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The exterior geometry of a neutron star can be approximated by relativistic multipole moments of a
parametrized metric using Ernst potential formalism. This spacetime can be tested with electromagnetic
wave observation of astrophysical black holes. In the present paper, I simulate x-ray reflection spectra of a
thin accretion disk with future x-ray missions. The purpose of this work is to understand whether x-ray
reflection spectroscopy can distinguish the neutron star from the Kerr solution of general relativity. I found
that for the higher value of spin and multipole moment parameters, there are small differences in the shape
of neutron star iron lines. It is hard to distinguish neutron star iron lines from Kerr ones due to the small
deviations. Also, electromagnetic wave observation of slow rotating neutron stars is marginally consistent
with Kerr black holes of general relativity.
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I. INTRODUCTION

General relativity (GR) has successfully passed tests of
the weak field gravity regime by several experiments [1–4].
There is a lack of precise observational measurement in
strong gravity regimes. According to GR, the final product
of gravitational collapse is Kerr black holes (BHs).
According to multiple moment expansion, Kerr BHs are
only characterized by mass and spin, and higher multipole
moments are only a function of the first two multipole
moments. If independent higher multipole moments such as
quadrupole moments are measured by observational data,
the compact object cannot be the Kerr solution of GR.
Neutron stars (NSs) are fascinating astrophysical objects

to test strong gravity regimes and study possible deviations
from the predictions of general relativity. They have high
density and strong gravity. NS exterior spacetime can be
accurately approximated by multipole moments expansion.
Properties of NSs can be inferred by the study of higher
order multipole moments.
Hartle and Thorne [5] provided the first approach for

slowly rotating objects. Their approach was based on
expansion up to second order in rotation. Also, there have
been attempts to describe spacetime around NSs by analytic
solutions of stationary, axially symmetric, and also vacuum
spacetime; see, for example, [6–11]. These solutions are
not constrained to a slow rotation and the numbers of
parameters that construct their geometries. Ernst potential
formalism [12] provides a powerful way to generate sta-
tionary and axisymmetric spacetime solutions in GR
[13–15]. This algorithm contains many parameters.

Reference [16] provides an approximate solution for the
spacetime around NSs. The solution is generated by the
Ernst formulation of GR. This solution is parametrized by
the first five multipole moments,M; J;M2; S3, andM4. The
author also considered the relation between these hairs and
NS exterior spacetime, which depends on mass M, spin
parameter J=M2, and quadrupole moments. This type of
metric can well approximate the exterior spacetime of NSs.
On the other hand, x-ray reflection spectroscopy, also

known as the iron line method, is a powerful technique to
unveil properties of the strong gravity regime and constrain
deviations from theKerr solution ofGR.More recently, there
have been studies to use this technique to test the nature of
astrophysical objects and constrain deviations from GR
[17–33]. In this method, a geometrically thin and optically
thick accretion disk emits fluorescent narrow lines by absorb-
ing hard x-ray photons of an optically thin comptonized
corona. The strongest line is the iron Kα line, which is at
6.4 keV for neutral atoms and shifts up to 6.97 keV in the case
of ionized H-like iron. This emission line is a prominent
feature in x-ray reflection spectra. This emission in the inner
region of the accretion disk would be broadened and asym-
metric due to special and general relativistic effects of compact
objects,Doppler shift, gravitational redshift, and light bending.
In this paper, I simulate the iron line of a NS, in which

its exterior spacetime is approximated by Ernst formalism
up to five multipole moments. Then, I simulate and
analyze the reflection spectrum of the NS to constrain
the multipole moments. The result shows a faster rotating
NS with higher value multipole moments, and slowly
rotating objects cannot be distinguished from the Kerr
solution of GR; thus, it is hard to constrain the parameters
of the NS using x-ray reflection spectroscopy.*ghasemi@nao.cas.cn
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The structure of this paper is as follows. Details of the
spacetime metric are presented in Sec. II. Section III is
devoted to x-ray reflection spectroscopy, and the data
simulation is presented in Sec. IV. A summary and
conclusions are given in Sec. V. In the following sections,
I will employ natural units in which GN ¼ c ¼ 1 and the
metric signature is ð−þþþÞ.

II. THE SPACETIME AROUND
NEUTRON STARS

Reference [16] provides a stationary and axially sym-
metric solution based on Ernst potential formalism. The
solution consists of the five relativistic multipole moments,
M; J;M2; S3, and M4, respectively, the mass, angular
momentum, the mass quadrupole, spin octupole, and the
mass hexadecapole. The line element up to these five
multipole moments reads

ds2 ¼ −fðdt − ωdφÞ2 þ f−1½e2γðdρ2 þ dz2Þ þ ρ2dφ2�;
ð1Þ

where metric functions f, ω, and γ are given as

fðρ; zÞ ¼ 1 −
2Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ z2

p þ 2M2

ρ2 þ z2

þ ðM2 −M3Þρ2 − 2ðM3 þM2Þz2
ðρ2 þ z2Þ5=2

þ 2z2ð−J2 þM4 þ 2M2MÞ − 2MM2ρ
2

ðρ2 þ z2Þ3

þ Aðρ; zÞ
28ðρ2 þ z2Þ9=2 þ

Bðρ; zÞ
14ðρ2 þ z2Þ5 ; ð2Þ

ωðρ; zÞ ¼ −
2Jρ2

ðρ2 þ z2Þ3=2 −
2JMρ2

ðρ2 þ z2Þ2 þ
Fðρ; zÞ

ðρ2 þ z2Þ7=2

þ Hðρ; zÞ
2ðρ2 þ z2Þ4 þ

Gðρ; zÞ
4ðρ2 þ z2Þ11=2 ; ð3Þ

γðρ; zÞ ¼ ρ2ðJ2ðρ2 − 8z2Þ þMðM3 þ 3M2Þðρ2 − 4z2ÞÞ
4ðρ2 þ z2Þ4

−
M2ρ2

2ðρ2 þ z2Þ2 ; ð4Þ

where

Aðρ; zÞ ¼ ½8ρ2z2ð24J2M þ 17M2M2 þ 21M4Þ
þ ρ4ð−10J2M þ 7M5 þ 32M2M2 − 21M4Þ
þ8z4ð20J2M − 7M5 − 22M2M2 − 7M4Þ�; ð5Þ

Bðρ; zÞ ¼ ½ρ4ð10J2M2 þ 10M2M3 þ 21M4M þ 7M2
2Þ

þ 4z4ð−40J2M2 − 14JS3 þ 7M6 þ 30M2M3

þ14M4M þ 7M2
2Þ − 4ρ2z2ð27J2M2 − 21JS3

þ7M6 þ 48M2M3 þ 42M4M þ 7M2
2Þ�; ð6Þ

Hðρ; zÞ ¼ ½4ρ2z2ðJðM2 − 2M3Þ − 3MS3Þ
þρ4ðJM2 þ 3MS3Þ� ð7Þ

Gðρ; zÞ ¼ ½ρ2ðJ3ð−ðρ4 þ 8z4 − 12ρ2z2ÞÞ
þ JMððM3 þ 2M2Þρ4 − 8ð3M3 þ 2M2Þz4
þ4ðM3 þ 10M2Þρ2z2Þ
þM2S3ð3ρ4 − 40z4 þ 12ρ2z2ÞÞ� ð8Þ

Fðρ; zÞ ¼ ½ρ4ðS3 − JM2Þ − 4ρ2z2ðJM2 þ S3Þ�: ð9Þ

As general properties of this spacetime and its validity for
the NS case, a horizon is located at ρ ¼ 0 and problematic
properties such as singularities and closed timelike curves
are well inside the surface of the NS [16].
In order to use this metric for the NS case, the right set of

multipole moments is needed. The first multipole moments
can be expressed as

M2 ¼ −αj2M3;

S3 ¼ −βj3M4;

M4 ¼ γj4M5; ð10Þ

where M and j ¼ J=M2 are, respectively, mass and spin
parameter. The metric reduces to the Kerr solution for the
case α ¼ β ¼ γ ¼ 1, but these parameters can be larger for
the NS case [34–37]. The higher moments of a NS
spacetime can be expressed in terms of mass, spin, and
quadrupole M2 ¼ Q [36–38]. The relation between these
three parameters can be written as [36,37]

y1 ¼ −0.36þ 1.48x0.65

y2 ¼ −4.749þ 0.27613x1.5146 þ 5.5168x0.22229; ð11Þ

where

x ¼ ffiffiffi
α

p
;

y1 ¼
ffiffiffi
β3

p
;

y2 ¼ ffiffiffi
γ4

p
: ð12Þ

Thus the neutron star spacetime is determined by mass,
spin parameter, and parameter α. Depending on the
equation state of the NS parameter, α ranges from 8 for
the maximum value of the spin parameter such as 0.5 to
∼1.5 for models close to the nonrotating case [16].
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III. X-RAY REFLECTION SPECTROSCOPY

The accretion disk model in gravitational fields intro-
duced by Novikov and Thorne is considered here [39]. The
disk is located on the equatorial plane and it is
perpendicular to the black hole spin. The gas of the disk
moves very nearly in a circular, geodesic orbit. The inner
edge of the disk is at the innermost stable circular orbit
(ISCO). The accretion disk emits as a blackbody locally
and as a multicolor blackbody when integrated radially.
The corona, an optically thin electron cloud, is located
at the top of the disk and may sandwich the disk. A
weakly ionized iron atom in the geometrically thin and
optically thick accretion disk absorbs an x-ray photon of
the hot corona and electron transition from n ¼ 2 to n ¼ 1
(K-shell) and releases 6.404 keVenergy. This line is called
the iron Kα line. This iron Kα line is the prominent feature
in x-ray reflection spectra. This emission in the inner region
of the accretion disk would be broadened and asymmetric
due to the special and general relativistic effects of the
compact object, Doppler shift, gravitational redshift, and
light bending. Studying the shape of this broad iron line can
be a powerful technique to probe the strong gravity regime.
This method is currently used to measure the spin of
astrophysical black holes based on the Kerr metric. More
recently, this method has been used to constrain possible
deviations from the Kerr solution [17–33]. To simulate iron
lines, I use the code described in [40,41]. I measure the
photon flux number density. The shape of the iron line
depends on background metric which I consider metric (1)
for the NS case. The iron line is also determined by the
inclination angle, inner and outer radius of the disk, and
emissivity profile. The radius of NS is smaller than the
ISCO radius. The inner edge is assumed at ISCO and the
outer one is big enough not to be important. The emissivity
profile is a power law, Ie ¼ rqe , where Ie, re, and q are,
respectively, local intensity, radius of emission, and emis-
sivity index. Here I consider q ¼ −3, which corresponds to

the Newtonian limit at larger radii. I simulate iron lines for
two sets with spin 0.5 and 0.2 based on metric (1) with
different values of parameter α. The inclination angle is 55°
for all cases. The iron lines show slight differences with the
Kerr iron line for the case spin 0.5; see Fig. 1 for simulated
iron lines. The impact on line profile for spin value 0.2 is
weak and may be harder to constrain; see Fig. 2. In the next
section, I provide data simulation and analysis to check
whether these lines can be constrained or not.

IV. DATA SIMULATIONS

I simulate data to analyze reflection spectra to check
possible constraints of parameters of the NS. The model is a
power law and a single iron line of the code discussed in
previous section. The photon index of the power law is
Γ ¼ 2, which indicates a direct component from the corona.
I consider the photon flux to be about 10−11 erg=cm2=s
and the iron line equivalent width to be about 200 eV for
data simulation. I first determine the normalization values
of one. I then change and reset the normalizations to give
the required flux and equivalent width. The normalization
of the iron line is 3.78 × 10−5 and the normalization of
the power law component is 0.01. These normalizations
give an iron line equivalent width of the simulation about
200 eVand the photon flux about 2.6 × 10−11 erg=cm2=s in
the range 2–10 keV. The simulation is with a large area
detector (LAD) on board the Enhanced X-ray Timing and
Polarimetry (eXTP) China-Europe mission, which is
planned to launch before 2025 [42]. The LAD instrument
is a set of 640 silicon drift detectors. It achieves a total
effective area of about 3.4 m2 between 6 and 10 keV. It will
operate in the energy range 2–30 keV and the achievable
spectral resolution is better than 250 eV. The exposure
time of observation is 100 ks. The background of LAD is
used to generate data with the fakeit command of XSPEC1

FIG. 1. The iron lines with spin parameter 0.5 and viewing
angle 55° are presented in this figure. The parameter values for α
are 6 and 8. See text for more details.

FIG. 2. Spin parameter value is 0.2 and viewing angle is 55° in
this figure. The parameter values for α are 2 and 4. See text for
more details.

1https://heasarc.gsfc.nasa.gov/xanadu/xspec/.
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software. Thus, the noises are considered. The spectra are
created as

CðPIÞ ¼ τ

Z
RMFðPI; EÞ:ARFðEÞ:SspecðEÞdE; ð13Þ

where τ is the exposure time. RMF is a matrix of the
response file and ARF is the ancillary response file. I use
RMF and ARF of the LAD instrument with a large
effective area. S is the source flux and PI is the channel.
I find CðPIÞ from the theoretical model and compare with

the observed spectrum using standard fitting methods such
as χ2. The reduced χ2 is

χ2

ν
¼ 1

ν

XN
i

�
Xi −Mi

σi

�
2

; ð14Þ

where Xi, Mi, σi, and ν are, respectively, the x-ray data,
expected model counts in detector channel i, variance,
and degree of freedom. I then change the parameters of
the theoretical model and repeat the comparison to
achieve the best fit. The LAD instrument has a large
effective area to provide more counts with less Poisson
noise.
I use XSPEC to fit data. The fitting model is a power

law in addition to the RELLINE model. The latter
model is a Kerr iron line. Figure 3 is the simulation and
fitting for the Kerr case to test the simulation. The fit is
good and there are no unresolved features. The best
fits for NS data simulation are presented in Figs. 4
and 5. Figure 4 is for j ¼ 0.5 and α ¼ 8. The reduced χ2

is 2.1 and there are unresolved features. Although the fit
does not seem good, as the simulated iron lines are
shown, slight differences with the Kerr case constraining
this case might be hard due to the presence of
uncertainties.
As we saw for iron line simulations, there is not a strong

impact on the iron line for the case with j ¼ 0.2. The
observation simulations also show that the fit is not too bad,
and there are no remarkable unresolved features, which
means this case is harder to constrain.
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FIG. 3. Data-to-model ratio for simulation of the Kerr case with
iron line j ¼ 0.5, i ¼ 55°. The reduced χ2 is 1.04 and the fit is
good. This is a test for the data simulation.
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FIG. 4. Data-to-model ratio for simulation with iron line
j ¼ 0.5, i ¼ 55°, and α ¼ 8. The reduced χ2 is 2.1 and there
are unresolved features.
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FIG. 5. The spin parameter for this figure is 0.5, i ¼ 55°, and
α ¼ 2 for the iron line. The figure shows the data-to-model ratio.
The reduced χ2 is 1.1 and there are no remarkable unresolved
features, which makes this case harder to constrain.
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V. SUMMARY AND CONCLUSIONS

Reference [16] provides a solution to the Einstein field
equations using Ernst formalism with the first five multi-
pole moments. This metric can be accurately related to
parameters of spacetime around a NS.
In present paper, I study iron line emission from a

geometrically thin and optically thick medium around a
NS. I considered two sets of spin values with different
values of parameter α. The iron line for spin value 0.5 is
slightly affected by different values of parameter α and also
the impact of iron lines with spin value 0.2 is not strong.
I simulate 100 ks observation with LAD-eXTP for the

NS with different parameter values. I then fitted the
simulated observations. The parameters can be constrained
if the observation cannot be fitted by a Kerr model, and the
fit is bad. If the fit is good, the deviation from Kerr
spacetime cannot be constrained.
I found for a higher value of spin parameter, j ¼ 0.5

and α ¼ 8. The fit does not seem good, but due to the

small effect on simulated iron lines and presence of
uncertainties, it might be hard to constrain the NS case
and deviations from Kerr geometry. The fit is not too
bad for j ¼ 0.2 and α ¼ 2. This also means it is not
possible to constrain possible deviations from Kerr in
this case.
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