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In this paper the deflection angle of light by a rotating Teo wormhole spacetime is calculated in the weak
limit approximation. We mainly focus on the weak deflection angle by revealing the gravitational lensing as
a partially global topological effect. We apply the Gauss-Bonnet theorem (GBT) to the optical geometry
osculating the Teo-Randers wormhole optical geometry to calculate the deflection angle. Furthermore we
find the same result using the standard geodesic method. We have found that the deflection angle can be
written as a sum of two terms, namely the first term is proportional to the throat of the wormhole and
depends entirely on the geometry, while the second term is proportional to the spin angular momentum
parameter of the wormhole. A direct observation using lensing can shed light and potentially test the nature
of rotating wormholes by comparing with the black holes systems.
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I. INTRODUCTION

In 1935, Einstein and Rosen, proposed the existence of
traversable wormholes also known as Einstein-Rosen
bridges [1]. Wormholes provide a shortcut through space-
time by connecting two different spacetime points. Until
now, no one has managed to prove them experimentally,
they are only a mathematical concept. Later, Wheeler
showed that wormholes would be unstable and nontravers-
able for even a photon [2]. However, in 1988, Morris,
Thorne, and Yurtsever, worked out explicitly how to
convert a wormhole traversing space into one traversing
time [3]. Later, other types of traversable wormholes were
discovered as allowable solutions to the equations of
general relativity, including a variety analyzed in a 1989
paper by Matt Visser, in which a path through the worm-
hole can be made in which the traversing path does not pass
through a region of exotic matter [4]. These types of
wormholes are known as thin-shell wormholes. However,
exotic matter causes problems in creating wormholes.

Recently, it is shown that wormholes are also important
to explain the quantum entanglement [5].
In this paper, we use the solutions of the stationary and

axially symmetric rotatingTeowormhole [6]. This is the first
rotating wormhole solution and the most general extension
of the Morris-Thorne wormhole [3]. It is noted that,
unfortunately, the null energy condition is violated for the
rotating Teo wormhole [6]. Detection of the wormhole is
another big problem. The deflection of light in Ellis worm-
hole [7] was first pointed out by Chetouani and Clement [8].
After this the deflection of light has been investigated in a
number of paper by a nonrotating wormholes. In this line of
research, Tsukamoto recently has investigated the strong/
weak deflection limit by the Ellis wormhole spacetime [9–
11]. Gravitational lensing by Ellis wormhole was also
studied by Nakajima and Asada [12]. In Ref. [13]
Bhattachary and Potapov applied direct integration method,
perturbation method, and invariant angle method to recover
the deflection angle in Ellis spacetime. Furthermore in
Refs. [14,15] the gravitationalmicrolensing and retrolensing
by Ellis wormhole has been studied. The strong limit has
been studied by Dey and Sen in Janis–Newman–Winnicour
and Ellis wormhole spacetimes [16,17]. Then the work by
Nandi, Zhang, and Zakharov, who studied gravitational
lensing in the context of a brane world model [18], scalar-
tensor wormholes [19], the wave effect in gravitational
lensing [20], while primordial wormholes by grand unified
theories (GUTs) are predicted in the early universe [21].
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Almost all of the work mentioned above was devoted to
nonrotating wormholes. However, from an astrophysical
point of view, the rotating systems are more interesting.
Hence the main motivation in this paper is to explore the
gravitational lensing by a rotating Teo wormhole using the
GBT. In the present paper we are going to fill in this gap.
This new effective method to calculate the asymptotic
deflection angle provide interesting insights in the deflec-
tion of light by showing the effect of global topology. This
method was recently suggested by Gibbons and Werner
(GW) for static black holes [22,23]. A new spin was put
forward by Werner who extended this method to stationary
black holes [23]. Then, Jusufi applied the GBT to calculate
the deflection angle in the Ellis and Janis–Newman–
Winnicour wormholes [24]. More recently, using the
GBT, Jusufi and Ovgun calculated the deflection angle
for the quantum improved Kerr black hole pierced by a
cosmic string to show the quantum effects on it [25,26].
The deflection angle can be calculated for the charged
wormholes in Einstein-Maxwell-dilaton theory using the
GBT and rotating global monopole spacetime [27–29].
Moreover, Sakalli and Ovgun showed the deflection angle
of Rindler modified Schwarzschild back hole at the infra-
red region [30]. This method also is used in various papers
in Ref. [27,31]. The main importance of this method
consists in the fact that one can compute the deflection
angle by integrating over a domain S∞ outside the light ray.
In particular it was shown that the deflection angle can be
computed via the integral [22,23]

α̂ ¼ −
Z Z

S∞

KdA;

where K is the Gaussian optical curvature and α̂ gives the
deflection angle. Note that the above result is valid for
asymptotically Euclidan optical metrics. In the case of
nonasymptotically spacetimes the above equation should
be modified.
This paper is organized as follows. In Sec. II we present

the rotating Teo wormhole spacetime and then we find the
Teo-Randers optical metric. We construct the optical
manifold which osculates the Teo-Randes manifold using
Nazım’s method. In Sec. III, we calculate the optical metric
components as well as the Gaussian optical curvature.
In Sec. IV, we present the GBT and calculate the deflection
angle. In Sec. V, we derive the same result in terms of
geodesics equations. Finally we summarize our results in
the conclusion section.

II. TEO-RENDERS OPTICAL METRIC

Let us begin by writing the famous Teo wormhole metric
which describes a rotating wormhole spacetime given as
follows [6]

ds2 ¼ −N2dt2 þ dr2

ð1 − b0
r Þ

þ r2K2½dθ2 þ sin2θðdφ − ωdtÞ2�

ð1Þ
with

N ¼ K ¼ 1þ ð4a cos θÞ2
r

; ð2Þ

ω ¼ 2a
r3

: ð3Þ

Note that a is the spin angular momentum and b0 is a
positive constant with the range of the radial coordinate
r ≥ b0. The throat of the wormhole is at r ¼ b0 with the
flare-out condition [32]

b0 − b0;rr
2b20

> 0: ð4Þ

In the case of vanishing spin angular momentum i.e.,
a ¼ 0, the Teo wormhole metric reduces to

ds2 ¼ −N2dt2 þ dr2

1 − b0
r

þ r2K2½dθ2 þ sin2θdφ2�: ð5Þ

In what follows we shall show that the rotating Teo
wormhole metric (1) gives rise to the so-called Finsler-
Randers type metric of the form [23]

F ðx; vÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αijðxÞvivj

q
þ βiðxÞvi; ð6Þ

Note that in the last equation the following condition
holds αijβiβj < 1, with αij being the Riemannian metric
and βi being a one-form. If we solve Eq. (1) for the null
geodesic case i.e., ds2 ¼ 0, and then reduce the problem of
deflection of light in the equatorial plane by setting θ ¼
π=2 we find the following Teo-Randers wormhole optical
metric given by

F
�
r;φ;

dr
dt

;
dφ
dt

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ
�
dφ
dt

�
2

þ Σ
�
dr
dt

�
2

s
þ Θ

dφ
dt

;

ð7Þ
in which we have used

Θ ¼ −
r2ω

1 − r2ω2
;

Δ ¼ r2

ð1 − r2ω2Þ2 ;

Σ ¼ r
ð1 − r2ω2Þðr − b0Þ

:

Note that in the equatorial plane N ¼ K → 1. The key
point about the Teo-Randers optical metric F given by
Eq. (7) relies in the fact that finding null geodesics in a
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stationary spacetime metric (1) is equivalent to finding the
geodesics of a Teo-Randers optical metric. This can be
clearly seen if we set by dt ¼ F ðx; dxÞ. This suggests that
one can study the light deflection by simply generalizing
the Fermat’s principle in the framework of the Rander-
Finsler type metric which states that

δ

Z
γF

F ðx; _xÞdt ¼ 0; ð8Þ

where γF is a geodesic of the Teo-Randers wormhole
optical metric F . The Randers-Finsler metric is charac-
terized by the Hessian

gijðx; vÞ ¼
1

2

∂2F 2ðx; vÞ
∂vi∂vj : ð9Þ

where x ∈ M, v ∈ TxM. It is worth noting that M is a
smooth manifold and TxM donates the tangent space of
vectors v at a given point [23]. Having found the
Teo-Randers optical metric, we can continue our discussion
to construct the so-called Riemannian manifold ðM; ḡÞ
which osculates the Teo-Randers manifold ðM;F Þ. This
can be done by applying the Nazım’s method. One can do
this by simply choosing a vector field v̄ tangent to the
geodesic γF , such that v̄ðγF Þ ¼ _x. The Hessian reads

ḡijðxÞ ¼ gijðx; v̄ðxÞÞ: ð10Þ

The motivation behind this construction relies in the fact
that the geodesic γF of the Randers manifold is also a
geodesic γḡ of ðM; ḡÞ (see, for example, [23]):

ẍi þ Γi
jkðx; _xÞ_xj _xk ¼ ẍi þ Γ̄i

jkðxÞ_xj _xk ¼ 0 ð11Þ

in other words γF ¼ γḡ. We shall consider a region SR ⊂ M
which is bounded by the light ray γF and a curve γR.
Furthermore these curves can be parametrized as follows

γF∶ xiðtÞ ¼ ηiðtÞ; t ∈ ½0; l� ð12Þ

γR∶ xiðtÞ ¼ ζiðtÞ; t ∈ ½0; l⋆�: ð13Þ

Next one can introduce τ ¼ t=l along the geodesic γF
which belongs to ∈ ð0; 1Þ, and τ⋆ ¼ 1 − t=l ∈ ð0; 1Þ along
the curve γR such that we can pair each point ηiðτÞ on γF
with ζiðτ⋆Þ on γR if we let τ ¼ τ⋆. Now by introducing a
new parameter σ which belongs to ∈ ð0; 1Þ we can
construct a family of smooth curves xiðσ; τÞ such that
for each point pair there is precisely one curve which
touches the boundary curve. At the boundary the function
xiðσ; τÞ touches the curve γF as ηiðτÞ ¼ xið0; τÞ, and hence

_ηiðτÞ ¼ dηi

dt
ðτÞ ¼ dxi

dσ
ð0; τÞ: ð14Þ

In a similar way, the function xiðσ; τÞ touches the curve
γR as ζiðτÞ ¼ xið1; τÞ with

_ζiðτÞ ¼ dζi

dt
ðτÞ ¼ dxi

dσ
ð1; τÞ: ð15Þ

Moreover we can define a smooth and nonzero tangent
vector field of this curves given as follows

v̄iðxðσ; τÞÞ ¼ dxi

dσ
ðσ; τÞ: ð16Þ

where [23]

xiðσ; τÞ ¼ ηiðτÞ þ _ηiðτÞσ þAðτÞσ2 þ BðτÞσ3
þ yiðσ; τÞð1 − σÞ2σ2; ð17Þ

with

AðτÞ ¼ 3ζiðτÞ − 3ηiðτÞ − _ζiðτÞ − 2_ηiðτÞηiðτÞ;
BðτÞ ¼ 2ηiðτÞ − 2ζiðτÞ þ _ζiðτÞ þ _ηiðτÞ:

In what follows we shall use Eqs. (16) and (10) to
compute the metric components and the Gaussian optical
curvature to our osculating Riemannian geometry ðM; ḡÞ
which will led us to the deflection angle using the GBT
shown in Fig. 1. Furthermore we shall calculate the
deflection angle in first order terms, therefore near the
light ray we can choose the undeflected light rays as

rðφÞ ¼ b
sinφ

; ð18Þ

with b being the impact parameter which is approximated
as the distance of the closest approach from the center of

FIG. 1. Deflection angle of light in wormhole geometry in the
equatorial plane ðr;φÞ. Note that b is the impact parameter, and
yiðσ; τÞ ¼ 0 near the light ray. In our setup we have also assumed
that b0 ≪ b.
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the wormhole. Making use of the Eqs. (18) and (15) one
can easily convince himself that

v̄r ¼ dr
dt

¼ − cosφ; v̄φ ¼ dφ
dt

¼ sin2φ
b

: ð19Þ

III. GAUSSIAN OPTICAL CURVATURE

Let us now compute the metric components. To do so,
we can use Eqs. (9), (19) for the metric components we find

ḡrr ¼
r

r − b0
−

2ar2sin6φ

ðr − b0Þ½rððr−b0Þrsin
4φþb2cos2φÞ

ðr−b0Þ �3=2
;

þOða2Þ; ð20Þ

ḡrφ ¼ 2acos3φr

ðr − b0Þ2½rððr−b0Þrsin
4φþb2cos2φÞ

ðr−b0Þb2 �3=2
;

þOða2Þ; ð21Þ

ḡφφ ¼ r2 −
6asin2φ½2rðr−b0Þsin4φ

3
þ b2cos2φ�r

ðr − b0Þ½rððr−b0Þrsin
4φþb2cos2φÞ

ðr−b0Þ �3=2

þOða2Þ; ð22Þ

with a determinant given as

det ḡ ¼ r3

r − b0
−

6arsin2φffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rððr − b0Þrsin4φþ b2cos2φÞðr − b0Þ

p
þOða2Þ: ð23Þ

The Gaussian optical curvature then can be found by
noticing the related R̄rφrφ ¼ K det ḡ. In other words we can
compute K as follows

K ¼ 1ffiffiffiffiffiffiffiffiffi
det ḡ

p
� ∂
∂φ ðℵΓ̄φ

rrÞ − ∂
∂r ðℵΓ̄

φ
rφÞ

�
; ð24Þ

where

ℵ ¼
ffiffiffiffiffiffiffiffiffi
det ḡ

p
ḡrr

: ð25Þ

Our computation reveals the following result

K ¼ −
b0
2r3

−
3a
r2

fðr;φÞ þOða2Þ: ð26Þ

Note that the first term corresponds to the static worm-
hole while the second terms give the contribution of the
rotation. Furthermore in the second term, for simplicity, we
shall neglect the second order terms like ab0 → 0. It is
noted that the function fðr;φÞ is given by

fðr;φÞ ¼ sin3φ

ðr2sin4φþ b2cos2φÞ7=2 ½−2r
5sin11φþ 10b2r3cos4φsin5φ

− 16b3r2cos4φsin4φ − 8b3r2cos2φsin6φ − 10cos6φ sinφb4r − 9b4rcos4φsin3φ

− 4b4rcos2φsin5φþ 4cos6φb5 þ 2b5cos4φsin2φþ 4b2r3cos2φsin7φþ b2r3sin9φ�: ð27Þ

IV. DEFLECTION ANGLE

Theorem: Let ðSR; ḡÞ be a nonsingular and simply
connected domain over the osculating Riemannian mani-
fold ðM; ḡÞ bounded by circular curve γR and the geodesic
γḡ. Let K be the Gaussian curvature of ðM; ḡÞ, and κ the
geodesic curvature of ∂SR ¼ γḡ ∪ γR. Then GBT states that
[22,23]

Z Z
SR

KdAþ
I
∂SR

κdtþ
X
i

αi ¼ 2πχðSRÞ: ð28Þ

Note that dA is the element of area of the surface, αi are
the ith exterior angles, while χðSRÞ is the Euler character-
istic number. In order to see how the deflection angle that
arises from the GBT lets us compute the geodesic curvature
which gives the deviation from the geodesic. Hence if

follows immediately that κðγḡÞ ¼ 0, since γḡ is geodesic.
Hence we shall calculate the geodesic curvature for the
curve γR as follows

κðγRÞ ¼ j∇_γR _γRj: ð29Þ

Note that we choose γR ≔ rðφÞ ¼ R ¼ const, with the
radial part given as

ð∇_γR _γRÞr ¼ _γφRð∂φ _γ
r
RÞ þ Γ̄r

φφð_γφRÞ2: ð30Þ

In the last equation it is easy to notice that the first term
vanishes. The second term can be calculated via the unit
speed condition, i.e., ḡφφ _γ

φ
R _γ

φ
R ¼ 1. A simple calculation

reveals that κðγRÞ → R−1 as R → ∞. Finally, letting
R → ∞, the jump angles (αO, αS) gives π=2, or that is
to say, the sum of jump angle to the source S, and observer
O, yields; αO þ αS → π [22]. Note that from (7) if follows
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lim
R→∞

dt ¼ lim
R→∞

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

ð1 − R2ω2Þ2

s
−

R2ω

1 − R2ω2

#
dφ → Rdφ:

ð31Þ

Note that in the last equation we have set ω → 0, since
limR→∞ω ¼ limR→∞

2a
R3 → 0. As a result we have

lim
R→∞

κðγRÞ
dt
dφ

→ 1: ð32Þ

This result clearly reveals our assumptions that our
optical metric is asymptotically Euclidean. Having com-
puted the geodesic curvature from GBT it followsZ Z

SR

KdSþ
I
γR

κdt ¼R→∞
Z Z

S∞

KdAþ
Z

πþα̂

0

dφ ¼ π

ð33Þ
resulting with

α̂ ¼ −
Z Z

S∞

KdA: ð34Þ

After substituting the Gaussian optical curvature (26) in
the last equation we find the following integral

α̂≃ −
Z

π

0

Z
∞

b
sinφ

�
−

b0
2r3

−
3a
r2

fðr;φÞ
� ffiffiffiffiffiffiffiffiffi

det ḡ
p

drdφ: ð35Þ

Solving the first integral we find the deflection angle for
the static wormhole geometry given in terms of Elliptic
type integral

I1 ¼ −
Z

π

0

Z
∞

b
sinφ

�
−

b0
2r3

� ffiffiffiffiffiffiffiffiffi
det ḡ

p
drdφ

¼ π − 4
ffiffiffiffiffiffiffiffiffiffi
1 − z

p
EllipticE

�
π

4
;
2z

z − 1

�
; ð36Þ

where z ¼ b0=b. Approximating the above solution we
find

I1 ¼
b0
b
þO

�
b0
b

�
2

: ð37Þ

Next, we need to solve the second integral in Eq. (35)
which is singular at 0 and π. We simply assign a value to
this integral at these singular points to find

I2 ¼ −
Z

π

0

Z
∞

b
sinφ

�
−
3a
r2

fðr;φÞ
� ffiffiffiffiffiffiffiffiffi

det ḡ
p

drdφ ¼ � 4a
b2

:

ð38Þ
Thus we find the total deflection angle

α̂ ¼ I1 þ I2 ¼
b0
b
� 4a

b2
: ð39Þ

In which the positive (resp., negative) sign is for a
retrograde (resp., prograde) light ray. We note that we used
a straight line approximation and it is clear that only the
first order terms in b0 and a should be correct. But it is
possible to modify the integration domain S∞, which
should give the correct second order terms as well. Yet
another possibility is to modify the vector field (19) by
including second order terms proportional in a and b0.

V. GEODESIC APPROACH

In this section we will study the problem of calculating
the deflection angle in the framework of the geodesic
equations. Applying the variational principle to the
Teo-wormhole metric (1) with the Lagrangian

2L ¼ −_t2 þ _r2

1 − b0=r
þ r2

�
_φ −

2a_t
r3

�
2

¼ 0; ð40Þ

in which we have taken the deflection of a planar photons
by letting θ ¼ π=2. Next, one may define two constants of
motion l and γ, given as

pφ ¼ ∂L
∂ _φ ¼ l; ð41Þ

pt ¼
∂L
∂_t ¼ −γ: ð42Þ

From where it follows that

r2
�
_φ −

2a_t
r3

�
¼ l; ð43Þ

FIG. 2. Deflection angle as a function of the impact parameter
b. We have chosen m ¼ a ¼ b0 ¼ 1.
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_t2 þ 2a
r

�
_φ −

2a_t
r3

�
¼ γ: ð44Þ

Introducing a new variable u, related to our old radial
coordinate via

uðφÞ ¼ 1

r
; ð45Þ

then the following important relation can be proven

_r
_φ
¼ dr

dφ
¼ −

1

u2
du
dφ

: ð46Þ

Before we proceed we take γ ¼ 1, without loss of
generality [33]. Furthermore in the weak limit it suffices
to approximate the impact parameter b with the distance of
the closest approach

umax ¼
1

rmin
¼ 1

b
; ð47Þ

thus it follows l ¼ b. Finally we are left with the differential
equation,

ðdudφÞ2
u4ð1 − b0uÞ

þ 4a2Σ2

u2Θ2
−
4aΣ
u2Θ

−
Σ2

u6Θ2
þ 1

u2
¼ 0; ð48Þ

where

ΣðuÞ ¼ 1

u3
− 2ab ð49Þ

ΘðuÞ ¼ b
u4

þ 2a
u3

− 4a2b: ð50Þ

Rearranging the Eq. (48) we find

φ ¼
Z

1=b

0

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4au2ΣΘ − 4a2u2Σ2

Θ2 þ Σ2

u4Θ2 − u2Þð1 − b0uÞ
q : ð51Þ

It is well known that one may express the solution of the
differential equation (48) in the form of

Δφ ¼ π þ α̂; ð52Þ

where α̂ is the deflection angle to be calculated. In other
words, we can rewrite this equation as [34]

α̂ ¼ 2jφumax
− φumin

j − π; ð53Þ

where

φ ¼
Z

1=b

0

ξðuÞdu: ð54Þ

Note that after we expand in Taylor series around a was
found

ξðuÞ ¼ b3u2 − 2au − bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb2u2 − 1Þðb0u − 1Þ

p
ð1 − b2u2Þ þOða2Þ: ð55Þ

Yet one can proceed to introduce new variable y ¼ b0=b
and expand in Taylor series around y. After we evaluate the
integral the deflection angle in the weak deflection limit
approximation is found to be

α̂≃ b0
b
� 4a

b2
: ð56Þ

As expected, this result is in complete agreement with
the result found in Sec. IV. It is interesting to compare the
rotating wormhole deflection angle with the Kerr black hole
deflection angle which is given by

α̂kerr ≃ 4m
b

� 4am
b2

; ð57Þ

where m is the black hole mass, and a is the angular
momentum parameter. Below we show graphically the
bending angle as a function of the impact parameter b in
Fig. 2. As we can see, the bending of light is stronger in the
Kerr black hole for the chosen values.

VI. CONCLUSION

In this paper, we have calculated the deflection angle by
a rotating Teo wormhole spacetime for the first time. To our
best knowledge Eq. (39) is reported for the first time. We
have constructed the Teo-Randers optical geometry and
applied the GBT to the osculating geometry. Then we
confirm our result by means of the geodesics equations. We
have shown that the total deflection angle can be written as
a sum of two terms. The first term depends only on the
geometry and corresponds to the static wormhole case, in
particular we have shown that the deflection angle is
proportional to the throat of the wormhole. The second
term on the other hand encodes the rotation of the worm-
hole and is proportional to the spin angular momentum
of the wormhole. Hence, the value of the spin angular
momentum a affect the deflection angle. Furthermore the
value of the wormhole throat b0 increases the deflec-
tion angle.
It should be noted that in the present paper we have used

a straight line approximation in integrating over a domain
outside the light ray. Therefore our result is expected to be
valid only in leading order terms in b0 and a, in other
words this agreement is not valid for higher-order terms.
By integrating the Gaussian curvature of the optical metric
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outwards from the light ray, we reveal that how the global
topology plays an important role on the gravitational
lensing in the wormhole spacetime. Studying weak gravi-
tational lensing might potentially test the nature of rotating
wormhole by comparing with black holes systems [35–40].
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