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Structure at the horizon scale of black holes would give rise to echoes of the gravitational wave signal
associated with the postmerger ringdown phase in binary coalescences. We study the waveform of echoes
in static and stationary, traversable wormholes in which perturbations are governed by a symmetric
effective potential. We argue that echoes are dominated by the wormhole quasinormal frequency nearest to
the fundamental black hole frequency that controls the primary signal. We put forward an accurate method
to construct the echoes’ waveform(s) from the primary signal and the quasinormal frequencies of the
wormhole, which we characterize. We illustrate this in the static Damour-Solodukhin wormhole and in a
new, rotating generalization that approximates a Kerr black hole outside the throat. Rotation gives rise to a
potential with an intermediate plateau region that breaks the degeneracy of the quasinormal frequencies.
Rotation also leads to late-time instabilities that, however, fade away for small angular momentum.
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I. INTRODUCTION

The direct observation of gravitational waves produced
during themerger of heavycompact objects [1] offers exciting
new opportunities for the study of black holes. Even though
current observations do not yet probe the detailed structure of
spacetime inside the light ring, one expects the near-horizon,
strong gravity regime will gradually come into sight with
future LIGO and Virgo observations and certainly with the
next generation of gravitational wave observatories.
This means that future gravitational wave observations

have the potential to shed light on the nature of black hole
(event) horizons and whether the near-horizon region
exhibits any unexpected structure. Some would even argue
there is a certain theoretical motivation for deviations of
general relativity on horizon scales, because black hole
event horizons are notoriously inconsistent with the basic
principles of quantum mechanics as they are usually
understood [2–4]. In fact, this has been a strong motivation
for the program to construct horizonless alternatives to
black holes, commonly referred to as exotic compact
objects (ECOs) (see, e.g., [5–10]). Giving up the horizon,
however, comes with a price that can include, depending on
the kind of solution, various stability issues, the need for
unphysical matter, or even the lack of reasonable alternative

collapse processes or dynamics more generally. In spite of
these formidable drawbacks, the imminent possibility of
testing the nature of (astrophysical) black holes demands a
rigorous phenomenological study of alternatives.
It has been argued that the existence of any kind of

structure at horizon scales would give rise to a series of
“echoes” of the primary gravitational wave signal produced
during the ringdown phase of a black hole merger [11,12].1

In fact, the LIGO data have already been analyzed on the
presence of echoes [15–17].
To use the full scientific potential of an observation of

echoes to constrain ECO models, a solid theoretical under-
standing of the echo waveform is needed.2 To make
progress we put forward a method to model the waveforms
of echoes in terms of the primary “black hole” signal and
the quasinormal modes in two classes of traversable
wormholes. The wormholes can be viewed as toy models
for a class of ECOs in which perturbations are governed by
a general, symmetric, one-dimensional effective potential.
In particular, the potentials exhibit besides the usual bump
characteristic of black holes a second bump separated from
the first one by a “distance” L, as illustrated in Fig. 1.
The ringdown phase is governed by the quasinormal

modes (QNMs) of the final object. In Sec. II Awe therefore
first compute the quasinormal frequencies (QNFs) in ECO
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1See [13,14] for a previous observation of the same phenome-
non for electromagnetic signals.

2See, e.g., [18–21] for recent work on this, and also [22] which
uses Green’s function techniques to relate the train of echoes of
the ECO from the ringdown response of the black hole.
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spacetimes with symmetric potentials. We show the QNFs
can be obtained from the reflection coefficients associated
with the first bump of the potential only. We find that the real
parts of the QNFs are, up to a constant, approximately given
by nπ=L, even for very high QNFs. We also find that the
imaginary parts are generically≤OðL−3Þ and thereforemuch
smaller than their black hole counterparts. This in turnmeans
that the damping of the signal is limited. Instead the wave-
form becomes approximately periodic, with period ∼2L,
after the first echo, with minor deformations induced by the
failure of the consecutive real parts of the QNFs to differ
exactly by π=L.
In Sec. II B we exploit these features to construct the full

waveforms of the subsequent echoes from the first echo
waveform. The shape of the latter can be approximately
determined from the frequency content of the primary
signal. In particular, we point out that the most relevant
wormhole QNF is the one nearest to the fundamental black
hole QNF, which dominates the primary signal. This yields
a general procedure to determine the waveforms of echoes
that is an alternative to that of [22], which uses the
reflection and transmission coefficients of the single-bump
potential together with the near horizon and asymptotic
black hole waveforms. In Sec. II C, we also generalize the
method in [22] to rotating solutions.
In Sec. III we apply our method to construct the echo

waveforms in the time domain in the Schwarzschild-like
wormhole of Damour and Solodukhin [8], starting from a
primary Gaussian waveform. We also compare our results
for the QNFs with the ones obtained by replacing the
potential with the double Pöschl-Teller potential.
Finally in Sec. IV we apply our method in an ECO

modification of the Kerr black hole, which turns it into a

wormhole that reproduces Kerr’s spacetime away from the
throat. The behavior of scalar perturbations can again be
described in terms of a one-dimensional, symmetric “double-
bump” potential with an intermediate plateau region with
height proportional to the angular momentum of the worm-
hole. We reproduce the features of the QNFs mentioned
earlier, and observe that the rotation leads to a Zeeman-like
breaking of the degeneracy of the QNFs, which increases
with angular momentum. We also identify the presence of
unstable QNMs and comment on their impact on the angular
momentum of the final object. Finally, we use our method to
reconstruct a series of echo waveforms, by modeling the
leading one as a Gaussian controlled by the fundamental
QNF of the corresponding Kerr black hole.
We conclude in Sec. Vand include in the Appendix with

a number of examples of potentials for which part of the
analysis of Sec. II can be done analytically.

II. SCATTERING IN SYMMETRIC POTENTIALS

In this section, we study various general aspects of
scattering in one-dimensional double potentials that consist
of two mirror-symmetric copies of single-bump potentials
glued at x ¼ 0 and decaying to zero as x → �∞, possibly
with an intermediate plateau region (cf. Fig. 1). Potentials
of this kind capture the effective potentials felt by scalar
perturbations of Schwarzschild-like and Kerr-like worm-
hole spacetimes as we discuss below.

A. Quasinormal modes and frequencies

The problem of characterizing the QNMs and frequencies
of scalar perturbations on traversable-wormhole back-
grounds can be reduced to a one-dimensional scattering
problem governed by a wave equation of the following
form3:

d2Ψ̂
dx2

þ ðω2 − Vðx;ωÞÞΨ̂ ¼ 0; ð1Þ

with boundary conditions

lim
x→�∞

Ψ̂ðxÞ ∼ e�iωx ð2Þ

and with a potential VðxÞ that approximately takes the
form

Vðx;ωÞ ¼ θðxÞUðx − L=2;ωÞ þ ðx ↔ −xÞ: ð3Þ

Here, Uðx;ωÞ is the single-bump potential in the black hole
background that matches the wormhole spacetime outside

FIG. 1. Effective potentials for a probe scalar field mode in a
Kerr-like and Schwarzschild-like wormhole (blue curve) and
black hole (dashed curve) background as a function of the tortoise
coordinate r�. The Kerr black hole potential tends to a frequency-
dependent constant, Vðr�Þ→U0ðωÞ≡ω0ð2ω−ω0Þ as r� → −∞
with ω0 ¼ am=ð2MðM þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
ÞÞ, where aM andM are the

angular momentum and mass of the black hole, respectively, and
m is the “magnetic quantum number” of the mode. The plots
above correspond to l ¼ m ¼ 2, but the qualitative features of the
potentials are the same for general ðl; mÞ.

3We denote functions in the frequency domain with a hat, e.g.,
Ψ̂ðx;ωÞ. Solutions in the time domain are then given by
Ψðx; tÞ ¼ 1

2π

Rþ∞
−∞ dωΨ̂ðx;ωÞ, and at late times by a sum of

quasinormal modes.
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the throat, θðxÞ is the Heaviside step function, and L
represents the separation between both potential bumps in
the wormhole background. The potential U has a maximum
Umax and a characteristic width Uwidth. To model the worm-
hole potential V we approximate UðxÞ ¼ U0 for all x < x0
with jx0j < L=2.
For the static Schwarzschild-like wormholes we consider

in Sec. III, U0 ¼ 0 for general perturbations. By contrast,
for the scalar perturbations on the Kerr-like wormhole we
consider in Sec. IV, we will find [cf. (60)] that U0 is
nonvanishing and frequency dependent, and such thatffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − U0ðωÞ

p
¼ ω − ω0, with ω0 a real constant.

To determine the QNFs, we start by solving the follow-
ing scattering problem:

Ψ̂UðxÞ ¼
�
A0eiωx þ B0e−iωx if x → þ∞;

Aeiðω−ω0Þx þ Be−iðω−ω0Þx if x → −∞;
ð4Þ

for the potential UðxÞ, to determine the transfer matrix T
such that

�
A0

B0

�
¼ T

�
A

B

�
: ð5Þ

Using this, we can construct the transfer matrix of the full
double potential VðxÞ, which we denote T . Note that
the transfer matrix of Uð−xÞ is given by σT−1σ, where
σ ¼ ð0

1
1
0
Þ. Then, we have

T ¼ T

�
eiðω−ω0ÞL 0

0 e−iðω−ω0ÞL

�
σT−1σ: ð6Þ

QNMs are characterized by the condition that there are no
incoming waves, i.e., B0 ¼ 0, A ¼ 0. This implies T22 ¼ 0,
which can be written in the suggestive form4

e−iðωn−ω0ÞL ¼ −eiπnRBHðωnÞ; ð7Þ

where −eiπn ¼ ð−1Þnþ1 is the parity and RBHðωÞ≡
−T21=T22 is the reflection coefficient of UðxÞ for a wave
coming in from −∞. Equation (7) enables one to find the
QNFs of the double potential VðxÞ once RBHðωÞ is known.
We will use this below to compute the QNFs of
Schwarzschild-like and Kerr-like wormholes.
For a given QNF, the corresponding QNM is given by

Ψ̂ðxÞ ¼ θðxÞΨ̂Uðx − L=2Þ − e−iπnðx ↔ −xÞ; ð8Þ

where Ψ̂UðxÞ is the solution to the scattering problem (4) in
the black-hole potential with B0 ¼ 0. The function Ψ̂ðxÞ
constructed this way will turn out to be an excellent

approximation to the exact mode solution in wormhole
backgrounds, which solves (1), since jVð−L=2Þ −U0j ≪ 1.
We note that ω ¼ ω0 is always a solution of (7), given

that RBHðω0Þ ¼ −1. This solution is nonphysical since it
would mean there is no wave inside the cavity, but it allows
us to obtain approximate solutions for ω ∼ ω0. In particular,
if L is much greater than the width Uwidth, then the first few
QNFs will be of order ωn − ω0 ∼ 1=L. We can obtain
approximate solutions of (7) for these modes ωn by Taylor
expanding RBH around ω0,

RBHðωnÞ ¼ −1þ
X∞
k¼1

RðkÞ
BHðω0Þ
k!

ðωn − ω0Þk; ð9Þ

and similarly writing ω ¼ P∞
k¼0 ck=L

k. This yields, up to
second order,

ωn ≈ ω0 þ
πn
L

�
1 −

iR0
BHðω0Þ
L

−
i

2L2
½nπðR0

BHðω0Þ2 þ R00
BHðω0ÞÞ − 2iR0

BHðω0Þ2�
�
;

ð10Þ

where the corrections are of orderOðjUwidth=LjÞ3. However,
this does not mean that this is an accurate expression for the
real and imaginary parts of theQNFs separately. Usually, it is
the case that Reωn ≫ Imωn. Thus, the result above gives a
good approximation of the real part of ωn only. To get an
approximate solution for the imaginary part, we take the
absolute value of (7), leading to

Imωn ¼
1

L
log jRBHðωnÞj≃ jRBHðωnÞj − 1

L
; ð11Þ

where we used that jRBHðωnÞj ≈ 1. Substituting (10)
then yields an accurate approximation to Imωn. In sum,
we get

Reωn ≃ ω0 þ
πn
L

�
1þ ImR0

BHðω0Þ
L

�
; ð12Þ

Imωn ≃ jRBHðReωnÞj − 1

L
: ð13Þ

Therefore, up to an overall shift, the real parts are all
approximately proportional to π=L. The imaginary parts
are OðL−3Þ and hence much smaller. In fact, by taking the
absolute value in (9) and assuming jRBHj ≤ 1 it follows that
ReR0

BHðω0Þ ¼ 0, which implies that5 Imωn ∼OðL−3Þ.More
precisely, this argument shows that ImðωnÞ ≤ OðL−3Þ.

4An equivalent expression valid for more general ECOs was
obtained in [22] for ω0 ¼ 0.

5For the rotating case, it is not always true that jRBHj ≤ 1 and
thus some of the imaginary parts can scale with 1=L2, as we
mention in IV B.
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Indeed for the Schwarzschild black hole potential U [see
Eq. (38) with λ ¼ 0] numerical evaluation of (10) suggests
that theOðL−3Þ terms are nonvanishing only for l ¼ 0, where
l is the angular number of the perturbation. This means that
for any l > 0 we have ImðωnÞ ¼ oðL−3Þ, consistent with
[23], where it was argued that the imaginary parts generically
scale with ∼L−ð2lþ3Þ.
Let us now turn to the high-frequency regime. For that, we

momentarily set ω0 ¼ 0. In this regime we can regard the
potential U in (1) as a perturbation. In particular, writing
Ψ̂ðxÞ ¼ AðxÞe−iωx and expanding the prefactor AðxÞ in
powers of U, A¼A0þA1þA2þ���, where An ∼OðUnÞ,
we can solve (1) order by order in U. The leading terms
are given by

d2A0

dx2
− 2iω

dA0

dx
¼ 0;

d2A1

dx2
− 2iω

dA1

dx
¼ UA0: ð14Þ

The boundary condition (4) implies A0 ¼ e2iωx. Further,
since thewidth of the potential, which sets the scale on which
A1 changes, is much larger than ω−1, we have jω dA1

dx j ≫
j d2A1

dx2 j. Hence, an approximate solution is given by

A1ðxÞ ¼
1

2iω

Z þ∞

x
dx0e2iωx0Uðx0Þ: ð15Þ

Plugging this back in (14), we observe that the second

equation fails to be satisfied by 1
ω
d logUðxÞ

dx , which is indeed
much smaller than 1 for any reasonable bumplike potential in
the high-frequency limit.
Then, we find

Ψ̂ðxÞ ¼ eiωx þ e−iωxA1ðxÞ; ð16Þ

which satisfies Ψ̂ðxÞ → eiωx when x → ∞ and Ψ̂ðxÞ →
eiωx þ e−iωxA1ð−∞Þ as x → −∞. Thus the reflection
coefficient is nothing but A1ð−∞Þ,

RBHðωÞ ¼
1

2iω

Z þ∞

−∞
dx0e2iωx0Uðx0Þ for ω → ∞: ð17Þ

This is valid as long as the integral is convergent.
As an illustration we evaluate this explicitly for the

Pöschl-Teller potential UðxÞ ¼ V0sech2ðαxÞ. This gives
(see Appendix)

RBHðωÞ ¼
πV0

iα2 sinhðπω=αÞ≃
2πV0

iα2
e−πω=α; ð18Þ

since ω=α ≫ 1 for high frequencies. Using Eq. (7) we then
obtain, for large n,

ωn ≃ πn
Lþ iπ=α

; ð19Þ

which is the asymptotic behavior in the sense that
limn→∞

ðLþiπ=αÞωn
nπ ¼ 1. Hence,

Reðωnþ1 − ωnÞ ¼
πL

L2 þ π2=α2
≃ π

L
; ð20Þ

where we used L ≫ 1=α.
Hence, the spacing of the real parts of consecutive QNFs

is approximately π=L for general n. Below we show
numerically this remains true for general double-bump
potentials. The underlying reason is that the rate of
variation of the reflection coefficient is controlled by the
width of the potential, which we assume to be much smaller
than L.6 This also means that the QNF spectrum of
wormholes contains frequencies with an arbitrarily large
real part, in contrast to the QNF spectrum of black holes.

B. Time dependence and echoes

We have seen that the spectrum of QNFs in wormhole
backgrounds differs drastically from that of black holes.
Here we use the spectral features of the QNMs to derive the
presence of echoes in characteristic time-domain signals.
Consider a primary signal produced by a black hole

perturbation near one of the maxima of the potential. After
relaxation, this is given by a linear combination of QNMs
which, at a given spatial point, amounts to a sum of
quasiharmonic terms,

ΨðtÞ ¼
X∞
n¼−∞

cne−iωnt; ð21Þ

for some coefficients cn.
In wormhole backgrounds with a large separation

between both maxima, primary signals of this kind are
not influenced by the second bump. They are similar to
signals produced by similar perturbations of a black hole,
and naturally expressed as a superposition of black hole
QNMs. At a later stage, however, the perturbation is
reflected off the second bump. This produces a signal that
one expects, regardless of its primary source, consists of a
sum of wormhole QNMs,

ΨðtÞ ≈ e−iω0t

� X∞
n¼−∞

cne−inπt=LeImωnt

�
: ð22Þ

The factor in between brackets only slowly decays and
is approximately periodic, with period T ¼ 2L, since
Imωn ≪ Reωn [cf. (13)].

7 Hence, (22) approximately takes

6In particular, a shift of ω → ωþ π=L in the frequency barely
changes RBH, but it induces a minus sign in the left-hand side of
(7), meaning that if ω is a solution, then ωþ π=L is close to
another solution with opposite parity.

7The factor e−iω0t produces an additional effect, but does not
affect the amplitude, so modulated waves are still modulated.
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the form of a Fourier series with period T. This means that
on longer time scales, the primary signal is approximately
repeated periodically, giving rise to the echoes.
This observation also suggests that the coefficients of

subsequent echoes can be obtained from the waveform of

the first echo Ψð0Þ
1stechoðtÞ. In particular, we get

cn ¼
1

2L

Z
2L

0

dtΨð0Þ
1stechoðtÞeiωnt: ð23Þ

It is a universal feature of wormholes that once the first
echo is identified, the subsequent waveform can be
accurately constructed from (21) using the coefficients
(23). We illustrate this in the next section.
It remains to identify the waveform of the leading echo.

On general grounds one expects this to be dominated by the
wormhole QNF that is nearest to the lowest black hole
QNF, which dominates the primary signal. This is borne out
by the examples below. Hence it is natural to model the first
echo as a Gaussian wave packet of the form

Ψð0Þ
1stechoðtÞ ¼ e−iω

BH
0

ðt−t0Þe−
ðt−t0Þ2
2τ2 ; ð24Þ

where ωBH
0 is the leading QNF of the black hole. Assuming

that τ ≪ L we can then use the method above to determine
the coefficients cn of the subsequent echoes, yielding
approximately

cn ¼
ffiffiffi
π

2

r
τ

L
exp

�
iωnt0 −

τ2

2
ðωn − ωBH

0 Þ2
�
: ð25Þ

Substituting these in (21), we obtain an echo waveform that
should resemble the actual waveform produced by a
Gaussian primary perturbation. We use this construction
to model the echoes’ waveform corresponding to a rotating
Kerr-like wormhole in Sec. IV.

C. Reconstruct waveform from black hole result

A more sophisticated method to construct the waveform
of the first echo using black hole information was recently
developed in [22]. This uses the asymptotic and near-
horizon signals produced by a single-bump black hole, as
well as its reflection and transmission coefficients, to
construct the asymptotic signal produced by a static worm-
hole. Here we generalize this to rotating wormholes.
Stated accurately, we show how to obtain the asymptotic

solution Ψ̂ðx → ∞Þ for the wormhole background from the
wave function of the black hole scattering problem with the
potential U. Equation (8) shows how to obtain Ψ̂ðx;ωÞ
from the solution Ψ̂U to the scattering problem with a
single-bump potential U and source Ŝ,

d2Ψ̂U

dx2
þ ðω2 −UðxÞÞΨ̂U ¼ Ŝðx;ωÞ: ð26Þ

While Ψ̂ obeys the outgoing boundary conditions
limx→�∞ Ψ̂ðxÞ ∼ e�iωx, the wave function Ψ̂U itself only
has outgoing boundary conditions as x → ∞, i.e., as in
Eq. (4) with B0 ¼ 0, and B=A ¼ RBHðωÞeiðω−ω0ÞL. This
means that Ψ̂U is not the physical solution of the wave
function for the black hole background. The solution Ψ̂BH
for scattering in the Kerr black hole solves the same
differential equation (26), but with boundary conditions

Ψ̂BHðxÞ ¼
�
eiωx if x → þ∞;

e−iðω−ω0Þx if x → −∞:
ð27Þ

The remaining issue is then to obtain Ψ̂U from Ψ̂BH.
First, express the wave function in terms of Green’s
function as Ψ̂ ¼ Rþ∞

−∞ dx0Ŝðx0;ωÞĜðx; x0Þ, where Ĝðx; x0Þ
is the solution to

d2Ĝ
dx2

þ ðω2 −UðxÞÞĜ ¼ δðx; x0Þ; ð28Þ

and consider Green’s functions ĜU; ĜBH with the same
boundary conditions as, respectively, Ψ̂U; Ψ̂BH. Standard
results give black hole Green’s function as

ĜBHðx; x0Þ ¼
Ψ̂þðmaxðx; x0ÞÞΨ̂−ðminðx; x0ÞÞ

WBH
; ð29Þ

with the functions Ψ̂� independent solutions of (28) for
outgoing waves at infinity [Ψ̂þ with B0þ ¼ 0 in (4)] and
outgoing waves at the horizon [Ψ̂− with A− ¼ 0 in (4)]. The
Wronskian is WBHðωÞ ¼ 2iðω − ω0ÞBþ.
A straightforward generalization of the static results of

[22] then gives

ĜU ¼ ĜBH þKðωÞ Ψ̂þðxÞΨ̂þðx0Þ
WBH

; ð30Þ

with

KðωÞ ¼ TBHRBHe2iðω−ω0ÞL

1 − R2
BHe

2iðω−ω0ÞL : ð31Þ

One can integrate this over the source to get the full wave
function. Note that the poles ωn of K are precisely the
QNFs of the wormhole, as expressed in Eq. (7). Each term
in Green’s function also has poles at the QNFs of the black
hole from the zeros of the WronskianWBH. Those cancel in
ĜU, and hence Ψ̂U only has QNFs ωn.
Observe now that the asymptotic limit of thewave function

is given by limx→þ∞ Ψ̂ðxÞ ¼ limx→þ∞Ψ̂Uðx − L=2Þ. We
find it has a correction to the black hole waveform of the
form (cf. footnote 3)
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Ψ̂ðxÞ¼ Ψ̂BHðx−L=2Þþ Ψ̂corrðx−L=2Þ; x→∞; ð32Þ

with Ψ̂corr given by the transfer function K and the near-
horizon part of the black hole wave function,

Ψ̂corrðxÞ ¼ KðωÞeiωx lim
x→−∞

ðΨ̂BHeiðω−ω0ÞxÞ: ð33Þ

The factor in brackets is evaluated at the black hole horizon
and represents the near-horizon response. It is multiplied by
an exponential factor such that it has no overall x dependence.
Then the two terms in Ψ̂ indeed have the correct asymptotic
behavior at large x. This can be generalized to other ECOs.
Given the mass and spin of a given black hole are known, all
one needs is the transfer function K of the ECO one wishes
to study.

III. DAMOUR-SOLODUKHIN WORMHOLE

We turn now to our first explicit example, the static
Schwarzschild-like wormhole considered by Damour and
Solodukhin in [8] with metric

ds2 ¼ −ðfðrÞ þ λ2Þdt2 þ dr2

fðrÞ þ r2dΩ2
ð2Þ; ð34Þ

where fðrÞ ¼ 1–2M=r. Naturally, when λ ¼ 0, this reduces
to the usual Schwarzschild black hole metric. For nonzero
values of the parameter λ2, however, (34) is no longer a
solution of Einstein’s equations and the manifold structure
changes drastically. In particular, the Einstein tensor
of (34) has a vanishing time-time component, while
Grr; Gθθ; Gϕϕ ∼ λ2. This means, among other things, that
matter with vanishing energy density would be required to
sustain such a gravitational configuration. However, we
regard these wormholes here in the first place as tractable
toy models to study some of the phenomenological
implications of ECOs.
In (34), t does not correspond to the time of an

asymptotic observer. It is convenient to redefine t →
t=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2

p
and M → Mð1þ λ2Þ, to get

ds2 ¼ −fðrÞdt2 þ dr2

gðrÞ þ r2dΩ2
ð2Þ; ð35Þ

where now

fðrÞ ¼ 1 −
2M
r

; gðrÞ ¼ 1 −
2Mð1þ λ2Þ

r
: ð36Þ

Let us now consider a massless test scalar field on the
background metric (35). After decomposition in spherical
harmonics, the scalar perturbations are described by the
equation

� ∂2

∂t2 −
∂2

∂r2� þ VlðrÞ
�
Ψlðt; r�Þ ¼ 0; ð37Þ

where

VlðrÞ ¼
lðlþ 1ÞfðrÞ

r2
þ ðfðrÞgðrÞÞ0

2r
ð38Þ

is the scalar Regge-Wheeler potential, and r� is the tortoise
coordinate, defined implicitly by the relation dr�=dr ¼
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞgðrÞp

. If we further separate the time and radial
coordinates as Ψlðt; rÞ ¼ e−iωtΨ̂lðr�Þ, we get the following
equation for the radial wave function:

d2Ψ̂l

dr2�
þ ðω2 − VlðrÞÞΨ̂l ¼ 0: ð39Þ

The relation between r and r� for the wormhole
metric can be conveniently written in terms of an auxiliary
variable ρ as

r=M ¼ 2þ λ2ð1þ cosh ρÞ; ð40Þ

r�=M ¼ 2þ λ2Þρþ λ2 sinh ρ: ð41Þ

Letting ρ range from −∞ to þ∞, we observe that
r ≥ 2Mð1þ λÞ2, while r� takes all values in the real line.
Indeed, r� and −r� correspond to the same r. Furthermore,
r� ¼ 0 corresponds to the throat position r ¼ 2Mð1þ λ2Þ.
The wormhole structure becomes evident from this
perspective.
The relation r�ðrÞ can be written explicitly as

r� ¼ �M
	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðr=M − 2Þðr=M − 2ð1þ λ2ÞÞ
q

þ ð2þ λ2Þcosh−1½λ−2ðr=M − 2Þ − 1�


:

Now, we are interested in the regime of small λ2, for
which the metric is essentially indistinguishable from a
Schwarzschild black hole to an external observer. For
λ2 ≪ 1, we get

r� ¼ rþ2M log

�
r
2M

−1

�
þ2Mð−1þ logð4λ−2ÞÞ; ð42Þ

up to Oðλ2Þ corrections. This can be written more sugges-
tively as

r� ¼ rBH� þ L
2
; where L≡ 4Mð−1þ log ð4λ−2ÞÞ: ð43Þ

Here, L represents the length of the wormhole throat, and
therefore it is approximately the distance between the
maxima of the potential Vlðrðr�ÞÞ. In addition, when

BUENO, CANO, GOELEN, HERTOG, and VERCNOCKE PHYS. REV. D 97, 024040 (2018)

024040-6



λ ≪ 1 we get VlðrÞ ¼ VBH
l ðrÞ þOðλ2Þ. Altogether, we

conclude that the potential Vlðr�Þ is very approximately

Vlðr�Þ ¼ θðr�ÞVBH
l ðr� − L=2Þ þ ðr� ↔ −r�Þ; ð44Þ

where VBH
l ð·Þ represents the black hole potential as a

function of the black hole tortoise coordinate rBH� .
Hence, the limit λ ≪ 1 of this model essentially coincides
with a double copy of the Schwarzschild black hole
connected through a throat of length L. Note that the
dependence of L in λ2 is logarithmic, so even if this is
small—say, λ2 ∼ lP=M—the effect will be measurable
through the detection of perturbations that traverse the
throat. This phenomenon is characteristic of general ECOs,
as observed in [11,12].

A. Quasinormal modes and frequencies

The effective potential Vlðr�Þ in (44) takes the form of
those studied in the previous section, so we can apply the
method put forward there. To compute the QNFs, we need
to obtain the reflection coefficient of the Schwarzschild
potential as a function of the frequency, RBHðωÞ. This can
easily be obtained numerically by solving the problem in
which there is only an outgoing wave for x → þ∞.
Alternatively, we can get an approximate solution by
replacing the true wormhole potential by a double
Pöschl-Teller potential for which we know RðωÞ analyti-
cally (cf. Appendix). The second alternative has the
advantage that it allows us to construct approximate
analytic expressions for the wormhole QNMs.
In Table I, we show the QNFs computed using both

methods for the Damour-Solodukhin wormhole with λ ¼
10−5 and l ¼ 0, 1. A graphic representation of the exact
frequencies is provided in Fig. 2. In Fig. 3, we plot the
quasinormal modes Ψ̂lnðr�Þ for l ¼ 1 and various n
computed from the double Pöschl-Teller potential.
The Pöschl-Teller approach gives a good approximation

to the real part of the frequencies. The imaginary part is also
in reasonable agreement, except for the smaller n’s. For

λ2 ¼ 10−10, we get L ¼ 93.6M, and the real part of the
frequencies is roughly proportional to π=L ≈ 0.0335=M.
More precisely, as expected from (12), the QNFs are
proportional to π=Lð1þ ImR0

BHð0Þ=LÞ, whose value
depends slightly on l: 0.9572 × π=L ≈ 0.03211=M for

TABLE I. Scalar QNFs of the Damour-Solodukhin wormhole with l ¼ 0, 1 and λ2 ¼ 10−10. The result of the numerical computation
for the exact potential is compared to the one obtained by replacing this with a Pöschl-Teller potential.

Mode n Mωn (l ¼ 0, Pöschl-Teller) Mωn (l ¼ 0, numerical) Mωn (l ¼ 1, Pöschl-Teller) Mωn (l ¼ 1, numerical)

1 0.03230 − 1.666 × 10−4i 0.03210 − 1.083 × 10−4i 0.03616 − 7.280 × 10−7i 0.03501 − 1.962 × 10−8i
2 0.06427 − 7.413 × 10−4i 0.06382 − 5.720 × 10−4i 0.07196 − 3.831 × 10−6i 0.06982 − 4.390 × 10−7i
3 0.09576 − 1.919 × 10−3i 0.09503 − 1.679 × 10−3i 0.1071 − 1.309 × 10−5i 0.1043 − 3.304 × 10−6i
4 0.1268 − 3.910 × 10−3i 0.1258 − 3.709 × 10−3i 0.1415 − 3.911 × 10−5 0.1382 − 1.618 × 10−5i
5 0.1578 − 6.787 × 10−3i 0.1566 − 6.739 × 10−3i 0.1751 − 1.095 × 10−4i 0.1715 − 6.266 × 10−5i
6 0.1888 − 0.01042i 0.1877 − 0.01057i 0.2077 − 2.908 × 10−4i 0.2041 − 2.072 × 10−4i
7 0.2201 − 0.01456i 0.2192 − 0.01490i 0.2394 − 7.256 × 10−4i 0.2358 − 5.999 × 10−4i
8 0.2517 − 0.01898i 0.2510 − 0.01948i 0.2701 − 1.662 × 10−3i 0.2666 − 1.515 × 10−3i
9 0.2835 − 0.02355i 0.2832 − 0.02418i 0.3000 − 3.405 × 10−3i 0.2968 − 3.295 × 10−3i
10 0.3155 − 0.02818i 0.3158 − 0.02900i 0.3295 − 6.145 × 10−3i 0.3267 − 6.167 × 10−3i

FIG. 2. Quasinormal wormhole frequencies for λ2 ¼ 10−10.

FIG. 3. Quasinormal modes Ψ̂lnðr�Þ of the double Pöschl-Teller
potential as a function of r�=M with n ¼ 1, 2, 3 (left) and n ¼ 4,
5, 6 (right) for l ¼ 1 and λ2 ¼ 10−10.
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l ¼ 0 and 1.0427 × π=L ≈ 0.03498=M for l ¼ 1. This
effect is smaller as we increase L, i.e., as we decrease λ,
so the real part of the frequencies is almost independent of
l. On the contrary, the imaginary part changes by several
orders of magnitude for different l. Hence, for a fixed n,
perturbations with large l are much longer lived than those
with low l.

B. Time dependence and echoes

We turn now to the time domain governed by Eq. (37).
We solve this equation numerically for an initial Gaussian
perturbation near one of the photon spheres of the worm-
hole. We expect the primary signal received by an external
observer for a perturbation of this kind to be very similar,
and indeed almost identical, to the signal that would be
produced by a black hole. The infalling wave in turn gives
rise to a series of echoes consisting of a combination of
wormhole QNMs.

1. Numerical waveform and spectral analysis

Figure 4 shows the time signal obtained after numerical
integration of Eq. (37). As anticipated we first detect a
signal that is essentially the one of a black hole, followed by
a series of echoes roughly separated by a distance
2L ∼ 190M. Since it is the same signal that a black hole
would produce, the primary wave is composed of the
black hole QNMs. The leading frequency for l ¼ 1 is
ð0.2929 − 0.09766iÞM−1, which appears as the main con-
tribution to the primary signal. A Fourier analysis of the
echo part of the waveform determines the real part of
the frequencies featuring in the echoes. The resulting
power spectrum is shown in Fig. 5. The most prominent
peaks occur at the following frequencies: Mω ¼
f0.1721; 0.2051; 0.2368; 0.2671; 0.2969; 0.3263; 0.3555g.
Table I shows that these numbers are, with high accuracy,
the QNFs of the wormhole. The labels in the plot show
which QNF corresponds to each peak. Hence, after the
primary signal, the waveform is composed of worm-
hole QNMs.

As anticipated the waveforms of the individual echoes
resemble each other. Moreover, the dominant frequency in
the echo signal is Mω9 ¼ 0.2968–3.295 × 10−3i which is
the closest one to the black hole QNF dominating the
primary signal, i.e., ReωBH ¼ 0.2929=M. Thus we see that
the echo waveform consists of a superposition of wormhole
QNMs whose frequencies are concentrated around the
dominant frequency of the black hole primary signal.
This also explains the damping of the echoes: after the
first echo, the amplitude of successive echoes should
decrease roughly by a factor of eImωnmax2L, which in this
case is eImω92L ≈ 0.54.8 Finally, the QNF spectrum explains
the observation of Cardoso and Pani [23,24] that the
frequency content of the echoes is decreasing with time:
the QNMs with larger real frequency have larger imaginary
frequency, so they decay faster than those of low frequency.
The late time signal will therefore be composed of low
frequencies corresponding, approximately, to the first few
multiples of π=L.

2. Waveform reconstruction

We can write the echo signals as in Eq. (21), with the
coefficients cn given by (23), and thereby verify the
accuracy of our method to reconstruct the echoes
waveform.
In Fig. 6 we show the wave generated this way and

compare it to the numerical one. They are in excellent
agreement. This method allows us therefore to reconstruct
the full echo waveform once the first echo and the QNFs
spectrum are identified.

FIG. 4. Time signal obtained from numerical integration of
(37). We take x to be sufficiently far away from the throat. The
initial condition is a Gaussian perturbation near the photon sphere
(r ∼ 3M) of the wormhole.

FIG. 5. Power spectrum of the echoes’ waveform for l ¼ 1
(primary signal subtracted). The peaks, labeled by n, correspond
to the QNFs of the wormhole, ωn. The absence of the n ¼ 1, 2, 3,
4 modes is related to the fact that in this example the wormhole
QNF that is closest to the black hole QNF dominating the primary
signal corresponds to n ¼ 9. Because of the Gaussian character of
the perturbation, only QNFs close to ω9 appear in the spectrum.

8This estimation is expected to work better for subleading
echoes. By looking at the maxima of jΨðtÞj, we can compare the
amplitude of the primary signal with the one of the first echo, the
latter with the one of the second, and so on. We find that this
drops by factors: ∼0.15, ∼0.43, and ∼0.59, respectively.
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Let us now consider the method of Mark et al. [22]. As
we explained in Sec. II C, this allows for a reconstruction of
the full asymptotic waveform using Eq. (33) from the
knowledge of the near-horizon and asymptotic waveforms
corresponding to the corresponding black hole potential
along with its transfer function (31). In Fig. 7, we plot the
black hole waveforms for the same Gaussian perturbation
considered before, as well as the absolute value of the
transfer function, which displays singularities at the

wormhole QNFs. Then, in Fig. 8, we use Eq. (33) to
reconstruct the full wormhole asymptotic signal. The
agreement is again excellent.

IV. KERR-LIKE WORMHOLE

Whatever might be the objects producing the gravita-
tional waves attributed to merging black holes, they will
have a nonzero spin. Hence we now consider a phenom-
enologically more interesting Kerr-like wormhole as a toy
model for a rotating ECO.
We can construct a wormhole starting with the Kerr

metric by performing a modification similar to what
Damour and Solodukhin did for a Schwarzschild black
hole [8]. In particular, we consider the metric

ds2¼−
�
1−

2Mr
Σ

�
dt2−

4Marsin2θ
Σ

dtdϕþΣ
Δ̂
dr2

þΣdθ2þ
�
r2þa2þ2Ma2rsin2θ

Σ

�
sin2θdϕ2; ð45Þ

where

Σ≡ r2þa2cos2θ; Δ̂≡ r2− 2Mð1þ λ2Þrþa2: ð46Þ

Here, M and aM are the mass and the angular momentum
of the would-be black hole, respectively. If we set λ2 ¼ 0,
the usual Kerr metric is recovered, but for any nonvanishing
λ2, the spacetime structure is completely different. The
largest root of Δ̂ gives us the position of a special surface:
rþ ¼ ð1þ λ2ÞM þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2ð1þ λ2Þ2 − a2

p
. This is not a hori-

zon anymore; indeed, the points with r < rþ do not even
exist. Instead, the surface r ¼ rþ is the throat of a worm-
hole that connects two asymptotically flat regions. This can
easily be verified by performing the change of variable
r ¼ rþ þ ρ2=M. When written in terms of ρ, the previous
metric is regular everywhere, and by allowing ρ to take
arbitrary real values, we see that the spacetime consists of
two copies glued at r ¼ rþ. Since this happens for any
λ ≠ 0, by choosing a sufficiently small value we get a

FIG. 6. Echoes waveform: Numerical computation (blue line)
and reconstructed (dashed curve) asymptotic time signal. The
second is obtained using Eq. (21).

FIG. 7. Top: Asymptotic waveform corresponding to the
single-bump Schwarzschild potential. Middle: Near-horizon
waveform for such potential. Bottom: Transfer function com-
puted using the transmission and reflection coefficients of the
single-bump potential, as defined in Eq. (31).

FIG. 8. Reconstructed waveform (dashed curve) obtained using
the method of Mark et al. [22] according to Eq. (33) with ω0 ¼ 0
versus exact numerical signal (blue line).
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wormhole that is quasi-indistinguishable from a Kerr black
hole as seen from the outside. The main difference would
be the presence of echoes in the time signals produced by
perturbations falling into the wormhole.

A. Scalar perturbations

Let us consider a test scalar field Ψ satisfying the
Klein-Gordon equation □Ψ ¼ 0 in the background (45).
Separating variables [25],

Ψðt; x⃗Þ ¼ 1

2π

Z
dωe−iωt

X∞
l¼0

Xl

m¼−l
eimϕSlmðcos θÞRlmðrÞ;

ð47Þ

we find

d
du

�
ð1− u2Þ d

du

�
Slm þ

�
Alm þ u2a2ω2 −

m2

1− u2

�
Slm ¼ 0;

ð48Þ
�
d2

dr2�
− Vlmðr;ωÞ

�
Rlm ¼ −ω2Rlm; ð49Þ

where u≡ cos θ, Alm ¼ AlmðaωÞ are the angular separation
constants and Rlm ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ a2
p

Rlm. The potential is

Vlmðr;ωÞ ¼ ðr2 þ a2Þ−2
�
ΔðAlm þ a2ω2Þ þ 4rMaωm

− a2m2 þ a2 − 2r2

ðr2 þ a2Þ2ΔΔ̂þ r
2ðr2 þ a2Þ ðΔΔ̂Þ

0
�
;

ð50Þ

where 0≡ ∂=∂r, Δ≡ r2 − 2Mrþ a2, and the tortoise
coordinate r� is defined through

dr�
dr

¼ r2 þ a2ffiffiffiffiffiffiffi
ΔΔ̂

p : ð51Þ

Note that the only difference with respect to the Kerr black
hole is the appearance of Δ̂ instead ofΔ. This is particularly
important in the definition of the tortoise coordinate. As
happened for the Schwarzschild-like wormhole, for every
value of r there are two values of r�. Using the auxiliary
coordinate ρ such that r ¼ rþ þ ρ2=M, we can write

r�ðρÞ¼ 2M
Z

ρ

0

dρ0
ðrþþρ02=MÞ2þa2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðρ02þδ1Þðρ02þδ2Þðρ02þδ3Þ
p ; ð52Þ

where

δ1 ¼ λ2M2 þM
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2ð1þ λ2Þ2 − a2

q
−M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
;

δ2 ¼ λ2M2 þM
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2ð1þ λ2Þ2 − a2

q
þM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
;

δ3 ¼ 2M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2ð1þ λ2Þ2 − a2

q
: ð53Þ

Since δ1;2;3 > 0 [at least for jaj < ð1þ λ2ÞM], there is a
one-to-one relation between r� and ρ.
Note that the equation for the spin-weighted spheroidal

harmonics SlmðuÞ does not depend on λ2. So we can use the
results available in the literature for Kerr black holes to deal
with Eq. (48). In particular, to solve the radial equation we
will need to compute the scalar angular separation con-
stants AlmðaωÞ. We will be considering frequencies sat-
isfying aω ≪ 1, so we can consider the series expansion of
Alm in powers of ðaωÞ,

AlmðaωÞ ¼
X∞
n¼0

fnðaωÞn: ð54Þ

The coefficients of this expansion can be found in [26]. In
the remainder of the section, we use this series expansion
up to n ¼ 4, which is more than enough to provide great
accuracy in all our computations.
If λ ≪ 1, the potential VlmðrÞ becomes nearly identical

to the one of a Kerr black hole, VlmðrÞ ≈ VBH
lm ðrÞ, the most

relevant difference being that rðr�Þ is a two-to-one func-
tion. Therefore, as a function of r�, the potential develops
two bumps. By (52), this potential is symmetric with
respect to r� ¼ 0. Now, for a Kerr black hole, the tortoise
coordinate is

rBH� ¼ rþM log

�
Δ

4M2

�
−

M2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2−a2

p log

�
r− r−
r− rþ

�
; ð55Þ

so that the potential for the black hole is VBH
lm ðrðrBH� ÞÞ.

Just as for the Damour-Solodukhin wormhole, in the limit
λ → 0 and for fixed r, both coordinates r� and rBH� have the
same behavior, but they differ by a constant (taking the
positive branch of r�),

r� → rBH� þ L
2
: ð56Þ

When λ ≪ 1, this distance is large and the leading term is

L ¼ 4MZ log

�
2

λ2Z

�
þOð1Þ; ð57Þ

where

Z ¼ 1

2

�
1þ Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 − a2
p

�
: ð58Þ
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The separation between bumps depends on the
wormhole angular momentum aM. When a → M, L
diverges. For large separation L, the wormhole potential
is approximated by

Vlmðr�Þ ¼ θðr�ÞVBH
lm ðr� − L=2Þ þ ðr� ↔ −r�Þ; ð59Þ

where VBH
l ð·Þ is the black hole potential as a function of the

black hole tortoise coordinate rBH� . Naturally, Vlmðr�Þ takes
the form considered in Sec. II.

B. Quasinormal frequencies

To find the QNFs of the rotating wormhole, we need to
determine the reflection coefficient of the black hole
potential VBH

lm ðrBH� Þ, and then solve Eq. (7). A new
phenomenon appears with respect to the static wormhole
considered in the previous section. While the potential
VBH
lm ðrBH� Þ still goes to zero at spatial infinity, it will no

longer do so near the horizon. As rBH� → −∞, we get
ω2 − VBH

lm ðrBH� Þ → ðω − ω0Þ2, where

ω0 ¼
am

2Mrþ
: ð60Þ

In other words, the black hole potential tends to a
frequency-dependent plateau U0 ¼ ω0ð2ω − ω0Þ, where
ω0 is given in Eq. (60)—see Fig. 1. Therefore, the reflection
coefficient of the black hole potential, RBH, should be
determined by solving the following problem:

Rlm ¼
�
TBHðωÞeiωrBH� for rBH� →þ∞;

RBHðωÞe−iðω−ω0ÞrBH� þ eiðω−ω0ÞrBH� for rBH� →−∞:

ð61Þ
For a given ω, the reflection coefficient RBHðωÞ can be
found numerically from (61). Then, Eq. (7) can be solved
using, for instance, the secant method. To proceed, let us
consider two wormholes with a ¼ 0.7M, and λ2 ¼ 10−20

and λ2 ¼ 10−40, respectively. Note that the distribution of
possible spin parameters for stellar-mass black holes
resulting from the merger of two has been observed to
universally peak, precisely, at a ∼ 0.7M [27], and hence our
choice. Also, note that any λ2 ≠ 0 would be related to some
new-physics scale l0 through λ2 ∼ l0=M. If M ∼ 10 M⊙,
then λ2 ¼ 10−40 corresponds roughly to l0 ∼ 0.1lP, while
for λ2 ¼ 10−20, this is approximately 10−16 m, or about
1 GeV−1. The throats of these two wormholes have lengths
L ¼ 451M and L ¼ 230M, respectively.
Equations (12) and (13), respectively, yield estimates

of the real and imaginary parts of the leading QNFs.
In particular, the approximation Reωn ≈ ω0 þ nπ

L turns
out to work quite accurately not only for L ≫ M
(corresponding to λ2 ≪ 1), but also for L=ðnπÞ ∼M. In
particular, for λ2 ¼ 10−40, a ¼ 0.7M, l ¼ m ¼ 1, we

find numerically Reωf0;1;2g¼f0.20418;0.2113;0.21833g,
while the approximation yields ω0 þ f0; 1; 2gπ=L ¼
f0.20418; 0.2115; 0.21812g, which are very close to the
exact values. But also, for example, for n ¼ 50, we find
Reω50 ¼ 0.5513, whereas ω0 þ 50π=L ¼ 0.5525, which
differs only by ∼0.2%. With respect to the imaginary parts
of the frequencies closest toω0, numerical evidence suggests
that for m ¼ 0 they scale as 1=L3, while for m ≠ 0 they go
with 1=L2, when L is large enough. This would be in
agreement with the expansion (10), if we take into account
that Re½R0

BHðω0Þ� ≠ 0 for m ≠ 0. A full understanding of
this dependence requires further investigation though.
In Fig. 9, we show the QNFs of the wormholes

mentioned above for l ¼ 0 and l ¼ 1. We also show the
QNFs for a wormhole with a ¼ 0.3M and λ2 ¼ 10−20 in
order to observe how these get modified as the angular
momentum changes. We note immediately that a Zeeman-
like splitting of the QNFs appears, characteristic of the
presence of rotation [28], which breaks the degeneracy for
different values of m.
In addition, there are some QNFs that do not appear in

the plot because they have a positive imaginary part. These
are the ones with ReðωÞðReðωÞ − ω0Þ < 0. These modes
are unstable, as they grow exponentially with time, and
appear when jRBHðωÞj > 1. This instability is reminiscent
of black hole superradiance [29] and is argued to occur
for any horizonless rotating compact object with an
ergosphere—see, e.g., [30–32]. The expected end point
of such an “ergoregion instability” would be a slowly
spinning compact object, surrounded by a spinning particle
cloud. Applied to our rotating wormhole, we see that there
are no unstable modes for jω0j < π=L, which imposes the
condition on the spin

���� aM
���� <

4 πM
jmjL

1þ 4ð πMjmjLÞ2
: ð62Þ

This formula means that if the spin is below this quantity,
modes with jm0j ≤ jmj are all stable. Obviously, if we want
modes of arbitrary m to be stable, a must vanish. However,
as a decreases, fewer modes are unstable. One expects that
the angular momentum will effectively cease to decrease
before reaching a ¼ 0. The resulting object would then be
slowly spinning, probably with a ∼M2=L. Note, however,
that this instability does not prevent the compact object—
possibly produced after the merger of two objects—from
having a large angular momentum initially.

C. Signal reconstruction

In Sec. III, we observed that the echo waveform for a
static Schwarzschild-like wormhole was completely
formed by a combination of its QNMs, the most relevant
being the one whose QNF was closest to the main black
hole QNF, dominating the primary signal. We expect the
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same behavior to occur for rotating wormholes. After a
perturbation, say, near the photon sphere is produced, we
expect to detect a primary signal corresponding to the one a
rotating black hole would produce. This will contain the
QNMs of the black hole. Later on, echoes composed of
wormhole QNMs will appear. Since the primary signal
contains the black hole QNFs, the echoes will try to imitate

this frequency content—something they can do because the
wormhole QNMs nearly form a Fourier basis, as we
explained.
In Sec. III we showed that the method put forward in

Sec. II B for reconstructing all the subleading echoes from
the first one worked very accurately for the static Damour-
Solodukhin wormhole. Let us now apply this method to our
Kerr-like wormhole. We do not solve the time-domain
equation directly but rather we model the leading-echo

waveformΨð0Þ
1stechoðtÞ as a Gaussian wave packet of the form

given in Eq. (24), for some frequency ωBH
lm0 that corresponds

to the leading black hole QNF controlling the primary
signal.
More explicitly, the full echo waveform that an observer

would detect can be written as

ΨðtÞ ¼
X∞
l¼0

Xl

m¼−l

X∞
n¼−∞

clmne−iωlmnt; ð63Þ

where the coefficients are given as

clmn ¼
1

2L

Z
2L

0

dtΨð0Þ
1stechoe

iωlmnt: ð64Þ

Modeling the first echo as

Ψð0Þ
lm ðtÞ ¼ e−iω

BH
lm0

ðt−t0Þe−
ðt−t0Þ2
2τ2 ; ð65Þ

where ωBH
lm0 is the leading QNF of the black hole for the

given l and m, and substituting the actual QNFs of the
wormhole and the ones of the would-be black hole, we get a
waveform that should resemble the actual waveform
produced by a Gaussian perturbation. For example, for a
Kerr black hole with a ¼ 0.7 the leading scalar quasinor-
mal frequencies for l ¼ 0, 1 are [28] as follows:
MωBH

000¼0.1140−0.09863i, MωBH
1−10 ¼ 0.2519 − 0.0955i,

MωBH
100 ¼ 0.3031 − 0.09243i, MωBH

110¼0.3792−0.08885i.
We can also use the wormhole QNFs for λ2 ¼ 10−20

computed previously. The resulting waveforms for τ ¼
20M are shown in Fig. 10.
For all values ðl; mÞ shown, the first echo fits perfectly

the Gaussian wave packet (24), but it is constructed with
the quasinormal frequencies of the wormhole. The echoes
appear after a period of 2L ≈ 460M because the real parts
of the frequencies are spaced approximately π=L. Damping
and deformation occur as a consequence of the QNFs being
complex and not exactly equispaced. Interestingly, the
damping seems to be mostly independent of l and m.
Figure 9 shows that modes with larger l and with larger am
decay more slowly. The reason why we see similar decay is
due to the fact that also the main frequency of the wave
packet—the corresponding QNF of the black hole—
changes, having a larger real part for larger l and larger
am. Hence, both effects approximately cancel out,

FIG. 9. Scalar QNFs for the Kerr wormhole. Top: Scalar QNFs
with l ¼ 0, and l ¼ 1, m ¼ −1, 0, 1 in a rotating wormhole with
λ2 ¼ 10−20 and a ¼ 0.3M. Middle: The same QNFs for λ2 ¼
10−20 and a ¼ 0.7M. We can observe that the degeneration in m
is broken and that the difference increases with a. Bottom: QNFs
for λ2 ¼ 10−40 and a ¼ 0.7M. As λ decreases, the spacing
between QNFs decreases.
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rendering the damping of the echoes roughly equal for
every m and l.
Another important observation is that we do not see any

unstable modes in the echo waveform, at least at early
times. This can be related to the fact that the leading
black hole QNF is sufficiently far from the frequencies of
the unstable modes, so that these are barely excited and
consequently they get a tiny amplitude. In addition,
these unstable modes have very small (positive) imaginary
parts, so they take a long time to grow. For example, for
l ¼ 1, m ¼ 1, we have MωBH

110 ¼ 0.3792 − 0.08885i,
while the first unstable QNF (corresponding to n ¼ −1)
of the wormhole with λ2 ¼ 10−20 is Mω11−1 ¼
0.1901þ 7.929 × 10−7i. The time scale at which the
instability becomes observable is of the order tinst ∼
logðjcnj−1Þ
ImðωnÞ , which is very large since ImðωnÞ and cn are tiny.

In particular, for the Gaussian wave packet (65), we can use
the coefficients (25) to get

tinst ∼
τ2ReðωBH

lm0 − ωlmnÞ2
2ImðωlmnÞ

: ð66Þ

For the example at hand, this gives tinst ∼ 107M.

The take-home message is that we can construct a
realistic echo waveform for the wormhole by knowing
its QNFs and the black hole ones. The first echo, together
with the knowledge of the QNFs, can be used to reconstruct
the rest of the signal. Naturally, the QNFs can in principle
be determined once the reflection coefficient of the single-
bump potential is known, using Eq. (7). The modeling of
the first echo from a given primary signal using (65) will
not be, however, perfect in general, and a more refined
method would be desirable. This can be achieved using the
construction of Mark et al. In that construction, one
requires the knowledge of the near-horizon, would-be
black hole waveform, as well as the transfer function, in
addition to the asymptotic primary signal.
From the point of view of an asymptotic observer, our

method and that of Mark et al. are comparably powerful
and useful. Gravitational-wave detectors cannot collect all
the QNFs of the compact object, nor can they assess
directly what the near-horizon response of a black hole
would be with the same mass as a given ECO. The
asymptotic primary waveform of an astrophysical compact
object, resulting after a merger for example, can be split
into two parts: the prompt ringdown response and the echo
part of the signal. The prompt ringdown can be studied
separately, and combined with data from the merger
process that formed the compact object, would give a very
good estimate of the mass and spin of the end product. This
can be used to determine the black hole with the same mass
and charge, such that all black hole data are known (QNFs,
reflection coefficient, etc.). However, this is not enough
information to predict the detailed waveform of the ensuing
echoes, as the prompt response is to a very good approxi-
mation insensitive to the kind of ECO. One first needs to
measure at least the first echo, either to reconstruct the rest
of the signal following our method or to reconstruct the
transfer functionK used in the approach of Mark et al. This
means that modeled searches in future gravitational-wave
data analysis are most powerful when the details of the first
echo are captured by one or more free parameters related to
the type of ECO.

V. CONCLUSIONS

We have studied the quasinormal spectrum of perturba-
tions in static and stationary wormhole spacetimes, how
such a spectrum connects to asymptotic time signals
produced, and how the echoes in such signals can be
reconstructed from the primary signal governed by the
corresponding effective black hole potential or from the
leading echo. We have applied our results to Damour and
Solodukhin’s Schwarzschild-like wormhole [8] and to a
new Kerr-like wormhole. A detailed summary of our results
can be found in the Introduction.
With regards to future work, it would be interesting to

clarify whether the general properties of the wormhole
QNFs observed here—such as the approximate spacing by

FIG. 10. Construction of echo waveforms from Gaussian wave
packets in a rotating wormhole with a ¼ 0.7M and λ2 ¼ 10−20.
From top to bottom: ðl; mÞ ¼ ð0; 0Þ; ð1;−1Þ; ð1; 0Þ; ð1; 1Þ. In all
panels, the first echo fits a Gaussian with the corresponding
leading QNF of a Kerr black hole with a ¼ 0.7M—see Eq. (24).
From this initial wave packet we obtain the coefficients of the
wormhole QNM expansion from Eq. (64), and we construct the
rest of the signal using Eq. (63). The echoes appear with a period
T ∼ 2L ≈ 460M, and the damping is approximately independent
of l and m.
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π=L of the real parts, or the fact that the wormhole QNF
that dominates echoes is the one that is closest to the black
hole QNF controlling the primary signal—extend to more
general ECOs. It would also be desirable to obtain a more
quantitative understanding of the consequences of the
instability observed for the rotating wormholes. Our study
has been restricted to probe scalar fields on wormhole
backgrounds. An analysis of gravitational perturbations
would be interesting, but this requires embedding the
corresponding wormhole metrics in an explicit theory.
Examples of wormhole solutions in certain modified
theories of gravity are available—see, e.g., [33,34],
although these generally differ significantly from
Schwarzschild or Kerr away from the would-be horizon.
Attempts at constructing pathology-free wormhole solu-
tions to Einstein gravity coupled to nonexotic matter have
also been carried out in [35,36], so those could in principle
provide candidates for such explorations.
Naturally, it would be interesting to further study

perturbations in other alternatives to black holes such as
boson stars [37–39], gravastars [40], other wormholes
[41,42], and quantum-corrected objects [43,44]. Many of
these horizonless black hole mimickers and ECOs that are
commonly studied share some of the symmetries of the
black hole spacetime. This has led to candidate smoking-
gun signals that include short lifetimes for highly spinning
objects due to an ergoregion instability and, as we have
seen, gravitational-wave echoes spaced at relatively short
times. However, some of the black hole alternatives that
have emerged in string theory break several or all of the
black hole’s symmetries. An important but underexplored
issue is to assess to what extent the analysis and the signals
studied here apply to such solutions.
A particular example is fuzzballs [9,45–48], which are

horizonless and typically highly asymmetric solutions.
Fuzzballs may not share the smoking gun signals expected
from more symmetric solutions and discussed here. This is
because fuzzballs do not have integrable and thus separable
geodesic equations. Hence, radially infalling modes will
mix with angular modes, possibly leading to an enhance-
ment of the time needed for perturbations to leak out [49],
and hence the time between echoes. One also expects that
the inner structure of fuzzballs strongly modifies the
relation between the different echoes’ signals, and between
the first echo and the primary signal. The formation process
itself of fuzzballs involves a series of quantum transitions
that go together with novel types of gravitational wave
bursts [50]. Evidently it would be very interesting to have a
better understanding of their waveform. We will return to
these open questions in future work [51].
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APPENDIX: ANALYTIC QNFS FOR SIMPLE
SYMMETRIC DOUBLE POTENTIALS

In this appendix, we discuss analytic approximations to
the QNFs of wormholelike potentials. We consider three
simple examples: two Dirac-delta peaks, a double square
well, and a combination of two Pöschl-Teller potentials.

1. Double Dirac-delta potential

The simplest possible example corresponds to a double
Dirac-delta potential Vδδ, for which UðxÞ takes the form

UδðxÞ ¼ νδðxÞ; ðA1Þ

where the parameter ν measures the strength of the
potential. If we wanted to use the double Dirac delta to
approximate the QNFs of some other potential V1ðxÞ, ν
could be related to the defining parameters of such potential
through

2ν ¼
Z þ∞

−∞
V1ðxÞdx: ðA2Þ

The QNFs condition (7) translates into

e−iωnL ¼ e−iπn

ð1 − 2iωn
ν Þ ; ðA3Þ

whose general solution is

ωm ¼ i
L

�
Wfmg

�
e−iπn

νL
2
e
νL
2

�
−
νL
2

�
; m ∈ Z; ðA4Þ

whereWfmg is themth branch of the Lambert function. The
leading frequency corresponds to m ¼ −1, n ¼ 1; the
subleading one to m ¼ −1, n ¼ 2; the next to m ¼ −2,
n ¼ 3; and so on. Using (10), it is easy to see that the
leading QNFs can quickly be estimated from the simple
expression
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ωn ¼
πn
L

��
1 −

2

νL
þ � � �

�
− i

�
2πn
ν2L2

þ � � �
��

; ðA5Þ

which yields very accurate results for the first QNFs when
compared with (A4). Observe that while the real parts are of
order ∼1=L, the imaginary ones are approximately propor-
tional to 1=L3, which illustrates their relative smallness, as
argued in general in Sec. II A. A more precise approxi-
mation for the imaginary parts is obtained using Eq. (13).

2. Double rectangular barrier

Another simple potential consists of two rectangular
barriers of height V0 and width a,

U⊓ðxÞ ¼ V0½θðxÞ − θðx − aÞ�: ðA6Þ
If we wanted to use V⊓⊓ðxÞ to approximate another
potential V1ðxÞ, the parameters a and V0 could be fixed
by imposing

V0 ¼ V1ðxmaxÞ; ðA7Þ

a ¼ 1

2V1ðxmaxÞ
Z þ∞

−∞
V1ðxÞdx: ðA8Þ

Alternatively, a could also be related to some average width
of the single bumps in V1ðxÞ, which should yield a result
similar to the one given by (A7).
A textbook calculation yields the reflection coefficient of

the double-rectangular barrier. From this, using (7), we
obtain the following expression for the QNFs of V⊓⊓ðxÞ:

e−iωnL ¼−
e−iπnV0

2iωn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
n−V0

p
cotða

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
n−V0

p
Þþ ð2ω2

n −V0Þ
:

ðA9Þ
Using (12) and (13), we can again obtain quick estimations
for the QNFs,

ωn ¼
πn
L

��
1 −

2ffiffiffiffiffiffi
V0

p
L
cothða

ffiffiffiffiffiffi
V0

p
Þ þ � � �

�

− i

�
2πn
V0L2

csch2ða
ffiffiffiffiffiffi
V0

p
Þ þ � � �

��
; ðA10Þ

which again yields very accurate results for the first QNFs
when compared with the ones obtained solving (A9)
numerically. Note again that the imaginary parts are
OðL−3Þ. Equation (A10) reduces to the double Dirac-delta
result (A5) in the limit V0=a ≫ 1 if we identify aV0 ≡ ν.

3. Double Pöschl-Teller potential

Let us finally consider a double Pöschl-Teller potential
VPT, derived from the standard form [52],

UPTðxÞ ¼ V0 · sech2ðαxÞ: ðA11Þ
The Pöschl-Teller potential UPTðxÞ provides a more
sophisticated approximation to black hole potentials
than the previous two, while still allowing for analytic
calculations—it is commonly used to calculate approximate
QNFs of black hole spacetimes. If we wanted to use the
resulting double-bump potential VPT to mimic a given
potential V1ðxÞ, we could do that by relating V0 to the
height ofV1 at its maximum, and α to its second derivative as

V0 ¼ V1ðxmaxÞ; α2 ¼ −
1

2V1ðxmaxÞ
d2V1

dx2

����
xmax

: ðA12Þ

The QNMs solving (1) for the Pöschl-Teller potential
UPTðxÞ are

Ψ̂UðxÞ¼AðtanhðαxÞþ1Þiωn2α ð1− tanhðαxÞÞ−iωn
2α

·2F1

�
ξ;1−ξ;

iωn

α
þ1;

1

2
ðtanhðαxÞþ1Þ

�

þB2
iωn
α ðtanhðαxÞþ1Þ−iωn

2α ð1− tanhðαxÞÞ−iωn
2α ·2F1

×

�
ξ−

iωn

α
;−

iωn

α
−ξþ1;1−

iωn

α
;
1

2
ðtanhðαxÞþ1Þ

�
;

ðA13Þ

where we defined ξ≡ ð1� i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4V0=α2 − 1

p
Þ=2. We use

this result to approximate the QNMs of the Damour-
Solodukhin wormhole using Eq. (8)—see Fig. 3.
For a wave incoming from −∞, A and B must be related

by B ¼ RPTðωÞA. The expression for the QNFs of a double
Pöschl-Teller can be shown to be given by

e−iωnL ¼ e−iπn
Γð1þ iωn=αÞΓðξ− iωn=αÞΓð1− ξ− iωn=αÞ

Γð1− iωn=αÞΓðξÞΓð1− ξÞ :

ðA14Þ

Now, using the following property of the digamma
function,

Im½ψ0ðzÞ þ ψ0ðz̄Þ� ¼ 0 ∀ z ∈ C; ðA15Þ

it is possible to obtain the following approximations for the
real and imaginary parts of the QNFs:

ωn ¼
πn
L

��
1þ 2γEþψ0ð1− ξÞþψ0ðξÞ

αL
þ� � �

�
− i

�
nπðψ0ð1− ξÞþψ0ðξÞÞððψ0ð1− ξÞþψ0ðξÞÞ− 1Þ

2α2L2
þ� � �

��
; ðA16Þ
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where γE is the Euler-Mascheroni constant, and note that, as
a consequence of Eq. (A15),

ψ0ð1 − ξÞ þ ψ0ðξÞ ∈ R ∀ V0; α: ðA17Þ

Once again, we observe that the imaginary part is
OðL−3Þ. The above formula reduces to the double Dirac-
delta result (A5) in the limit V0=α2 → 0 if we identify
V0=α≡ ν=2.
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