ΛR2 − 1

Rð1 − 2m
R − ΛR2

3
Þ ¼ 0; ð2:10Þ

which can be written as

ðlnA2Þ0 ¼
�
ln

�
1 −

2m
R

−
ΛR2

3

��0
; ð2:11Þ

and integrates to

A2ðRÞ ¼ eDðtÞ
�
1 −

2m
R

−
ΛR2

3

�
ð2:12Þ

where DðtÞ is an integration function of time. At this stage,
one is not entitled to assume that _A ¼ 0. However, by
rescaling the time coordinate according to

dT ¼ eDðtÞ=2dt; ð2:13Þ

the spherically symmetric line element necessarily takes the
static form

ds2 ¼ −
�
1 −

2m
R

−
ΛR2

3

�
dT2 þ dR2

1 − 2m
R − ΛR2

3

þ R2dΩ2
ð2Þ: ð2:14Þ

This is the KSdS solution of the Einstein equations if Λ > 0

(and then H ¼ ffiffiffiffiffiffiffiffiffi
Λ=3

p
), the SAdS solution if Λ < 0, and it

reduces to the Schwarzschild solution ifΛ ¼ 0. The analysis
of the spherical vacuum Einstein equations mirrors that
performed for Λ ¼ 0, which leads to the Jebsen-Birkhoff
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theorem in most relativity textbooks. It is therefore appro-
priate to speak of a generalized Jebsen-Birkhoff theorem
when Λ ≠ 0 and the KSdS solution is the unique solution of
the vacuum Einstein equations with positive cosmological
constant in spherical symmetry.

III. PUTATIVE ALTERNATIVES TO KSDS

Let us turn now to examining spherically symmetric
solutions of the vacuum Einstein equations with Λ > 0
which have been proposed as alternatives to the KSdS one,
and to metrics which apparently contain alternatives to
KSdS as special cases. Some ambiguity has been generated
by the fact that these geometries have been presented in
various coordinate systems, and different foliations of the
KSdS spacetime can emphasize very different features
(e.g., [30]).

A. Abbassi-Meissner proposal

Abbassi [31] and, ten years later, Meissner [32] reported
the following metric as a new alternative to the KSdS
geometry (here we adopt the notation of [32]):

ds2 ¼ −fðt; rÞdt2 þ e2Ht

fðt; rÞ dr
2 þ e2Htr2dΩ2

ð2Þ; ð3:1Þ

where

fðt; rÞ ¼ hðt; rÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2ðt; rÞ þH2r2e2Ht

q
; ð3:2Þ

and

hðt; rÞ ¼ 1

2

�
1 −H2r2e2Ht −

2m
r

e−Ht

�
; ð3:3Þ

where m is a constant mass parameter and H is the Hubble
constant of the de Sitter background given by H2 ¼ Λ=3.
The areal radius of this spherically symmetric geometry is
Rðt; rÞ ¼ aðtÞr ¼ eHtr. Making use of the relation between
differentials dr ¼ a−1ðdR −HRdtÞ, one rewrites the line
element (3.1) in terms of the areal radius as

ds2 ¼ −2hð0; RÞdt2 − 2HR
fð0; RÞ dtdRþ dR2

fð0; RÞ þ R2dΩ2
ð2Þ

ð3:4Þ

¼ −
�
1−

2m
R

−H2R2

�
dt2

−
4HR

1− 2m
R −H2R2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1− 2m

R −H2R2Þ2 þ 4H2R2
q dtdR

þ 2dR2

1− 2m
R −H2R2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1− 2m

R −H2R2Þ2 þ 4H2R2
q

þR2dΩ2
ð2Þ: ð3:5Þ

By introducing a new time coordinate T defined by

dT ¼ dtþ βðt; RÞdR; ð3:6Þ

with βðt; RÞ a function to be determined, and

A0ðRÞ≡ 1 −
2m
R

−H2R2 ¼ 2hð0; RÞ; ð3:7Þ

one obtains

ds2 ¼ −A0dT2 þ
�
−A0β

2 þ 4HRβ

A0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
0 þ 4H2R2

p

þ 2

A0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
0 þ 4H2R2

p
�
dR2 þ R2dΩ2

ð2Þ

þ 2

�
βA0 −

2HR

A0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
0 þ 4H2R2

p
�
dTdR: ð3:8Þ

By setting

βðRÞ ¼ 2HR

A0ðA0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
0 þ 4H2R2

p
Þ ð3:9Þ

the cross-term in dTdR is eliminated and the line element
assumes the diagonal and locally static form

ds2 ¼ −A0ðRÞdT2 þ 2

A0ðRÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
0ðRÞ þ 4H2R2

p

·

�
1þ 2H2R2

A0ðA0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
0 þ 4H2R2

p
Þ

�
dR2 þ R2dΩ2

ð2Þ;

ð3:10Þ

which is not of the KSdS form. A posteriori one can check
that dT ¼ dtþ βdR is an exact differential (i.e., the time
coordinate T is well defined) by noting that it is closed,

∂ð1Þ
∂R ¼ 0 ¼ ∂β

∂t : ð3:11Þ

Although claiming an alternative solution to the KSdS one,
Abbassi [31] mentions a coordinate transformation that
brings the line element (3.1) to the standard KSdS form, but
this coordinate change fails to do so. Moreover, this author
ascribes different physical meanings to the same geometry
described in different coordinate systems. The geometry,
however, must be coordinate independent. In particular, the
static character of the metric is shown by the existence of a
timelike Killing vector field. In spite of what is stated in
[31,32] the diagonal metric (3.1) does not solve the vacuum
Einstein equations Rab ¼ Λgab but it is generated by matter
sources. For example, there is a radial mass flow given by
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T01 ¼
1

8π

dðlnB2Þ
dT

¼ H _HR2

2πðA0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
0 þ 4H2R2

p
Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
0 þ 4H2R2

p

·

�
−1þ A0ðA0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
0 þ 4H2R2

p þ A2
0 þ 2H2R2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2
0 þ 4H2R2

p
½A0ðA0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
0 þ 4H2R2

p
Þ þ 2H2R2�

�
: ð3:12Þ

B. McVittie and generalized McVittie solutions

The McVittie solution was originally introduced to
model the effect of the cosmological expansion on local
systems [33] and has been the subject of much recent
literature [34–37]. It represents a central inhomogeneity
(possibly a black hole) embedded in a FLRW space. The
source for the exterior McVittie metric is a fluid with
energy density ρðtÞ which depends only on time, and
pressure Pðt; rÞ which depends on both time and radius.
The line element can be cast in the form [36,38]

ds2 ¼ −
�
1 −

2m
R

−H2ðtÞR2

�
dt2 −

2HðtÞRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2m=R

p dtdR

þ dR2

1 − 2m=R
þ R2dΩ2

ð2Þ; ð3:13Þ

where m is a positive constant related to the mass of the
central object and HðtÞ is the Hubble parameter of the
FLRW space in which this object is embedded. When
the FLRW “background” reduces to de Sitter, H ¼ const,
the transformation to the coordinate T given by

dT ¼ dtþ HRdRffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2m

R

q
ð1 − 2m

R −H2R2Þ
ð3:14Þ

reduces the metric to the KSdS form (1.1). Therefore, the
McVittie metric with H ¼ const is not an alternative to
KSdS but it contains it as a special case.
In the literature there is also a class of “generalized

McVittie solutions” in which, contrary to the original
McVittie one, there is a spacelike radial heat flow qμ ¼
ð0; q; 0; 0Þ [34,39]. McVittie spaces are also solutions of
cuscuton theory (a special case of Hořava-Lifschitz gravity
[40]) and generalized McVittie spaces are also solutions
of Horndeski gravity and shape dynamics [41]. They are
substantially more complicated than the McVittie one, but
they also reduce to the KSdS geometry when the back-
ground is de Sitter [34,39], in which case the spacelike
radial energy flow qa vanishes.

C. Nonrotating Thakurta solution

The Thakurta solution of the Einstein equations [42]
describes a rotating black hole embedded in a FLRW
universe. When the angular momentum is set to zero and
the cosmological background is chosen to be de Sitter, one

obtains an apparent alternative to KSdS, but this is not the
case, as explained below. The nonrotating Thakurta sol-
ution was recently analyzed in detail in [43]; see also
[44,45]. The line element is

ds2 ¼ a2ðηÞ
�
−
�
1 −

2m
r

�
dη2 þ dr2

1 − 2m=r
þ r2dΩ2

ð2Þ

�

¼ −
�
1 −

2m
r

�
dt2 þ a2dr2

1 − 2m=r
þ a2r2dΩ2

ð2Þ; ð3:15Þ

where aðηÞ is the scale factor of the FLRW background, η
and t are its conformal and comoving times, respectively,
with dt ¼ adη, and m is a constant mass parameter.
The line element (3.15) is manifestly conformal to the
Schwarzschild one. By using the areal radius Rðt; rÞ ¼
aðtÞr and the relation between differentials dr ¼
dR
a −HRdη (where H ≡ _a=a and an overdot denotes differ-
entiation with respect to the comoving time t), the line
element is rewritten as

ds2 ¼ −
�
1 −

2MðtÞ
R

−
H2R2

1 − 2MðtÞ=R
�
dt2

þ dR2

1 − 2MðtÞ=R −
2HR

1 − 2MðtÞ=RdtdRþ R2dΩ2
ð2Þ;

ð3:16Þ

where
MðtÞ≡maðtÞ: ð3:17Þ

The cross-term in dtdR can be eliminated from this line
element [46]. We use Aðt; RÞ≡ 1 − 2M=R ¼ 1 − 2m=r
and a new time coordinate T defined by

dT ¼ 1

F

�
dtþ HR

A2 −H2R2
dR

�
ð3:18Þ

where Fðt; RÞ is an integrating factor satisfying

∂
∂R

�
1

F

�
¼ ∂

∂t
�

HR
FðA2 −H2R2Þ

�
ð3:19Þ

to guarantee that dT is an exact differential. Straight-
forward manipulations bring the line element to the
diagonal gauge
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ds2 ¼ −
�
1 −

2M
R

−
H2R2

1 − 2M
R

�
F2dT2

þ dR2

1 − 2M
R − H2R2

1−2M=R

þ R2dΩ2
ð2Þ: ð3:20Þ

Using the form (3.15) of the metric, the Einstein equations
give [43]

G0
0 ¼ 8πT0

0 ¼ −
3H2

A
; ð3:21Þ

G1
0 ¼ 8πT1

0 ¼ −
2mH
r2A2

; ð3:22Þ

G1
1 ¼ 8πT1

1 ¼ 8πT2
2 ¼ 8πT3

3 ¼ −
1

A

�
H2 þ 2ä

a

�
:

ð3:23Þ

Assume a de Sitter background with H ¼ ffiffiffiffiffiffiffiffiffi
Λ=3

p
and

aðtÞ ¼ a0eHt; then the time-radius Einstein equation (3.22)
satisfied by the nonrotating Thakurta solution clearly
cannot reduce to the corresponding equation satisfied by
the KSdS metric, which would instead give 8πT1

0 ¼
−Λg10 ¼ 0 (the vanishing of T1

0 means that, because
the cosmological constant is repulsive, it does not accrete
onto a black hole and there is no radial energy flow). The
two equations only coincide in the trivial cases whenm ¼ 0
(de Sitter space) or when a ¼ const (Minkowski back-
ground). These two equations cannot coincide because, as
stated clearly in [43,44], the source of the nonrotating
Thakurta geometry is not a perfect fluid, to which the
cosmological constant can be reduced, but is instead an
imperfect one with a spacelike radial heat flow which has
components qμ ¼ ð0;−2m _aaA−3=2=r2; 0; 0Þ in coordinates
ðt; r; θ;φÞ [43].
It has been shown in Refs. [37,47] that the nonrotating

Thakurta solution is the late time attractor of generalized
McVittie solutions, but these references2 did not recognize
the geometry as a special case of the less-known Thakurta
solution and called it “comoving mass solution” instead.
The nonrotating Thakurta solution is also the limit to
general relativity of a class of solutions of Brans-Dicke
theory found in Ref. [48] as the Brans-Dicke parameter
ω → ∞ [37,47].

D. Castelo Ferreira metric

Another line element which resembles or even reduces to
some of the previous ones for special parameter values was
introduced by Castelo Ferreira [49]

ds2 ¼ −
�
1 −

2m
R

−H2R2

�
1 −

2m
R

�
α
�
dt2 þ dR2

1 − 2m
R

− 2HR

�
1 −

2m
R

�α−1
2

dtdRþ R2dΩ2
ð2Þ; ð3:24Þ

where α and m are constants and H ¼ HðtÞ is the Hubble
parameter of the FLRW “background.” This geometry does
not satisfy the vacuum Einstein equations Gab ¼ −Λgab
but is sourced by an imperfect fluid which has different
tangential and radial pressures if α ≠ 0 [49]. The metric
(3.24) reduces to the McVittie metric in the form (3.13)
when α ¼ 0 (in which case the two pressures coincide).
In spite of superficial similarities, it does not reduce to
the nonrotating Thakurta solution (3.16) for α ¼ −1.
Similarities and differences may be misleading because
they depend on the coordinates adopted. Let us change the
time coordinate t → T, where T is defined by

dT ¼ 1

F
ðdtþ βdRÞ; ð3:25Þ

where 1=F is an integrating factor and βðt; RÞ is a function
to be determined. The line element (3.24) becomes

ds2 ¼ −
�
1 −

2m
R

−H2R2

�
1 −

2m
R

�
α
�
F2dT2

þ
�
−
�
1 −

2m
R

−H2R2

�
1 −

2m
R

�
α
�
β2

þ 1

1 − 2m
R

þ 2HRβ

�
1 −

2m
R

�α−1
2

�
dR2

þ 2F

��
1 −

2m
R

−H2R2

�
1 −

2m
R

�
α
�
β

−HR

�
1 −

2m
R

�α−1
2

�
dTdRþ R2dΩ2

ð2Þ: ð3:26Þ

By setting

βðt; RÞ ¼ HRð1 − 2m
R Þ

α−1
2

1 − 2m
R −H2R2ð1 − 2m

R Þα
ð3:27Þ

the cross-term in dTdR is eliminated and one obtains the
line element in the diagonal gauge

ds2 ¼ −
�
1 −

2m
R

−H2R2

�
1 −

2m
R

�
α
�
F2dT2

þ dR2

1 − 2m
R −H2R2ð1 − 2m

R Þα
þ R2dΩ2

ð2Þ: ð3:28Þ

If the background is de Sitter then H ¼ const, β ¼ βðRÞ,
and F ¼ 1, and the line element (3.28) reduces to the
nonrotating Thakurta solution (3.20) for α ¼ −1 and to the

2Reference [44] studied the same geometry for different
purposes and did not identify it with the Thakurta solution.
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KSdS form (1.1) (which is a special case of McVittie) for
α ¼ 0. It is clear, however, that in the general case the
geometry is different from the KSdS one.

IV. SIMULTANEOUS BALDNESS AND
COSMIC BALDNESS

Cosmic no-hair theorems state that, with a few excep-
tions (Bianchi models which are overdense and collapse
before the cosmological constant can come to dominate the
dynamics), de Sitter space is an attractor in the late-time
dynamics of the Universe [50]. Similarly, under reasonable
conditions, no-hair theorems for black holes exclude the
possibility of fields in the exterior spacetime of black
holes which would make the geometry deviate from
Schwarzschild [24]. Since the KSdS geometry brings
together black hole physics and de Sitter cosmology,
presumably simultaneous no-hair and cosmic no-hair
results, pointing to the KSdS spacetime as the final attractor
state should be valid in the presence of a positive cosmo-
logical constant, spherical symmetry, and a central inho-
mogeneity. This idea is supported by the uniqueness of the
KSdS solution in vacuo and by its perturbative stability
[19–22]. In the following, we derive a nonperturbative
result in this direction which is motivated by the presence
of imperfect fluids in the solutions of the Einstein equations
discussed in the previous sections.
Consider the Einstein equations with matter

Gab ¼ −Λgab þ 8πTab ð4:1Þ

and assume spherical symmetry, in which case the line
element is given by Eq. (2.1). Assume that the solution
of the Einstein equations is asymptotically de Sitter,
that is, that there is a de Sitter-like cosmological horizon
of areal radius RH and the solution of the Einstein
equations (4.1) reduces to (1.1) as3 R → R−

H. The
Einstein equations are now

_B
BR

¼ 4πT01; ð4:2Þ

A2

�
2B0

B3R
−

1

B2R2
þ 1

R2

�
¼ ΛA2 þ 8πT00; ð4:3Þ

2A0

AR
−
B2

R2
þ 1

R2
¼ −ΛB2 þ 8πT11; ð4:4Þ

A0B
A

− B0 −
RB2B̈
A2

þ R _A_BB2

A3
−
RA0B0

A
þ RA00B

A

¼ ð−ΛR2 þ 8πT22Þ
B3

R
: ð4:5Þ

Further assume that matter is described by an imperfect
fluid with constant equation of state and a purely spatial
radial heat flow (of the kind considered in the previous
section),

Tab ¼ ðPþ ρÞuaub þ Pgab þ qaub þ qbua; ð4:6Þ

P ¼ wρ; w ¼ const; ð4:7Þ

uaua ¼ −1; qcuc ¼ 0: ð4:8Þ

The fluid 4-velocity and the radial energy flow have
components

uμ ¼ ðjAj−1; 0; 0; 0Þ; uμ ¼ ð−jAj; 0; 0; 0Þ; ð4:9Þ

qμ ¼ ð0; q; 0; 0Þ; qμ ¼ ð0; B2q; 0; 0Þ: ð4:10Þ

The components of the stress-energy tensor (4.6) are

T00 ¼ A2ρ; ð4:11Þ

T01 ¼ −jAjB2q; ð4:12Þ

T11 ¼ B2P; ð4:13Þ

T22 ¼ R2P; ð4:14Þ

T33 ¼ R2Psin2θ: ð4:15Þ

Here, T01 > 0 and q < 0 correspond to radial inflow, while
T01 < 0 and q > 0 to outflow.
In the case of inflow q < 0, Eq. (4.2) yields

ðB2Þ· ¼ −8πjAjB4Rq > 0; ð4:16Þ

therefore, the metric component B2 ¼ g11 increases with
time. Assuming the metric coefficients to be continuous
and differentiable, there are then two possibilities: either
B2ðt; RÞ → þ∞ for any fixed R as t → þ∞ (or as t → tmax

if there is a singularity at a finite future tmax), or B2ðt; RÞ has
an horizontal asymptote as t → þ∞.
Let us consider the first case. The apparent horizons

are located by the covariant equation ∇cR∇cR ¼ 0, equiv-
alent to 1=B2 ¼ 0 in the coordinates used. If B2 → þ∞ as
t → þ∞ or as t → tmax, then at late times all points of space
at any value of R lie arbitrarily close to an apparent horizon.
This situation is familiar in cosmology: it corresponds to a
phantom universe in which there is a big rip singularity at a

3The coordinates ðt; R; θ;φÞ are expected to break down when
R > RH or when R becomes smaller than the black hole horizon
RBH that may be present. Outside of the region RBH ≤ R ≤ RH ,
the geometry is not expected to be locally static, as in KSdS
space.
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finite time tmax and the apparent horizon (which has areal
radius RAH ¼ H−1 in a spatially flat FLRW cosmos [37])
shrinks around a comoving observer because the expansion
of the universe superaccelerates, i.e., _H ¼ −4πðPþ ρÞ > 0
[51]. By contrast, in a de Sitter space the Hubble parameter
H remains constant although the expansion itself accel-
erates, ä > 0. In a universe dominated by nonphantom dark
energy (other than the cosmological constant), it is instead
_H < 0 while ä > 0. These phantom asymptotics contradict
our assumption of de Sitter asymptotics and, therefore, we
discard this possibility.
There remains the case in which B2ðt; RÞ asymptotes to a

function B2
0ðRÞ of R as t → þ∞. In this case _B → 0 as

t → þ∞ (which also implies that the apparent horizons
located by the Eq. 1=B2 ¼ 0 become less and less dynami-
cal). Then Eq. (4.16) implies that the radial flow q → 0 as
t → þ∞. In conjunction with Eq. (4.11), the differentiation
of Eq. (4.3) yields

8π _ρ ¼ 2

R

�
B0

B3

�
·
−

1

R2

�
1

B2

�
·
→ 0 as t → þ∞: ð4:17Þ

The assumption that P ¼ wρ with constant w [or with
w ¼ wðRÞ] then implies that also _P → 0 as t → þ∞.
Equations (4.13) and (4.4) give

8π _P ¼ 2

R

�
A0

AB2

�
·
þ 1

R2

�
1

B2

�
·
≈

2

RB2

�
A0

A

�
·
→ 0 ð4:18Þ

as t → þ∞. Therefore, also A2 becomes time independent,
and the metric becomes static as t → þ∞.
To make progress, consider the covariant conservation

equation ∇bTab ¼ 0 for the imperfect fluid stress-energy
tensor (4.6), which yields

uaub∇bðPþ ρÞ þ ½ðPþ ρÞua þ qa�∇bub

þ ½ðPþ ρÞub þ qb�∇bua þ∇aPþ ub∇bqa

þ ua∇bqb ¼ 0: ð4:19Þ

Projecting this equation onto the time direction ua of
comoving observers and using the orthogonality of
4-velocity and 4-acceleration ua∇bua ¼ 0, one obtains

−_ρ − ðPþ ρÞ∇bub þ uaqb∇bua þ uaub∇bqa −∇bqb ¼ 0:

ð4:20Þ

At late times qc and _ρ disappear from this equation, as we
have deduced above, leaving

ðPþ ρÞ∇bub ≃ 0: ð4:21Þ

In general ∇bub is different from zero (indeed, since the
geometry must be asymptotically de Sitter at large radii,

∇bub reduces to 3H > 0 there) and we are left with Pþ
ρ → 0 as t → þ∞. Either the matter fluid reduces to a
cosmological constant, in which case the vacuum unique-
ness theorem for KSdS holds, or else both ρ and P ¼ wρ
become subdominant and the cosmological constant
dominates the expansion at late times while ρ and P
become unimportant. Also in this case the solution reduces
to KSdS.
If instead there is outflow q > 0, then

ðB2Þ· ¼ −8πjAjB4Rq < 0 ð4:22Þ

and, since B2 is bounded from below by zero and it
decreases as t → þ∞, it must have a horizontal asymptote
with B2ðt; RÞ → B2

0ðRÞþ for any fixed R as t → þ∞. Then
_B → 0 and q → 0. The reasoning made in the case with
inflow is then repeated from this point, reaching the same
conclusion. Hence it is proved that, assuming spherical
symmetry, Λ > 0 and spatial de Sitter asymptotics, and an
imperfect fluid with constant equation of state and purely
spatial radial energy flow, the late-time solution of the
Einstein equations must be the KSdS geometry.
As a special case, one can consider a perfect fluid by

setting qa ¼ 0. In this case T01 ¼ 0 and Eq. (4.12) gives
B ¼ BðRÞ. It is then straightforward to prove that it must be
P ¼ −ρ and that the KSdS geometry can be the only
solution (this simple proof for a perfect fluid was already
given in Ref. [34]).

V. CONCLUSIONS

As seen in Sec. II, the KSdS solution is the unique
spherically symmetric solution of the vacuum Einstein
equations with positive cosmological constant. This result
is a simple generalization of the ordinary Jebsen-Birkhoff
theorem [1,2], which makes the same assumptions except
that it assumes Λ ¼ 0, and goes hand in hand with the
perturbative analyses which established the stability of the
KSdS solution [19–22]. Putative alternative solutions of
the Einstein equations under the same conditions either
solve different equations (for example, including an imper-
fect fluid with spacelike radial flow) or are just the KSdS
solution in disguise in an unusual coordinate system.
Since no-hair theorems reinforce the uniqueness of the

Schwarzschild geometry [24] and cosmic no-hair theorems
establish that the de Sitter space is the unique late-time
attractor in cosmology (with few exceptions [50]), it is
reasonable to expect that similar theorems should hold for
the KSdS spacetime, which is usually interpreted as
describing a Schwarzschild black hole embedded in de
Sitter space. Such theorems would prove the uniqueness of
the KSdS solution. We have proved a result of this kind by
assuming spherical symmetry and the presence of an
imperfect fluid with constant equation of state P ¼ wρ
and a purely spatial radial energy flow, which is a rather
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common ingredient in the construction of solutions of the
Einstein equations representing spherical inhomogeneous
universes (see, e.g., [34,35,39,43,52]). The theorem proved
in Sec. IV does not contradict the previous statement of
Sec. III that the nonrotating Thakurta solution is the late-
time attractor of generalized McVittie solutions [47]
because, in this case, the asymptotics are (time-dependent)
FLRWand not de Sitter, which was one of the assumptions
in our theorem. Simultaneous cosmic no-hair/no-hair

theorems more general than the one in Sec. IV (possibly
including anisotropy) will be investigated in the future.
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