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We show that a corpuscular description of gravity can lead to an inflationary scenario similar to
Starobinsky’s model without requiring the introduction of the inflaton field. All relevant properties are
determined by the number of gravitons in the cosmological condensate or, equivalently, by their Compton
length. In particular, the relation between the Hubble parameter H and its time derivative _H required by
cosmic microwave background observations at the end of inflation, as well as the (minimum) initial value
of the slow-roll parameter, are naturally obtained from the Compton size of the condensate.
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I. INTRODUCTION

The inflationary scenario in cosmology was introduced
by Starobinsky [1] and Guth [2] in the early 1980s in order
to explain the homogeneity and flatness of our Universe.
The new inflationary scenario was later proposed by Linde
[3], and Albrecht and Steinhardt [4], in which the accel-
erated expansion was driven by a scalar field (the inflaton)
slowly rolling down a plateau of the potential toward the
minimum. If the plateau is sufficiently flat, the process lasts
long enough to solve the cosmological problems mentioned
above. Moreover, the inflationary model based on the
inflaton can be formally mapped into a fðRÞ (modified)
theory of gravity (see, e.g., Ref. [5]). Nowadays, this
scenario has become, almost unanimously, accepted as
part of the standard model of the cosmos and one case that
appears particularly favored by present observations [6,7] is
precisely Starobinsky’s model [1].
Most models of inflation make use of the semiclassical

approximation, inwhich the (background)metric is classical.
However, we are not guaranteed that this approximation is
not missing relevant quantum properties of gravity in the
early Universe [8]. In this regard, the classical geometry of
space-time could as well be conceived as an emerging
property of a coherent state describing a large number of
gravitons, in close analogy to photons in a laser beam. A
peculiar feature of gravity is the attractive graviton-graviton
interaction, which allows for their collapse and formation of
Bose-Einstein condensates. In Ref. [9], it was conjectured
that this picture can reliably describe the physics inside a

black hole, which is in turn considered a compact quantum
system on the verge of a phase transition. Even when the
gravitational regime is strong, the setup is nicely understood
as a Newtonian theory of N gravitons, which are loosely
confined in a “potential well” that is the size of theirCompton
wavelength λ and interact with an effective gravitational
coupling α ∼ 1=N. As a result, it is possible to recover the
correct post-Newtonian expansion of the gravitational field
generated by a static, spherically symmetric source [10] or
the renowned Bekenstein-Hawking area law [11] with
logarithmic corrections [12] for the Hawking radiation.
On the other hand, this framework represents a natural
scenario for a cosmological model of inflation [8,13], whose
characteristic quantities display quantum properties related
to the corpuscular nature of gravity. It will also appear that
this description can help to constrain possible modified
metric theories of gravity [14], therefore proving to be an
interesting benchmark.
In this work we shall show that the corpuscular descrip-

tion of gravity can reproduce the inflationary expansion,
purely as a consequence of the graviton self-interaction.
Unlike what was considered in Refs. [8,13], the primordial
cosmological condensate can give rise to the dynamics of
Starobinsky’s model [1], without requiring the introduction
of an inflaton.

II. CORPUSCULAR COSMOLOGY

Let us start from the assumption that matter and the
corpuscular state of gravitons together must reproduce the
Friedmann equation of cosmology, which we write as
the Hamiltonian constraint

HM þHG ¼ 0; ð1Þ
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where HM is the matter energy and HG is the analogue
quantity for the graviton state. We recall that local (Newton
or Einstein) gravity being attractive in general implies that
HG ≤ 0, although this is not true for the graviton self-
interaction [10], and might not be true for the cosmological
condensate of gravitons as a whole, as we are now going to
discuss.

A. Corpuscular de Sitter

In order to obtain the de Sitter space-time in general
relativity, one must assume the existence of a cosmological
constant term, or vacuum energy density ρΛ, so that the
Friedmann equation reads1

H2 ≡
�
_a
a

�
2

¼ 8

3
πGNρΛ: ð2Þ

Upon integrating on the volume inside the Hubble radius
that solves Eq. (2), that is LΛ ¼ H−1

Λ , we obtain2

LΛ ≃GNL3
ΛρΛ ≃ lp

MΛ

mp
; ð3Þ

which looks exactly like the expression of the horizon
radius for a black hole of Arnowitt-Deser-Misner massMΛ,
and is the reason it was conjectured that the de Sitter
space-time could likewise be viewed as a condensate of
gravitons [8].
One can roughly describe the corpuscular model by

assuming that the (soft virtual) graviton self-interaction
gives rise to a condensate of NΛ gravitons of typical
Compton length λ≃ LΛ, so that MΛ ¼ NΛlpmp=LΛ, and
the usual consistency condition

MΛ ∼
ffiffiffiffiffiffiffi
NΛ

p
mp ð4Þ

for the graviton condensate immediately follows from
Eq. (3). Equivalently, one finds

LΛ ∼
ffiffiffiffiffiffiffi
NΛ

p
lp; ð5Þ

which shows that for a macroscopic universe one needs
NΛ ≫ 1. Note also that we have ρΛ ∼ L−3

Λ MΛ ∼ 1=NΛ, so
that the number of gravitons in the vacuum increases for
smaller vacuum energy, and LΛ ∼MΛ ∼ 1=

ffiffiffiffiffi
ρΛ

p
. It is

important to remark that the above relations do not need
to hold for gravitons that are not in the condensate, and
therefore one expects deviations to occur if regular matter is
added [15], or if the system is driven out of equilibrium.

We can refine the above corpuscular description of the de
Sitter space by following the line of reasoning of Ref. [10],
where it was shown that the maximal packing condition
which yields the scaling relations (5) for a black hole
actually follows from the energy balance (1) when matter
becomes totally negligible. In the present case, matter is
absent a priori and HM ¼ 0, so that one is left with

HG ≃UN þUPN ¼ 0: ð6Þ

The negative “Newtonian energy” of the NΛ gravitons can
be obtained from a coherent state description of the
condensate [10] in which each graviton has negative
binding energy εΛ given by the Compton relation, that is,

UN ≃MΛϕN ¼ NΛεΛ ¼ −NΛ
lpmp

LΛ
: ð7Þ

The positive “post-Newtonian” contribution is then given
by the graviton self-interaction term [10]

UPN ≃ NΛεΛϕN ¼ N3=2
Λ

l2
pmp

L2
Λ

; ð8Þ

where we used the Newtonian potential

ϕN ¼ −
NΛlpmp

MΛLΛ
¼ −

ffiffiffiffiffiffiffi
NΛ

p lp

LΛ
; ð9Þ

as follows from Eq. (7) and the scaling relation (4).

B. Metric de Sitter

Before we consider explicit ways of perturbing the de
Sitter solution, let us try to reinterpret our results in terms of
a metric theory. We have just seen that the de Sitter universe
is, in a sense, a solution of our Hamiltonian constraint and
we also know that the de Sitter metric is an exact solution of
a modified theory of gravity [14]

S ¼ 1

16πGN

Z
d4x

ffiffiffiffiffiffi
−g

p
fðRÞ; ð10Þ

with [16,17]

fðRÞ ¼ γl2
pR2; ð11Þ

where γ is a dimensionless constant. We recall that the
equation of motion following from Eq. (10) for a spatially
flat Friedmann-Lemaître-Robertson-Walker metric,

ds2 ¼ −dt2 þ a2ðtÞðdr2 þ r2dΩ2Þ; ð12Þ

is given by [5,16]

6f0ðRÞH2 ¼ Rf0ðRÞ − fðRÞ − 6H _Rf00ðRÞ; ð13Þ

1We shall use units with c ¼ 1 and the Newton constant
GN ¼ lp=mp, where lp and mp are the Planck length and mass,
respectively, and ℏ ¼ lpmp.

2Factors of order one will often be omitted from now on.
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where primes denote derivatives with respect to R and dots
derivatives with respect to the cosmic time t. In particular,
from Eq. (11), one obtains

12RH2 ¼ R2 − 12H _R; ð14Þ

and, for de Sitter with aðtÞ ¼ e
ffiffiffiffiffiffi
Λ=3

p
t, one has

R ¼ 6

�
H2 þ ä

a

�
¼ 6

�
H2 þ Λ

3

�
; ð15Þ

and

_R ¼ 6

�
2H _H þ a

:::
a − ä _a
a2

�
¼ 12H _H: ð16Þ

By inserting the above expressions into Eq. (14), we
simply obtain

H2 ¼ Λ
3
−

4H2 _H
H2 þ Λ=3

; ð17Þ

which is solved by

H2
Λ ¼ Λ=3; ð18Þ

and R ¼ 4Λ as expected.
Upon comparing with the corpuscular description, we

can therefore say that, up to a common numerical factor,

UN ≃ −L3
ΛH

2
Λ ¼ −LΛ; ð19Þ

and

UPN ≃ L3
ΛðΛ=3Þ ¼ LΛ; ð20Þ

where we recall that UN and UPN follow from integrating
over the Hubble volume. This will be our starting point to
build a connection between the corpuscular model and
Starobinsky’s inflation [1].

III. SLOW-ROLL INFLATION

The “post-Newtonian” analysis of the graviton conden-
sate has shown that one can have an eternally inflating
universe without the need for vacuum (matter) energy. Of
course, one next needs a source that drives the universe out
of inflation. Unlike the analysis in Ref. [13], this contri-
bution may just be a small perturbation with respect to the
post-Newtonian term (8) which breaks the balance with the
Newtonian term (7).

A. Starobinsky model

By means of a conformal transformation given by [14]

~gμν ¼ f0ðRÞgμν; ð21Þ

we can rewrite the action (10) in the Einstein frame as

~S ¼
Z

d4x
ffiffiffiffiffiffi
−~g

p �
~R

16πGN
−
1

2
~gμν∂μφ∂νφ − VðφÞ

�
; ð22Þ

where the Ricci scalar of the original metric now appears as
a new scalar field

φ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3

16πGN

s
ln f0ðRÞ ð23Þ

with the potential

VðφÞ≡ f0ðRðφÞÞRðφÞ − fðRðφÞÞ
16πGNf0ðRðφÞÞ2

: ð24Þ

This shows that, unless f0 is a constant, the original metric
gμν contains two massless degrees of freedom, correspond-
ing to the helicity-2 gravitons of the metric ~gμν, and a spin-
0 degree of freedom φ associated with the trace of its Ricci
tensor (see Ref. [17] for more details).
In particular, for

fðRÞ ¼ αRþ γl2
pR2; ð25Þ

one finds

φ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3mp

16πlp

s
lnðαþ 2γl2

pRÞ; ð26Þ

from which we also deduce that

RðφÞ ¼
exp

� ffiffiffiffiffiffiffiffiffi
16πlp
3mp

q
φ
�
− α

2γl2
p

; ð27Þ

and then

Vðφ; α; γÞ ¼ mp

64πl3
pγ

"
1 − α exp

 
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
16πlp

3mp

s
φ

!#
2

;

which is precisely Starobinsky’s potential for the inflaton [1]
(see Fig. 1).
This potential has a minimum for

φ ¼ 3mp ln α

16πlp
; ð28Þ
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and limφ→∞Vðφ; α; γÞ ¼ mp

64πlpγ
¼ limα→0Vðφ; α; γÞ. For

α ¼ 0, one again recovers the de Sitter space with
R ¼ 4Λ and a correspondingly constant scalar field φ.
As soon as α > 0, this configuration becomes unstable, as
can also be inferred from the equation of motion (13),
which now reads

6
α

γl2
p
H2 þ 12RH2 ¼ R2 − 12H _R: ð29Þ

By assuming that the solution to the above equation is
still of the de Sitter form, with a time-dependent Hubble
function HðtÞ≃HΛ ¼ Λ=3, we then obtain

_H ≃ −
α

γl2
p
; ð30Þ

and the Hubble function is then slowly decreasing, as we
expected, for 0 < α=γ ≪ 1. In particular, the slow-roll
parameter is given by

ϵ ¼ −
_H
H2

∼
mp

lp

�
V 0

V

�
2

; ð31Þ

and is very small along the plateau of the potential (see
Fig. 1). On the other hand, at the end of inflation, when the
slow-roll parameter ϵ ∼ 1, one infers from the cosmic
microwave background data [6] that γ=α≃ 108 ≃ NΛ, and

_H ≃ −L−2
Λ : ð32Þ

This is precisely the relation that the corpuscular descrip-
tion naturally yields, which we will now show.

B. Corpuscular model

In an ideal de Sitter universe, gravitons should satisfy the
balance condition (6). Let us rewrite the Hamiltonian in
Eq. (6) as

Hð2Þ
G ≃ βðUN þ UPNÞ; ð33Þ

corresponding to the effective metric action (10) with
Eq. (11). Note that we introduced the dimensionless
parameter β > 0 of order one, in order to keep track of
this contribution. The complete dynamics of our Universe,
however, must also include a term corresponding to the
Einstein-Hilbert action, that is,

Hð1Þ
G ≃ αUN; ð34Þ

where α > 0 can here be viewed as the same parameter of
the metric counterpart (25). The full energy balance is
therefore given by

Hð1Þ
G þHð2Þ

G ≃ ðαþ βÞUN þ βUPN ¼ 0; ð35Þ

and, because of the term proportional to α, we expect that
the expressions (19) and (20) for the ideal de Sitter
condensate are no longer a solution.
In fact, we are interested in a stage when departures from

the de Sitter scalings are small, and we can therefore
assume that the potentials now take the slightly more
general form

UN ≃ −L3H2 ð36Þ

and

UPN ≃ L3L−2
Λ ; ð37Þ

where L ∼ LΛ is the new Hubble radius. Upon inserting this
into Eq. (35), we obtain

L3½−ðαþ βÞH2 þ βL−2
Λ �≃ 0; ð38Þ

which is solved by

H2 ≃ β

αþ β

1

L2
Λ
: ð39Þ

Of course, the de Sitter case is properly recovered when
α ¼ 0, but α > 0 implies that H < HΛ, as expected. If the
system starts with H ¼ HΛ, the time derivative _H must be
negative in order to ensure that the constraint (35) holds at
all times. This can be explicitly seen by writing

H ¼ HΛ þ _Hδt; ð40Þ

where the typical time scale δt≃ LΛ (since gravitons of
Compton length LΛ cannot be sensitive to shorter times).
Equation (38) finally yields

FIG. 1. Starobinsky’s potential for the inflaton.
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_H ≃ −
α

αþ β

HΛ

δt
≃ −

α

αþ β

1

L2
Λ
: ð41Þ

We can further notice that the slow-roll parameter

ϵ ¼ −
_H
H2

≃ α

αþ β
ð42Þ

in the corpuscular model, and one therefore obtains
Eq. (32) with the natural choice α=ðαþ βÞ≃ 1.
Having recovered the prediction of Starobinsky’s model

at the end of inflation, we can then assume that α and β are
proportional to the fraction of gravitons in the condensate
whose dynamics is mostly affected by the Hamiltonian

Hð1Þ
G in Eq. (34) and Hð2Þ

G in Eq. (33), respectively. At the
beginning of inflation most of theNΛ gravitons are in the de

Sitter condensate and just interact via the term Hð2Þ
G ∼ R2

(which means α ≪ 1 and β≃ 1), whereas at the end of
inflation all of the NΛ gravitons also interact via the term

Hð1Þ
G ∼ R, so that α ∼ β ∼ 1. In some more detail, gravitons

in the condensate generate the effective Hubble expansion
parameter H ∼ N−1=2

Λ ∼ L−1
Λ , but they also scatter and

deplete. Their number therefore changes in time according
to Eq. (3.23) of Ref. [13], which we can rewrite as

−
_H
H2

≃ _NΛ

NΛ
≃ ϵ

�
1 −

1

ϵ3=2NΛ

�
; ð43Þ

where ϵ ∼ α from Eq. (42); the first term reproduces the
background evolution in the slow-roll approximation and
the second term is due to the depletion. It is now clear that
near the end of inflation, when ϵ ∼ 1, the relative effect of
depletion becomes of order N−1

Λ and therefore negligibly
small. On the other hand, for

ϵ ¼ ϵ� ∼ N−3=2
Λ ∼

�
lp

LΛ

�
3

; ð44Þ

one obtains _NΛ ≃ 0, which can be viewed as the closest the
corpuscular model can get to the pure de Sitter space
(ideally represented by ϵ ¼ α ¼ 0).3 Equivalently, we
deduce that the parameter α will run from the minimum
value of order L−3

Λ to the maximum of order one during the
inflationary expansion. The minimum value (44) is a
peculiar prediction of the corpuscular model for the slow-
roll parameter.

C. Physical outcomes

As we have seen, the corpuscular model allows one
to recover the background evolution equations of

Starobinsky’s model with no ambiguous coefficient at
the end of inflation, and the minimum value ϵ� of the
slow-roll parameter given in Eq. (44) at the beginning. We
therefore expect that the leading-order phenomenology is
the same as in Starobinsky’s model with initial conditions
compatible with Eq. (44). In fact, it was already shown in
Ref. [13] that the corpuscular model correctly reproduces
the behavior determined by the given background evolu-
tion, with corrections of order N−1

Λ ∼ L−2
Λ .

From the phenomenological point of view, scalar and
tensor perturbations should arise from the depletion of
the background condensate. An intriguing implication
may concern the production of gravitational waves
during the inflationary process. In fact, the dimensionless
power spectrum of primordial tensor perturbations PT ∼
l2
pH2 ∼ l2

p=L2
Λ [18], will receive corrections from Eq. (43),

that is,

ΔPT

PT
≃HδH

H2
∼

_Hδt
H

∼ −ϵ
�
1 −

1

ϵ3=2NΛ

�
; ð45Þ

where we again used δt ∼ LΛ ∼H−1. This correction is
negative and proportional to _NΛ=NΛ: it vanishes at the
beginning of inflation, when ϵ≃ ϵ�, and ΔPT þ PT ≃ 0 at
the end of inflation, when ϵ ∼ 1. One might be therefore
tempted to relate this feature to the fact that the condensate
cools down, as the universe inflates, and the depletion of
helicity-2 modes (almost) stops at the end of inflation.
On the other hand,we should remark that the correction (45)
is very small at the beginning of inflation, when ϵ≃ ϵ�, and
it should not affect the standard phenomenological picture
in a drastic way. For instance, the tensor-to-scalar ratio
could be estimated from Eq. (5.36) of Ref. [8], and further
analyzed as Eq. (4.2) in Ref. [13], where it was again shown
that results are very close to the ones obtained from the
standard approach to cosmological perturbations. A more
quantitative analysis of the expected small corrections is left
for future developments.
Similar conclusions should hold for the reheating at the

end of inflation, where we again remark that the depletion
in Eq. (43) leads to order 1=NΛ corrections for the
background evolution with respect to Starobinsky’s model
when ϵ ∼ 1. It is however known that the behavior of the
reheating phase depends strongly on the specific particle
content of the theory [19]. Even in simple models, like
chaotic inflation, one finds collective (and therefore
nonperturbative) effects, such as parametric resonance
and Bose enhancement. The equations of motion of the
fields can be rewritten, under certain approximations, as
Mathieu’s differential equations, and the widths of the
resonance bands then depend on the parameters of the
theory. For the corpuscular model, the precise setup of
such a framework has yet to be properly derived, and a
detailed analysis is again left for future developments.

3A similar argument was already employed in Ref. [13] to
estimate the number of e-foldings.
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IV. DISCUSSION AND CONCLUSIONS

We started from the simple corpuscular description
of the de Sitter universe viewed as a condensate of NΛ
self-interacting (scalar) gravitons of Compton wavelength
equal to LΛ ≃H−1

Λ , as first proposed in Ref. [8]. We then
noticed that a refined, and yet equivalent description
can be obtained from the Hamiltonian constraint with
“Newtonian” and “post-Newtonian” energy terms [10].
Since the de Sitter metric is an exact solution of the
modified fðRÞ≃ R2 theory of gravity, we inferred that it
should also be possible to reinterpret this quantum state in
terms of an effective metric theory of this form. Moreover,
this theory is equivalent to the usual Einstein-Hilbert
gravity with the addition of a scalar field (replacing the
trace of the Ricci scalar), and therefore contains one more
degree of freedom (of helicity 0) than the Einstein theory
(which contains two helicity-2 modes). In the pure de
Sitter space, we hence expect that all degrees of freedom
are in an equilibrium state solely characterized by the
length scale LΛ.
Of course, any realistic model of inflation requires a

departure from (eternal) de Sitter, which can be achieved by
adding the Einstein-Hilbert term R to the previous fðRÞ≃
R2 theory in the metric description. Since the corpuscular
description of the pure Einstein gravity is just given by the
“Newtonian” term, this is equivalent to introducing such an
extra term that pushes the de Sitter gravitons off

equilibrium. We have seen that this mechanism is com-
patible with the Hamiltonian constraint and, indeed, it
appears that the length scale LΛ naturally fixes the size
of _H at the end of inflation to the one required by
experimental data, as well as the value (44) of the slow-
roll parameter at the beginning of inflation. To summarize,
the corpuscular model of inflation contains one scale
LΛ from which the main dynamical features of the infla-
tionary background can be extracted.
We conclude by mentioning that it was recently shown

in Ref. [15] how the same corpuscular description of
the quantum state of the Universe can also explain the
observed galaxy rotation curves without the need for
dark matter. A more detailed quantitative analysis of both
inflation and dark matter phenomenology are part of
future developments.
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