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The second-order post-Newtonian solution for the light propagation in the field of Kerr-Newman black
hole is achieved via an iterative method. Based on this result, we further obtain the second-order post-
Newtonian light deflection in Kerr-Newman spacetime, which is formulated in an united form for any
arbitrarily incident directions. All results are exhibited in the coordinate system constituted by the initial
light-direction vector, the impact vector, and their cross-product.
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I. INTRODUCTION

Einstein’s theory of general relativity is now widely
accepted as the most satisfactory theory of gravitation. The
motion of test particles including photon is a core problem
for general relativity. In the past decades hampered by the
limitations of instruments, the measurements for testing
relativistic gravity were up to only the first-order post-
Newtonian (1PN) precision. However, today’s astrometric
missions, e.g., GAIA [1], have reached a level of a few
micro-arcseconds (μ arcsec) in angular observations of
light. These projects may measure the effects of relativistic
gravity on the light propagation at the second-order post-
Newtonian (2PN) level. Therefore, it is important to obtain
the analytical solution for the light propagation to this
accuracy.
The effects on the light propagation have been explored

within several investigations, e.g., the 1PN and 1.5PN
effects of the mass-monopole, spin-dipole and mass-
quadrupole of gravitational bodies in motion [2,3], the
post-Minkowskian (1PM) effects of mass-multipoles and
spin-multipoles of gravitational sources at rest [4–6], the
1PM effects of pointlike bodies in motion [7–10], and the
1PN and 1.5PN effects of both motion and mass-multipoles
and spin-multipoles of sources [11–13]. Furthermore, the
canonical studies on the 2PN contributions to the light
deflection and time delay were performed in the early of
1980s or even earlier [14–18]. Recently, based on the
method of time transfer functions [19,20], the formula
for the light traveling time in the field of a spherically
symmetric and static spacetime has been achieved up to the
fifth order of gravitational constant [21].
Due to their strong gravitational field, the higher-order

PN effects caused by the black holes on the passing-by light

might be detected in future. The light propagation in
the field of Schwarzschild black hole has been studied
extensively [22–27]. For the case of Kerr black hole,
the trajectory of the light is not confined to a plane in
general, except for the light being in the equatorial plane
which is the perpendicular to the gravitational source’s
rotational axis. For simplicity, many analytical works focus
on the propagation of light in or close to the equatorial
plane [28–31].
Kerr-Newman black hole is the most general classic

black hole. The expression for the equatorial deflection of
light up to the fourth-order level has been obtained [32].
In general, similar to the case of Kerr black hole, the light
propagation in the field of Kerr-Newman black hole does
not proceed in a plane either. Although the conditions for
the orbital and vortical motions of photon outside the
equatorial plane have been studied [33], so far for the
general situations, the analytical solutions to the trajectory
and velocity of light in Kerr-Newman spacetime have not
been reported yet.
In this work, we consider the problem of the light with an

arbitrary direction traveling in the gravitational field of
Kerr-Newman black hole. We follow Will’s method [34] to
evaluate differential equations for the null geodesics and
take a step forward up to the next higher order, and in the
process develop a simple iterative method that allow the
trajectory and velocity of light to be calculated to arbitrary
PN orders. On the other hand, for any nonspherically-
symmetry gravitational system, the light propagation is not
confined in a plane, and its deflection can not be charac-
terized by a single deflection angle completely. For this
purpose, we also introduce a coordinate system with which
the light trajectory, velocity and deflection can be described
conveniently.
The present paper is organized as follows. Section II

gives the 2PN dynamics equations for the photon in
Kerr-Newman spacetime. In Sec. III we present the 2PN
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solutions to the trajectory and velocity of light travelling
in the field of Kerr-Newman black hole. Section IV
gives the 2PN light deflection in Kerr-Newman spacetime.
The summary is given in Sec. V.

II. THE 2PN DYNAMICS EQUATIONS
OF PHOTON

The spacetime for a constantly rotating charged black
hole is referred to as Kerr-Newman spacetime. In harmonic
coordinates, the metric of Kerr-Newman black hole in the
2PN approximation can be written as [35]

g00 ¼ −1þ 2m
r

−
2m2 þ q2

r2
; ð1Þ

g0i ¼ ζi; ð2Þ

gij ¼
�
1þ 2m

r
þm2

r2

�
δij þ

ðm2 − q2Þxixj
r4

; ð3Þ

where m and q are Kerr-Newman black hole’s mass and
electric charge respectively, r≡ jxj with x≡ ðx1; x2; x3Þ
denoting the position vector of the field point, ζi is the ith
component of the vector potential ζ ≡ 2ðx × JÞ=r3 due to
the gravitational source’s rotation, with J being the angular
momentum of Kerr-Newman black hole. We use the
geometrized units (the gravitational constant G and the
light speed c in vacuum are set as 1) and the metric
signature (−þþþ) with Greek indices running from 0–3
and Latin indices from 1–3.
The motion of photon in the gravitational field can be

described by the following equations [34,36,37]

g00 þ 2g0i
dxi

dt
þ gij

dxi

dt
dxj

dt
¼ 0; ð4Þ

d2xi

dt2
þ Γi

00 þ 2Γi
0j
dxj

dt
þ Γi

jk
dxj

dt
dxk

dt

−
�
Γ0
00 þ 2Γ0

0j
dxj

dt
þ Γ0

jk
dxj

dt
dxk

dt

�
dxi

dt
¼ 0; ð5Þ

where Γμ
αβ denotes the Christoffel symbol

Γμ
αβ ¼

1

2
gρμ

�∂gρβ
∂xα þ ∂gρα

∂xβ −
∂gαβ
∂xρ

�
:

Substituting Eqs. (1)–(3) into Eqs. (4)–(5), we can obtain
the 2PN dynamics equations of photon as follows

− 1þ 2m
r

−
2m2 þ q2

r2
þ 2ζ ·

dx
dt

þ
�
1þ 2m

r
þm2

r2

����� dxdt
����
2

þm2 − q2

r4

�
x ·

dx
dt

�
2

¼ 0; ð6Þ

d2x
dt2

¼ −
mx
r3

þ ð4m2 þ q2Þx
r4

þ 4mr − 2m2 − 2q2

r4

�
x ·

dx
dt

�
dx
dt

−
ðmr − q2Þx

r4

���� dxdt
����
2

þ ð2m2 − 2q2Þx
r6

�
x ·

dx
dt

�
2

þ dx
dt

× ð∇ × ζÞ− dx
dt

�
dx
dt

·

��
dx
dt

· ∇
�
ζ

��
; ð7Þ

where ∇ is Nabla symbol denoting the vector differential
operator [36].
Based on these two equations, we can obtain the 2PN

velocity and trajectory of light propagation in the field of
Kerr-Newman black hole.

III. THE 2PN SOLUTION TO THE
LIGHT PROPAGATION

Assuming a photon emitted at the coordinate time te at a
point xe with an initial direction unit vector n. Following
Will’s method [34], we can write the 2PN trajectory and
velocity of light as

x ¼ xN þ x1PN þ x2PN; ð8Þ

dx
dt

¼ nþ dx1PN
dt

þ dx2PN
dt

; ð9Þ

where xN denotes the Newtonian solution of light
trajectory

xN ¼ xe þ nðt − teÞ; ð10Þ

which means the light travels in a straight line with a
constant velocity of 1. x1PN and x2PN denote the 1PN and
2PN corrections to the Newtonian solution, which can be
obtained via an iterative method. The derivations of these
PN corrections are straightforward but tedious, thus we
give them in the Appendix.
Here we consider the configuration in which the Kerr-

Newman black hole is at the origin, and both light source
and observer lie in the asymptotically flat region, i.e.,
xe → −∞ and xN → þ∞. This scenario is the most
interesting in astronomy observations. In this case, the
1PN and 2PN corrections to the Newtonian solution for
the light trajectory can be written as follows

x1PN ¼ n

�
−2m ln

jxN j þ n · xN
jxej þ n · xe

�

þ b

�
−
2mjxN j
b2

�
1 −

xe · xN
jxejjxN j

��
; ð11Þ
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x2PN ¼ n
�
−
8m2jxN j

b2
−
15πm2 − 3πq2

4b
−
4ðn × bÞ · J

b2

�

þ n × b

�
4n · J
b2

−
2jxN jb · J

b4

�
1 −

xe · xN
jxejjxN j

��

þ b

�
8m2

b2
ln
jxN j þ n · xN
jxej þ n · xe

−
ð15m2 − 3q2ÞπjxN j

4b3

þ 4m2

b2

�
1þ jxN j

jxej
�
þm2 þ 3q2

4b2

�
1 −

xe · xN
jxej2

�

−
2jxN jðn × bÞ · J

b4

�
1 −

xe · xN
jxejjxN j

��
; ð12Þ

where b≡ xN − nðn · xNÞ ¼ xe − nðn · xeÞ is the impact
vector joining the center of the Kerr-Newman black hole
and the point of the closest approach in the line of xN ,
whose amplitude b≡ jbj is well-known as the impact
parameter [36]. The plane spanned by the vectors n and
b is defined as the incident plane. Figure 1 shows the
schematic diagram for the light propagation. In Eqs. (11)
and (12), some terms other than the ones being propor-
tional to jxN j are kept in order to show the important
PN effects.
The light velocity in the 2PN accuracy, given by the

combination of Eqs. (A22) and (A23), can be written as

dx
dt

¼n

�
1−

8m2

b2

�
þb

�
−
4m
b2

−
15πm2

4b3
þ3πq2

4b3
−
4ðn×bÞ ·J

b4

�

þn×b

�
−
4b ·J
b4

�
; ð13Þ

here we have dropped all the terms vanishing in the limits
of xN → ∞ and xe → −∞.
These results can be used to calculate the light deflection

caused by Kerr-Newman black hole.

IV. THE 2PN LIGHT DEFLECTION
IN KERR-NEWMAN SPACETIME

The light deflection is of great importance to the
phenomena of gravitational lensing. The 2PN deflection

of light in Kerr-Newman spacetime can be obtained from
Eq. (13) and characterized by the polar angle θ and the
azimuthal angle φ in the coordinate system (n, b, n × b) as
follows

�
θ

φ

�
¼

8>><
>>:

π

2
þ 4b · J

b3

−
4m
b

−
15πm2

4b2
þ 3πq2

4b2
−
4ðn× bÞ · J

b3

9>>=
>>;
: ð14Þ

Notice that the azimuthal angle φ is measured from the
direction of n in the incident plane (θ ¼ π=2) and the
polar angle θ is measured from the direction of n × b,
as shown in Fig. 1. It can be observed from Eq. (14)
that the light will deviate from the incident plane
for b · J ≠ 0.
For the light being in the equatorial plane of Kerr-

Newman black hole initially, i.e., b · J ¼ 0, n · J ¼ 0, and
ðn × bÞ · J ¼ �bjJj, from Eq. (14) we have θ ¼ π=2 and

φ ¼ − 4m
b − 15πm2

4b2 þ 3πq2

4b2 − ð� 4jJj
b2 Þ, with the sign “þ” cor-

responding to the retro-orbit case and “−” corresponding
to the direct-orbit one. The light will stay in the
equatorial plane all the time, as shown in Fig. 2.
This result agrees with the equatorial deflection formula
in the 2PN approximation [32], and reduces to the Kerr
deflection formula [29] when the electric charge q is set
as zero.
Another case needs special attention, in which the

initial velocity of light from infinity is parallel to the
angular momentum, i.e., n∥J. In this case we have
b · J ¼ 0 and ðn × bÞ · J ¼ 0. From Eq. (14), we have

θ ¼ π
2
and φ ¼ − 4m

b − 15πm2

4b2 þ 3πq2

4b2 , seeming that the rota-
tion does not have effect. However, this is an illusion. From
Eq. (12) we can see that the light trajectory has a displace-
ment of 4n·J

b ðn × b
bÞ from the incident plane. In fact, this

rotation effect is first found and derived by Klioner [2].
Figure 3 shows the schematic trajectory of light in this
special case: the light keeps on deviating from the incident
plane alongwith the rotation directionwhen it approaches to
and leaves from the gravitational source, though its final
velocity will become parallel to the incident plane again
when it goes to infinity.

FIG. 1. Schematic diagram for the light propagation in Kerr-
Newman spacetime. The direction of the angular momentum J of
black hole is arbitrary. The light trajectory is denoted by the red
solid line and in general is not in the incident plane spanned by
n × b. θ and φ denote the light deflection angles.

FIG. 2. The schematic diagram for light propagation in the
equatorial plane. The light trajectory is represented as a red solid
line. Here only the retro-orbit case is shown.
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V. SUMMARY

The 2PN effects may be detected in the astrometric
measurements with submicroarcsecond level in angular
determination in near future. In this work, we derive the
2PN solution for the light propagating in the Kerr-
Newman spacetime. Especially, the expression of the
2PN solution is compact when both the light source and
observer are located in the asymptotically flat regions.
Based on this result, we further obtain the 2PN light
deflection in the Kerr-Newman spacetime. All results
are exhibited in the coordinate system constituted
by the initial light-direction vector, the impact vector,
and their cross-product. The direction of the incident
light is arbitrary, and this makes our formalism quite
general and applicable for most practical situations in
gravitational lensing induced by the Kerr-Newman
black hole.
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APPENDIX A: DERIVATIONS OF THE 2PN
SOLUTION TO THE LIGHT PROPAGATION

IN KERR-NEWMAN SPACETIME

We first recall Will’s approach [34] to get the 1PN
equations of the photon motion.
Considering a photon emitted at the coordinate time te at

a point xe in an initial direction described by the unit vector.
For the zeroth order, Eqs. (6) and (7) reduce to

���� dxdt
���� ¼ 1;

d2x
dt2

¼ 0; ðA1Þ

and the zeroth-order solution (Newtonian solution) is

dxN
dt

¼ n; ðA2Þ

xN ¼ xe þ nðt − teÞ: ðA3Þ

To 1PN accuracy, Eqs. (6) and (7) reduce to

−1þ 2m
r

þ
�
1þ 2m

r

����� dxdt
����
2

¼ 0; ðA4Þ

d2x
dt2

¼ −
�
1þ

���� dxdt
����
2
�
mx
r3

þ 4m
r3

dx
dt

�
x ·

dx
dt

�
; ðA5Þ

and the corresponding solution has the form

x ¼ xN þ x1PN; ðA6Þ

with x1PN being the 1PN correction.
Substituting Eqs. (A3) and (A6) into Eqs. (A4)–(A5),

and only keeping the 1PN terms, we can obtain

n ·
dx1PN
dt

¼ −
2m
jxN j

: ðA7Þ

d2x1PN
dt2

¼ −
2m
jxN j3

xN þ 4m
jxN j3

nðn · xNÞ: ðA8Þ

In order to solve these two equations, we decompose
x1PN into components parallel and perpendicular to n:

x1PN∥ ¼ nðn · x1PNÞ; ðA9Þ

x1PN⊥ ¼ x1PN − nðn · x1PNÞ: ðA10Þ

Equations (A7) and (A8) then yield

dx1PN∥
dt

¼ −
2mn
jxN j

; ðA11Þ

d2x1PN⊥
dt2

¼ −
2m
jxN j3

xN þ 2m
jxN j3

nðn · xNÞ ¼ −
2mb
jxN j3

:

ðA12Þ

Integrating Eq. (A12) along xN , we get

dx1PN⊥
dt

¼ −
2mb
b2

�
n · xN
jxN j

−
n · xe
jxej

�
: ðA13Þ

Combining Eqs. (A11) and (A13), we have the velocity of
the photon to the 1PN accuracy

dx1PN
dt

¼ −
2mn
jxN j

−
2mb
b2

�
n · xN
jxN j

−
n · xe
jxej

�
: ðA14Þ

FIG. 3. The schematic diagram for light propagation for the
case of n∥J. The red solid line denotes the light trajectory, which
deviates gradually from the incident plane but finally become
parallel to the latter again in the limit of xN → ∞. The red dotted
line denotes the projection of the light trajectory onto the incident
plane from top to bottom.
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Notice that this equation can also be directly retrieved from
Will’s results based on the parameterized post-Newtonian
approximation [34], but for completeness of this work, we
include this part here.
Integrating Eq. (A14) along the straight-line xN , we

can obtain the 1PN correction to the trajectory of light as
follow

x1PN ¼ −2mn ln
jxN j þ n · xN
jxej þ n · xe

−
2mjxN jb

b2

�
1 −

xe · xN
jxejjxN j

�
:

ðA15Þ

Following the same procedure, we can further deduce the
2PN equations of light propagation using the iterative
method.

To 2PN accuracy, the solution of Eqs. (6) and (7) can be written as

x ¼ xN þ x1PN þ x2PN; ðA16Þ

with x2PN being the 2PN correction.
Plugging Eq. (A16) into Eq. (6), and making use of Eqs. (A3), (A14)–(A15), we obtain

n ·
dx2PN
dt

¼ −
4m2ðn · xNÞ

jxN j3
ln
jxN j þ n · xN
jxej þ n · xe

þ q2

jxN j2
−

4m2

jxejjxN j
þ 2m2

jxej2
−
4m2

b2

þ
�
4m2

jxN j2
þ 4m2

b2

�
xe · xN
jxejjxN j

þ ðm2 − q2Þb2
2jxN j4

− n · ζ; ðA17Þ

here and from now on the vector potential ζ is evaluated by 2ðxN × JÞ=jxN j3.
Substituting Eq. (A16) into Eq. (7), making use of Eqs. (A3), (A8), (A14)–(A15), we can obtain

d2x2PN
dt2

¼ n

�
2m2

jxN j3
��

4 −
6b2

jxN j2
�
ln
jxN j þ n · xN
jxej þ n · xe

−
2n · xe
jxej

−
2n · xN
jxN j

−
b2ðn · xNÞ

jxN j3
−
6b2ðn · xN − n · xeÞ

jxejjxN j2
�

−
2q2ðn · xNÞ3

jxN j6
− n · ½ðn ·∇Þζ�

�
þ b

�
2m2

jxN j3
�
−
6n · xN
jxN j2

ln
jxN j þ n · xN
jxej þ n · xe

þ 3

jxN j
−

4

jxej

−
2jxN j
b2

−
b2

jxN j3
þ
�

6

jxN j2
þ 2

b2

�
xe · xN
jxej

�
þ 2q2b2

jxN j6
�
þ n × ð∇ × ζÞ: ðA18Þ

Similarly, we can decompose x2PN into components parallel and perpendicular to n:

x2PN∥ ¼ nðn · x2PNÞ; ðA19Þ

x2PN⊥ ¼ x2PN − nðn · x2PNÞ: ðA20Þ

From Eqs. (A18) and (A20) we have

d2x2PN⊥
dt2

¼ 2m2b
jxN j3

��
6

jxN j
þ 2jxN j

b2

�
xe · xN
jxejjxN j

−
6n · xN
jxN j2

ln
jxN j þ n · xN
jxej þ n · xe

þ 3

jxN j
−

4

jxej
−
2jxN j
b2

−
b2

jxN j3
�

þ 2q2b2b
jxN j6

þ n × ð∇ × ζÞ: ðA21Þ

Integrating Eq. (A21) along xN , we can obtain
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dx2PN⊥
dt

¼ b

�
4m2

jxN j3
ln
jxN j þ n · xN
jxej þ n · xe

þ 15m2 − 3q2

4b3

�
arccos

n · xN
jxN j

− arccos
n · xe
jxej

�
þ 4m2ðb2 þ jxN j2Þðn · xN − n · xeÞ

b2jxN j3jxej

þm2 þ 3q2

4b2

�
n · xN
jxN j2

−
n · xe
jxej2

�
−
m2 − q2

2

�
n · xN
jxN j4

−
n · xe
jxej4

�
−
2ðn × bÞ · J

b4

�
n · xN
jxN j

−
n · xe
jxej

��

þ n × b

�
2n · J

�
1

jxN j3
−

1

jxej3
�
−
2b · J
b2

�
n · xN
b2jxN j

−
n · xe
b2jxej

þ n · xN
jxN j3

−
n · xe
jxej3

��
: ðA22Þ

From Eqs. (A17) and (A19) we have

dx2PN∥
dt

¼ n

�
−
4m2ðn · xNÞ

jxN j3
ln
jxN j þ n · xN
jxej þ n · xe

−
4m2

b2
þ 2m2

jxej2
þ m2b2

2jxN j4
−

4m2

jxejjxN j

þ
�
4m2

jxN j2
þ 4m2

b2

�
xe · xN
jxejjxN j

þ q2

jxN j2
−

q2b2

2jxN j4
− n · ζ

�
: ðA23Þ

The summation of Eqs. (A22) and (A23) constitutes the 2PN correction to the light velocity dx2PN
dt , and the 2PN correction to

the trajectory x2PN can be achieved via integrating it along the straight-line xN as follow

x2PN ¼ n

�
4m2

jxN j
ln
jxN j þ n · xN
jxej þ n · xe

þ 15m2 − 3q2

4b

�
arccos

n · xN
jxN j

− arccos
n · xe
jxej

�
þm2 − q2

4

�
n · xN
jxN j2

−
n · xe
jxej2

�

þ 2m2

jxej
�

2

jxN j
þ 1

jxej
�
ðn · xN − n · xeÞ −

4m2jxN j þ 2ðn × bÞ · J
b2

�
n · xN
jxN j

−
n · xe
jxej

��

þ n × b

�
2n · J
b2

�
n · xN
jxN j

−
n · xe
jxej

−
b2ðn · xN − n · xeÞ

jxej3
�
þ 2b · J

b2

�
1

jxN j
−

2

jxej
−
jxN j
b2

þ xe · xN
jxej

�
1

b2
þ 1

jxej2
���

þ b

�
4m2

b2

�
n · xN
jxN j

−
n · xe
jxej

�
ln
jxN j þ n · xN
jxej þ n · xe

þ n · xNð15m2 − 3q2Þ
4b3

�
arccos

n · xN
jxN j

− arccos
n · xe
jxej

�

þm2 − q2

4

�
1

jxN j2
−

1

jxej2
�
þ 4m2

b2

�jxN j
jxej

−
xe · xN
jxejjxN j

�
þ
�
m2 þ 3q2

4b2
−
m2 − q2

2jxej2
��

1 −
xe · xN
jxej2

�

−
2jxN jðn × bÞ · J

b4

�
1 −

xe · xN
jxejjxN j

��
: ðA24Þ

In principle, with the exact harmonic metric of Kerr-Newman black hole [35], the higher-order PN velocity and trajectory
of light in Kerr-Newman spacetime can be achieved via the same procedure. The integrals we used in this section are listed
in the Appendix B for readers’ convenience.
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APPENDIX B: LIST OF INTEGRALS

Z
t

te

dt ¼ n · xN − n · xe;

Z
t

te

1

jxN j
dt ¼ ln

jxN j þ n · xN
jxej þ n · xe

;

Z
t

te

n · xN
jxN j

dt ¼ jxN j − jxej;
Z

t

te

1

jxN j2
dt ¼ −

1

b

�
arccos

n · xN
jxN j

− arccos
n · xe
jxej

�
;

Z
t

te

n · xN
jxN j2

dt ¼ ln
jxN j
jxej

;

Z
t

te

1

jxN j3
dt ¼ 1

b2

�
n · xN
jxN j

−
n · xe
jxej

�
;

Z
t

te

n · xN
jxN j3

dt ¼ −
1

jxN j
þ 1

jxej
;

Z
t

te

1

jxN j4
dt ¼ −

1

2b3

�
arccos

n · xN
jxN j

− arccos
n · xe
jxej

�
þ 1

2b2

�
n · xN
jxN j2

−
n · xe
jxej2

�
;

Z
t

te

n · xN
jxN j4

dt ¼ −
1

2jxN j2
þ 1

2jxej2
;

Z
t

te

1

jxN j5
dt ¼ 1

3b2

�
n · xN
jxN j3

−
n · xe
jxej3

�
þ 2

3b4

�
n · xN
jxN j

−
n · xe
jxej

�
;

Z
t

te

n · xN
jxN j5

dt ¼ −
1

3jxN j3
þ 1

3jxej3
;

Z
t

te

1

jxN j6
dt ¼ −

3

8b5

�
arccos

n · xN
jxN j

− arccos
n · xe
jxej

�
þ 3

8b4

�
n · xN
jxN j2

−
n · xe
jxej2

�
þ 1

4b2

�
n · xN
jxN j4

−
n · xe
jxej4

�
;

Z
t

te

n · xN
jxN j6

dt ¼ −
1

4jxN j4
þ 1

4jxej4
;

Z
t

te

arccos
n · xN
jxN j

dt ¼ ðn · xNÞ arccos
n · xN
jxN j

− ðn · xeÞ arccos
n · xe
jxej

þ b ln
jxN j
jxej

;

Z
t

te

1

jxN j3
ln
jxN j þ n · xN
jxej þ n · xe

dt ¼ 1

b2
n · xN
jxN j

ln
jxN j þ n · xN
jxej þ n · xe

−
1

b2
ln
jxN j
jxej

;

Z
t

te

n · xN
jxN j3

ln
jxN j þ n · xN
jxej þ n · xe

dt ¼ −
1

jxN j
ln
jxNj þ n · xN
jxej þ n · xe

−
1

b

�
arccos

n · xN
jxN j

− arccos
n · xe
jxej

�
;

Z
t

te

n · xN
jxN j5

ln
jxN j þ n · xN
jxej þ n · xe

dt ¼ −
1

3jxN j3
ln
jxN j þ n · xN
jxej þ n · xe

−
1

6b3

�
arccos

n · xN
jxN j

− arccos
n · xe
jxej

�
þ 1

6b2

�
n · xN
jxN j2

−
n · xe
jxej2

�
:
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