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In this paper we consider spin-3/2 fields in a D-dimensional Reissner-Nordstrom black hole spacetime.
As these spacetimes are not Ricci flat, it is necessary to modify the covariant derivative to the
supercovariant derivative, by including terms related to the background electromagnetic fields, so as to
maintain the gauge symmetry. Using this supercovariant derivative we arrive at the corresponding Rarita-
Schwinger equation in a charged black hole background. As in our previous works, we exploit the spherical
symmetry of the spacetime and use the eigenspinor vectors on an N sphere to derive the radial equations for
both nontransverse-traceless (non-TT) modes and TT modes. We then determine the quasinormal mode and
absorption probabilities of the associated gauge-invariant variables using the WKB approximation and the
asymptotic iteration method. We then concentrate on how these quantities change with the charge of the
black hole, especially when they reach the extremal limits.

DOI: 10.1103/PhysRevD.97.024038

I. INTRODUCTION

In supergravity theories [1,2] the gravitino is described
by a spin-3/2 field. The equations of motion of these spin-
3/2 fields are given by the Rarita-Schwinger equation,

y’wavul//a = O’ (11)

where

ypwa — y[/t},yya] — }’”J/Dj/a _ yﬂgl/(l + },yg/,m _ yag;u/ (1 2)
is the antisymmetric product of Dirac gamma matrices,
V, is the covariant derivative, and y, is the spin-3/2
field. In four-dimensional black hole spacetimes the Rarita-
Schwinger equations are usually analyzed in the Newman-
Penrose formalism. However, this formalism cannot be
extended to higher dimensions in a straightforward way.
In our previous works [3,4] we have tried an alternative
approach to deal with spherically symmetric black hole
cases. Using a complete set of eigenspinor vectors on N
spheres, we were able to separate the radial and angular
parts of the Rarita-Schwinger equation. In this paper
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we extend our considerations to charged black hole
spacetimes.

The Rarita-Schwinger equation is invariant under the
gauge transformation

(1.3)

where ¢ is a gauge spinor, provided that the background
spacetime is Ricci flat [3,4]. This is not the case for charged
black holes, nor for black holes in de Sitter or anti—de Sitter
spaces. To maintain the gauge symmetry in those cases it is
necessary to modify the covariant derivative into the so-
called “supercovariant derivative.” This is done by adding
terms related to the cosmological constant and the electro-
magnetic field of the black hole. Here we concentrate on
charged Reissner-Nordstrom black holes in asymptotically
flat spacetimes, where in the following section we show in
detail how the supercovariant derivative is constructed in
this case.

Using the supercovariant derivative we are able to
obtain the Rarita-Schwinger equation for spin-3/2 fields
in Reissner-Nordstrom black hole spacetimes. Since the
spacetime is still spherically symmetric, it is possible, as in
our previous works, to derive the radial equations for each
component of the spin-3/2 field using eigenspinor vectors
on the N sphere. However, the component fields are not
gauge invariant, while the physical fields should be. Hence
we, as in Ref. [4], construct a combination of the compo-
nent fields, which is gauge invariant. That is, we use the

Vo =Wo+ Voo,
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same gauge-invariant variables and work out the corre-
sponding radial equations.

As the aim in this paper is to study spin-3/2 fields near
a Reissner-Nordstrom black hole, we focus on how the
charge Q of the black hole affects the behavior of the fields.
This is done by studying the quasinormal models (QNMs)
associated to our fields, where QNMs are characterized by
their complex frequencies. The real parts of the frequencies
represent the frequencies of oscillations, while the imagi-
nary parts represent the decay constants of damping. These
QNMs are uniquely determined by the parameters of the
black hole [5], where in order to determine these QNMs we
use the WKB and improved asymptotic iterative method
(AIM), where these methods and how to implement them
are given in Refs. [4,6,7]. Finally, using the WKB method
we are able to obtain the absorption probabilities associated
to our spin-3/2 fields, which can give us an insight into the
grey-body factors and cross sections of the black hole.

As such, this paper is set out as follows: In the next
section we give a brief motivation for the form of our
supercovariant derivative, and in Sec. III we use this
supercovariant derivative to determine our equations of
motion, and the potential functions for both the non-TT and
the TT eigenmodes of our fields. In Sec. IV, we present the
QNMs for our spin-3/2 fields near the Reissner-Nordstrom
black hole. The corresponding absorption probabilities are
laid out in Sec. V. Finally, in Sec. VI, we give concluding
remarks on our results.

II. SUPERCOVARIANT DERIVATIVE

In order to ensure that our Rarita-Schwinger equation,
7"V, y, = 0, remains true, we must require that our
spinor vectors, y,, are invariant under the transformation
in Eq. (1.3). This is guaranteed if

1
E yﬂba [VIJ’ v(l]¢ = 0’

(2.1)
which is satisfied when the metric is a Ricci flat spacetime
[4]. However, in the case of the Reissner-Nordstrom metric
this is not necessarily true, and so we must first determine
the supercovariant derivative, @”. We make the assumption
that the derivative has the form

D, =D, +by’F,, + c1,sF", (2.2)
which needs to satisfy
1 -~
_YA”D[IDM’ Duk” = 07 (23)

2

where D, =V, —ieA,, F,, is the electromagnetic field,
and b, ¢ are unknown constants. Plugging Eq. (2.2) into
Eq. (2.3) we have

0 =4c(D-2)(V,F*)p +1*[G,* —4(b* 4 2¢(D = 3))F,, F** = 2(b* — 2¢*(D = 3)(D — 4)) 9, F o F"" @0
+7*[(b + 2¢(D = 3))(29,'VoF*, = VF )@ + 7" [=ieg,"F s + 4(b + 2¢(D = 3))(b + ¢(D = 6))F,, F, '

+ y#07[=2(b* 4 2bc(D — 5) + ¢*(D* = 11D + 26))]F, F 5.

(2.4)

Setting y** equal to 0 we have b = —2(D — 3)c, and together with Eq. (2.4) we have

1
0 =4c(D-2)(V,F*)p + y* [G/ +16(D - 2)(D - 3)c? <FWF/““ o gﬂﬂF,,(,Fﬂ’f)] 7

+ }/ﬂpd[_iegﬂlea] + },A;wpo‘(_ZCZ)(D - 1)<D - 2)F;wFp5¢'

In order to remove the y* terms we require that

1
G,* +16(D —2)(D - 3)c? (FWFM - Zg/F/mF/”’> =0,

(2.6)
where

1 i
16(D—2)(D—3)c2:—§=>c:4 DD

(2.7)

(2.5)

I
and with the y#7° term equal to 0 only when e = 0. Next we
consider the y# and y*#*° terms. In the four-dimensional
case, y#° =0 and V,F* =0, which is the Maxwell
equation, and Eq. (2.5) is automatically satisfied. In the
five-dimensional case, y#**° is proportional to the identity
matrix, such that we have to set the equations of motion for
the electromagnetic field (where D = 5) as

1
VMF/M — _4\/§ei;wpﬂF,wF €tr019293 - (28)

pos \/__g’

where e#7? is the Levi-Civita tensor. In higher dimen-
sional cases we can take the equations of motion for
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electromagnetic field to be V,F#** = 0, and the y#**° term
vanishes if the condition F,,F,; = 0 is fulfilled. Finally
the supercovariant derivative for the spin-3/2 field in a
general dimensional Reissner-Nordstrom black hole space-
time can be written as

1
Y B
#= YT\ 2(p =2y

Fre. (2.9)

* 4,/2(D -2)(D -3) Yupo

Note that this is consistent with the results of Ref. [8],
though we must emphasize that in our construction one
cannot find an appropriate supercovariant derivative for a
“charged” spin-3/2 field in the Reissner-Nordstrom black
hole spacetime.

III. POTENTIAL FUNCTION

In this section we determine both the radial equations
and the potential functions for our spin-3/2 fields near the
Reissner-Nordstrom black hole, using the same approach as
we have done for the N-dimensional Schwarzschild black
hole. For completeness we reproduce some of the results
from the Schwarzschild case in this paper, where a full
explanation of this method can be found in Ref. [4].

A. Rarita-Schwinger field near D-dimensional
Reissner-Nordstrom black holes

Our line element is given as [§8]
1 _
ds* = —fdtz—i—?drz—l—rzdﬂ%v, (3.1)
_ 2M (% _ A
where f =1 —r,)—_3+mandD = N + 2. The term dQy
denotes the metric of the N sphere SV, where we use
over bars to represent terms from this metric. Next, the

electromagnetic field takes the Coulomb form which is
given as [9]

q q
F, = , A = 3.2
T (D-2) t (D —3)(>-3) (32)
The relation of Q and ¢ is
2.2
2 K"q
= 33
Q (D-2)(D-3) (33)
where x*> is a constant defined by the Einstein field
equation,

1
G,ul/ = K2 <F/MFZ/2 - Zg”yF/){;F[J”) . (34)

In order to be consistent with the supercovariant derivative
above, one should take k> = 1/2 as in Eq. (2.7). Since we
represent the wave functions of our fields as spinor vectors,
which can be constructed from the non-TT eigemodes and
the TT eigenmodes on SN we use the massless form of the
Rarita-Schwinger equation [4],

yﬂvabUWa =0, (3 5)

where f)y is the supercovariant derivative in Eq. (2.9).

B. Non-TT eigenfunctions

The radial and temporal wave functions can be written as

Yy = ¢r ® l/_/(l) and V= ¢t ® l/_/(ﬂ)’ (36)
where ;) is an eigenspinor on SN, with eigenvalue il.
The eigenvalues A are given by 1 = (j + (D — 3)/2), where
j=3/2,5/2,7/2,... [4]. Our angular wave function is
written as

Wo, = ¢(91) ® Vo, + ¢((;2) ® 7o,  (3.7)

where qb(gl), ¢(92) are functions of r and ¢ which behave like
2-spinors. We begin by using the Weyl gauge, ¢, = 0, and
then introduce a gauge-invariant variable, which we also
use to determine the equations of motion. Looking at 4 = r,
u=1 and u =6 equations in Eq. (3.5) separately, we
determine the four appropriate equations of motion. Note
that our choice of the gamma tensors and the spin
connections can be found in Ref. [4].

1. Equations of motion

First consider the case of u = ¢ in Eq. (3.5),

}/wabul//a =0. (38)

Using the definitions of our wave functions we determine
our first equation of motion to be

0——<i1+(D—2)gia3+(D—2)

iQ)@

ZrD—S

. 1(D=2)(D-3). A
+ <l/18r —ZT103 +(D —3);) ¢91
+(0-29,4(0-3) it L=y

(3.9)

Next we consider y = r, and get the second equation of
motion as

024038-3



CHEN, CHO, CORNELL, HARMSEN, and NGCOBO PHYS. REV. D 97, 024038 (2018)

0:[ iTa f\ff o! (D_34)1£D_ 2 2 4 (p -3y ﬁ }qﬁg
_D-2, (D-2)f oY e
+{ 0+ e+ (D= 3) +(D-2)(D-3)% l}qsg. (3.10)

Finally for the case of y = 6, we obtain two more equations,

0:<8z_f/ 1+llf - (D- 3)f )¢r <;1033 f/ G—M\/? 620, —(D_3)(D_4)al

VT ar\/f r 42
—iA(D - 4);/_ 2 —A(D - 2)2 0'1)4)(91)+<—Dr\;j_?m8 (D - 3)4rf\/_ — (D - 3)£0'
+(D - 4)—0 —(D-3)(D - 4)‘/—; +(D-3)(D - 2)2 =0 )¢9 (3.11)
0=- \/7 o*p, + (\lr 630, +4J:/f ﬁ 6’0, + (D - 4)\52[ - (D - 2)21)1 >¢,, 1¢9 . (3.12)

It can be shown that these four equations of motion are not independent. One of them can be obtained from the other three.
Hence we work with only Egs. (3.9), (3.10) and (3.12) in the following.

2. Effective potential

The functions ¢,, qbél) and ¢(92) are not gauge invariant, and as such we apply a gauge-invariant variable to our equations
of motion. Using the same arguments as we have used in Ref. [4] we obtain the following gauge-invariant variable:

®=— (%f icd + _2;3_3) 0y + o). (3.13)

Plugging this into Egs. (3.9), (3.10) and (3.12) we obtain the equation of motion for the gauge-invariant variable @,

<(D—2)\/f+<;1+(D—2) Q >a3)[—D_2 19, + (D - 2)f/ (D_3>’_Ia3+(D_2)(D_3)]q>

2 2rP-3 f 4f f 2r
- 0 A 2D-7)(D-2
:<(D—2)g—<l+(D—2)2rD_3>a3) [(D—Z)@,—r\/fa3+( 2)r( )+(D—2)(D—4)ﬁa3]d)
(3.14)
|
Componentwise, @ can be written as where
—iot D-2 D-2 -
cp:(z'e_m), B15) A=V +(+0.  B=——=\[-(+C)
he
and C=(D-2)-2 . (3.17)

where ¢, and ¢, are purely radially dependent terms. 2r

Furthermore we set .
Applying Eqs. (3.15) and (3.16) to Eq. (3.14) we get the
_ following set of coupled equations:
(B f - (A+0) -

¢, = Ty ¢, and
Br= f1/4 ~ L~ ~ Lo~
(fO,—W)p, =iwg,, (fO,+W)p,=iwg,, (3.18)
5 (D2_2)2f (ﬂ' C)Z ? (3 16)
: Ars f1/4 > ' where
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W:w;:;\/f[(/l+C)D2 S5 AB

D -2 -
+T(C+/1(1—f))]

D-4

—mﬁ(Z+C). (3.19)

Decoupling these two equations we obtain the following
radial equations,

2

d* - ~ - & - . .
_Wéﬁl + Vig) = &’y —W(ﬁz—i—vzqﬁz = w’¢p,,

(3.20)
where r, is the tortoise coordinate with the definition
dr, = ﬁdr, and

aw
Vi,==£f(r )7+W2

Setting Q = 0 in Eq. (3.20) we recover the Schwarzschild
potential as given in Ref. [4].

C. TT eigenfunctions

1. Equations of motion

Setting the v, and y, to be the same as in the non-TT
eigenfunctions case given in Eq. (3.6), the angular part is
now given as

Vo, = ¢o ® Wo,, (3.21)
where , is the TT mode eigenspinor vector which
includes the “TT mode I” and “TT mode II,” as described
in Ref. [4], and ¢, behaves like a 2-spinor. We again
initially use the Weyl gauge, and in this case apply the TT
conditions on a sphere, giving us ¢, = ¢, = 0 [4]. Our only
nonzero equation of motion is then determined to be

<71 30, +‘/f 26’+4rf\/F + (D - 4);/‘ 2
lCl _ (- 2)2’31 )4,9_0 (3.22)

where in this case ¢y is already gauge invariant. We can
therefore use this equation to determine our radial equation.

2. Effective potential

We can rewrite ¢, as

b = #(Te' e« > (3.23)
lpaze—l(ﬂt

and substituting Eq. (3.23) into Eq. (3.22) we get the
following set of coupled equations:

(fa Lo 4)i_<57f

(D-2) Qf))‘l’el

4 2r 2rP
= iw‘sz,
(fa . (gf (D-2) Qf))\pez
= io¥y,. (3.24)
Setting
P, = rTfW, and W, =r7Tfi%,,  (3.25)

we can simplify the equations in Eq. (3.24), and get the
following,

(O, —W)¥y, = i0Py,. (fO, + W)Wy, = in'¥,,,
(3.26)
where
VT oVf
w=Y (-2 2L (3.27)

We now decouple the equations in Eq. (3.26) and obtain the
radial equations

d -~
_7\P91 + \/1 = a)Z‘I’gl and

2 ~ ~ ~
- W ‘{‘92 + \/2\1192 = a)z‘l—’gz s (328)
where

dW
Vip= if(r)WJFWZ

and our eigenvalue ¢ is given as { = j+ (D -3)/2
with j =3/2,5/2,7/2, ....

As noted in Ref. [4], the Schwarzschild case of this
potential is the same as for Dirac particles in a general
dimensional Schwarzschild black hole [10]. This, however,
is not true for the Reissner-Nordstrom case. For the spin-
3/2 field one needs to use the supercovariant derivative in
the charged black hole spacetime, whereas for the Dirac
field one would still use the ordinary covariant derivative.
The extra terms in the supercovariant derivative would
render the effective potential of the spin-3/2 field in the TT
mode to be different from that of the Dirac field in the same
spacetime.

024038-5
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IV. QNMS

In order to obtain the QNMs we have chosen to use the
WKB method, to third and sixth order, and the AIM. We
investigate how the quasinormal frequencies change with
the charge Q of the black hole, where a particularly
interesting case of the Reissner-Nordstrom black hole
would be the extremal case Q = M. In this section we
present the QNMs in the cases Q = 0.1M, Q = 0.5M, and
Q = M for both “non-TT eigenfunction related” and “TT
eigenfunction related” potentials from D =4 to D =17.

A. Non-TT eigenfunctions related

In this subsection we consider the QNMs of the radial
equations in Eq. (3.20). Since V; and V, are isospectral, we
can choose either one to work with. Here we concentrate on
the first equation, that is, the potential V. In the case of the
WKB methods for the QNMs associated to the non-TT
eigenfunctions, for the full explanation of how to determine
the QNMs see Refs. [6,11]. For the AIM, a detailed
discussion can be found in Refs. [3,4,7].

For the case of the Reissner-Nordstrém background, we
start with the definition of the tortoise coordinate

1
dr, = ——dr,
f(r)
2M 0?
f(r)=1- D-3) + L2(D-3)
(r(D—3) _ rSrD—3))(r(D—3) _ r(_D—3))

where riD_*%) =M + \/M? — Q*. Taking M = 1, the rela-
tion between r and r, is given by

(D-3)
/dr+/ (r+r) D . dr
=) (rP )
+ (ryor_)®P-
T dr, for
/(FT 3 {D=3))(p(D=3) _ 4(D-3)
<L (4.2)
2(D-3)

In the AIM we first single out the asymptotic behavior of
¢, which is due to the QNM boundary conditions,
b, — e ~a, r — +oo.

(4.4)
Note that we use “~” to signify that for convenience we
choose the asymptotic function a to include the leading
term and some of the subleading terms of e®™’-, but

not necessarily the whole exponential. Next, a necessary
coordinate transformation in the AIM is

T+
.

&(r) = (4.5)

The coefficients for the lowest order can be obtained as

B f/ 5// /
Y= <f+5+ >

B wZ_V / 5// o
w= T+ (5 )5 e

We next find the higher order 4 and s by the relation

j’n = /lln_l + Sn—1 + ﬂoln—l; Sy = sln_l + SO/{n—l’ (47)
and the corresponding @ by the equation
snin+l - Sn+l/1n =0. (48)
Note that
F=re. E=2an
f dr r=rt ’
1-&2
g=te d=2a) (4.9)
d¢ d¢

Iterating this method for a sufficiently large number of
iteration, @ becomes stable, indicating that this is the QNM
we are looking for. For example, for the first mode of the
extremal case in six dimensions, the relation between
iteration number and the QNM frequency is plotted in
Fig. 1 (with M = 1). This mode is one of the modes that the
third and the sixth order WKB methods do not give a
reasonable result for, but the AIM does.

o )

0.8

—o— Real
S o6t
g —e— Imaginary
04F
i N Y * N
02F
00F
0 50 100 150 200
Iteration number
FIG. 1. The relation between iteration number and the value of

the real part and the imaginary part of the QNM frequency for
j=3/2,0=1,and D =6.
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In Tables I-VI we present the QNMs for the Reissner-
Nordstrom black hole for dimensions D = 4 to D = 7. The
results are given in units of M, that is, we have set M = 1.
‘We note that as the value of » increases, for fixed values of [
(= j—3/2) and D, the real part of the QNM decreases and
the magnitude of the imaginary part increases, this being
the same behavior as we have seen for the Schwarzschild
black hole. This result suggests that the lower modes are
easier to detect compared to the higher less energetic
modes. Furthermore, they also decay the slowest. We also
note that an increase in the number of dimensions results in
the QNM being emitted more energetically. This can be
understood by considering the change in the potentials as
the dimension is increased as shown in Fig. 2. From D = 4
to D = 7 the maximum value of the potential increases as
D is increased. Hence, the real part of the QNM frequency
would also increase. Lastly, when the charge Q is
increased, the real part of the frequency for the same mode
increases, while the magnitude of the imaginary part also
increases. This is consistent with the change of the effective
potentials as Q is increased, as shown in Fig. 3. As Q is
increased from O to 1 (in units of M), the maximum value of
the potential increases; hence the real part of the QNM
frequency increases. On the other hand, the potential tends
to sharpen as Q is increased; this implies that the field can
decay more easily, giving a large decay constant, or a large
absolute value of the imaginary part of the frequency.

TABLEL
Q=0.1M.

Note that in the tables there are several blank entries. The
reason for leaving these entries out is that we think the
numbers we have obtained are not reliable. For the WKB
approximation we found that higher order terms dominate
over the lower order terms. This is unreasonable as the
WKB method is generated from a series expansion. As for
the AIM, the results do not converge when the number of
iterations is increased. As such, in these cases we have left
these entries as blank.

We also find that there is a strong disagreement for
the WKB methods in the cases of Q = M, for dimensions
higher than 7. The reason for this disagreement is twofold.
The first is again the problem with the WKB series
expansion, as mentioned above. The second one is due
to the peculiar behavior of the effective potential. As shown
in Fig. 2, it is clear that for the j = 3/2 potentials in the
cases D > 7, a second local maximum will develop.
This happens not just for the j = 3/2 cases but also for
potentials with other j values. For larger values of j, the
dimension at which the potential will have this behavior
is higher. The presence of a second maximum renders the
WKB approximation and the AIM unreliable, so we have
only listed the results up to D = 7 in these instances.

B. TT eigenfunctions related

For the TT eigenfunction related cases, both the WKB
and AIM present reasonable results. We have to note that

Low-lying (n < [, with [ = j — 3/2) spin-3/2 field quasinormal frequencies using the WKB and the AIM with D = 4, 5 and

Four dimensions

Five dimensions

=

WKB third order

WKB sixth order

AIM

—

=

WKB third order

WKB sixth order

AIM

Lnmhnhhnhunnunn A B BAE WWWLWW NDDODD ——= O|—

N PHELWNDFR,O AW, O WNN—R,O ND—O — O O

0.3161-0.09091

0.5370-0.0942i
0.5180-0.2871i

0.7423-0.0952i
0.7285-0.2880i
0.7041-0.48601

0.9423-0.09571
0.9315-0.2884i
0.9114-0.4848i
0.8845-0.68531

1.1398-0.09591
1.1309-0.28861
1.1139-0.4840i
1.0905-0.68271
1.0620-0.8848i

1.3360-0.0960i
1.3283-0.28871
1.3136-0.4834i
1.2929-0.68091
1.2674-0.8812i
1.2378-1.0842i

0.3185-0.0910i

0.5375-0.0942i
0.5191-0.2867i

0.7425-0.09521
0.7289-0.2879i
0.7035-0.4871i

0.9424-0.09571
0.9316-0.2884i
0.9109-0.4853i
0.8819-0.68871

1.1399-0.09591
1.1310-0.2886i
1.1136-0.4842i1
1.0886-0.68451
1.0575-0.89101

1.3360-0.09601
1.3284-0.28871
1.3134-0.48361
1.2916-0.6819i
1.2640-0.8849i
1.2315-1.09351

0.3185-0.0909i

0.5374-0.0942i1
0.5191-0.28671

0.7424-0.09521
0.7289-0.2878i
0.7034-0.48701

0.9424-0.09561
0.9316-0.2883i
0.9109-0.4852i1
0.8819-0.68871

1.1398-0.0958i
1.1309-0.28861
1.1135-0.4842i
1.0886-0.68451
1.0575-0.8909i1

1.3360-0.09601
1.3283-0.28871
1.3133-0.48351
1.2916-0.6819i
1.2640-0.8849i
1.2315-1.09351

LU A BB BRABA WWWLW NDDND ——= O

N HEWNDNFR,O AW, O W~ O ND—O — O O

0.6360-0.21471

1.0773-0.23431
0.9917-0.7241i

1.4730-0.24111
1.4100-0.73471
1.2998-1.2522i

1.8520-0.24431
1.8018-0.74011
1.7104-1.2530i
1.5882-1.78381

2.2228-0.24611
2.1809-0.7432i
2.1027-1.25301
1.9958-1.77781
1.8659-2.3161i

2.5889-0.2471i1
2.5529-0.7451i
2.4846-1.25281
2.3895-1.7731i
2.2727-2.3056i
2.1371-2.84851

0.6484-0.2191i

1.0808-0.2343i
1.0008-0.72091

1.4742-0.2411i
1.4126-0.7342i
1.2922-1.2636i

1.8527-0.2443i1
1.8040-0.73951
1.7101-1.2546i
1.5787-1.8012i

2.2232-0.2461i
2.1824-0.74291
2.1031-1.2534i
1.9911-1.7852i
1.8545-2.34151

2.5891-0.2471i
2.5536-0.74501
2.4838-1.25361
2.3822-1.7802i
2.2533-2.3315i
2.1024-2.91291

0.6484-0.2191i

1.0807-0.2343i
1.0008-0.72091

1.4742-0.2411i1
1.4126-0.7342i
1.2922-1.2636i

1.8527-0.24431
1.8040-0.73951
1.7101-1.2546i
1.5787-1.80121

2.2232-0.2461i
2.1824-0.7429i
2.1031-1.2534i
1.9911-1.78521
1.8545-2.34151

2.5891-0.2471i
2.5536-0.74501
2.4838-1.25361
2.3822-1.7802i
2.2533-2.3315i
2.1024-2.9129i
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TABLE II.

and Q =0.1 M

Low-lying (n < [, with [ = j — 3/2) spin-3/2 field quasinormal frequencies using the WKB and the AIM with D = 6, 7

Six dimensions

Seven dimensions

Ju—

=

WKB third order

WKB sixth order

AIM

—_—

WKB third order

WKB sixth order

AIM

Lmhahhnhununn AP BABE WWWLWW NDDODND ——= O

NP LOUNDNFR,O AW, O WNNR,O ND—,O — O O

0.9364-0.3422i

1.5164-0.3578i
1.3214-1.11651

2.0379-0.37051
1.8967-1.1346i
1.6451-1.9511i

2.5341-0.3774i
2.4214-1.1470i
2.2133-1.9532i
1.9314-2.80041

3.0173-0.3816i
2.9227-1.15501
2.7444-1.95551
2.4979-2.78961
2.1951-3.6553i

3.4926-0.3842i
3.4109-1.1603i
3.2547-1.9572i
3.0353-2.7818i
2.7630-3.6346i
2.4444-4.51271

0.9408-0.30271

1.5292-0.3540i
1.3680-1.0786i

2.0418-0.3699i1
1.9117-1.12791
1.6488-1.95021

2.5360-0.3772i
2.4285-1.14441
2.2124-1.95471
1.8910-2.84871

3.0183-0.38141
2.9267-1.15371
2.7428-1.95671
2.4678-2.81761
2.1087-3.7702i

3.4932-0.3841i
3.4133-1.15961
3.2531-1.9581i
3.0130-2.7991i
2.6964-3.70651
2.3116-4.70731

0.9408-0.30271

1.5292-0.3540i
1.3680-1.0786i

2.0418-0.36991
1.9117-1.1279i
1.6488-1.95021

2.5360-0.3772i
2.4285-1.14441
2.2124-1.95471
1.8910-2.84871

3.0183-0.38141
2.9267-1.15371
2.7428-1.95671
2.4678-2.81761
2.1087-3.77021

3.4932-0.38411
3.4133-1.15961
3.2531-1.9581i
3.0130-2.7991i
2.6964-3.70651
2.3116-4.70731

LU ununn A BRABR WWWLW NDDODND ——= O

NPHhNOFLO RPWLWNN—R,O WO NM—=O —O OB

1.2845-0.48571

1.9288-0.4776i
1.5920-1.49701

2.5348-0.48801
2.2870-1.4974i
1.8288-2.5991i

3.1136-0.4968i
2.9167-1.51151
2.5422-2.58691
2.0267-3.74341

3.6764-0.50281
3.5114-1.52331
3.1931-2.5872i
2.7445-3.71361
2.1908-4.90641

4.2293-0.50701
4.0865-1.5321i
3.8085-2.5899i1
3.4108-3.69711
2.9125-4.86081
2.3296-6.07941

1.2111-0.5136i

1.9388-0.4621i
1.6160-1.39611

2.5430-0.4836i
2.3243-1.4620i
1.8401-2.5026i

3.1174-0.4954i
2.9352-1.50031
2.5506-2.56001
1.9395-3.7554i

3.6784-0.5022i
3.5215-1.5186i
3.1959-2.5773i
2.6843-3.7312i
1.9854-5.0614i

4.2305-0.50671
4.0927-1.5296i1
3.8092-2.58511
3.3672-3.7097i
2.7597-4.95951
1.9987-6.4037i

1.2110-0.51361

1.9388-0.4621i
1.6160-1.39611

2.5430-0.4836i1
2.3243-1.4620i
1.8401-2.5026i

3.1174-0.4954i
2.9352-1.5003i
2.5506-2.5600i
1.9395-3.75541

3.6784-0.5022i
3.5215-1.5186i
3.1959-2.57731
2.6843-3.73121
1.9854-5.06141

4.2305-0.50671
4.0927-1.5296i1
3.8092-2.5851i
3.3672-3.7097i
2.7597-4.9595i
1.9987-6.4037i

TABLE IIL.

and Q =0.5 M.

Low-lying (n < [, with [ = j — 3/2) spin-3/2 field quasinormal frequencies using the WKB and the AIM with D =4, 5

Four dimensions

Five dimensions

—_—

=

WKB third order

WKB sixth order

AIM

—_—

WKB third order

WKB sixth order

AIM

Lnmhhhnunnunn A B BAE WWWLWW NDDODND ——= O

NP LWNDFRFO AW, O WN—,O ND—O — O O

0.3616-0.0953i

0.5905-0.0971i
0.5736-0.2950i

0.8044-0.09761
0.7920-0.2948i
0.7698-0.4967i

1.0131-0.09771
1.0032-0.29451
0.9849-0.4946i
0.9602-0.6986i

1.2193-0.0978i
1.2110-0.29431
1.1954-0.4932i
1.1738-0.6952i
1.1476-0.90041

1.4240-0.09781
1.4170-0.29411
1.4034-0.4922i
1.3843-0.6928i
1.3606-0.89621
1.3333-1.1022i

0.3634-0.0952i

0.5908-0.0971i
0.5744-0.2948i

0.8046-0.0976i
0.7923-0.2947i
0.7692-0.4977i

1.0132-0.0977i
1.0033-0.29451
0.9844-0.49501
0.9579-0.7015i

1.2193-0.09781
1.2111-0.29431
1.1951-0.4934i
1.1722-0.69681
1.1437-0.90571

1.4241-0.09781
1.4170-0.2941i1
1.4032-0.49231
1.3831-0.69371
1.3576-0.89941
1.3277-1.11011

0.3621-0.08811i

0.4050-0.1854i1
0.3674-0.3656i

0.8045-0.0975i
0.7922-0.29471
0.7691-0.49761

1.0131-0.0977i
1.0033-0.29441
0.9844-0.49501
0.9579-0.7015i

1.2193-0.09781
1.2111-0.2942i
1.1951-0.4934i
1.1722-0.69671
1.1437-0.90571

1.4241-0.09781
1.4170-0.29411
1.4032-0.49231
1.3831-0.69371
1.3576-0.8994i
1.3277-1.11011

LML unn A BB BRABA WWWLWW NDDODND ——= O

N PhWNONFRFO AW, O WO N0 —O O3

0.7048-0.22131

1.1471-0.2356i
1.0756-0.72531

1.5506-0.2420i
1.4946-0.73641
1.3974-1.25271

1.9368-0.2448i
1.8913-0.74111
1.8088-1.2532i
1.6992-1.78201

2.3142-0.2462i
2.2759-0.74331
2.2047-1.25231
2.1077-1.77531
1.9902-2.31081

2.6865-0.24701
2.6535-0.74451
2.5910-1.25101
2.5041-1.7694i
2.3977-2.2993i
2.2747-2.83891

0.8005-0.1499i

1.1504-0.23471
1.0842-0.7160i

1.5519-0.24201
1.4995-0.73451
1.4031-1.25051

1.9374-0.2448i
1.8931-0.7408i
1.8074-1.25591
1.6869-1.80271

2.3145-0.2462i
2.2770-0.7432i
2.2036-1.2538i
2.0983-1.7871i
1.9669-2.3518i

2.6868-0.24701
2.6542-0.74441
2.5901-1.2519i
2.4970-1.77661
2.3787-2.32501
2.2403-2.9032i

0.7065-0.2259i

1.1504-0.2346i
1.0842-0.71591

1.5519-0.2420i
1.4995-0.73451
1.4031-1.25051

1.9374-0.2448i
1.8931-0.7408i
1.8074-1.2559i
1.6869-1.80271

2.3145-0.2462i
2.2770-0.7432i
2.2036-1.2538i
2.0983-1.7871i
1.9669-2.3518i

2.6868-0.24701
2.6542-0.74441
2.5901-1.2519i
2.4970-1.77661
2.3787-2.3250i
2.2403-2.9032i
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TABLE IV. Low-lying (n < [, with [ = j — 3/2) spin-3/2 field quasinormal frequencies using the WKB and the AIM with D = 6, 7
and Q =0.5 M.

Six dimensions

Seven dimensions

Ju—

=

WKB third order

WKB sixth order

AIM

—_—

WKB third order

WKB sixth order

AIM

Lmhahhnhununn AP BABE WWWLWW NDDODND ——= O

NP LOUNDNFR,O AW, O WNNR,O ND—,O — O O

0.9546-0.16671

1.5887-0.3502i
1.4709-1.09351

2.1178-0.36671
2.0024-1.1232i
1.8050-1.92771

2.6220-0.37501
2.5225-1.13951
2.3417-1.9388i
2.1010-2.77481

3.1119-0.37951
3.0261-1.1488i
2.8655-1.94401
2.6457-2.77041
2.3779-3.62501

3.5931-0.38231
3.5180-1.1543i
3.3751-1.9464i
3.1756-2.76461
2.9296-3.6087i
2.6429-4.47521

1.5411-0.37431
1.2200-1.38001

2.1190-0.3673i1
2.0024-1.12241
1.7720-1.9392i

2.6235-0.3751i
2.5271-1.1384i
2.3351-1.94361
2.0523-2.82521

3.1129-0.3796i
3.0295-1.1482i1
2.8632-1.94681
2.6165-2.80041
2.2969-3.7378i

3.5937-0.38231
3.5204-1.15401
3.3738-1.9481i
3.1555-2.7829i
2.8698-3.6796i
2.5247-4.66161

0.9545-0.16661

1.5411-0.37431
1.2200-1.38001

2.1190-0.3673i
2.0024-1.12241
1.7720-1.9392i

2.6235-0.37511
2.5271-1.13841
2.3351-1.94361
2.0523-2.8252i1

3.1129-0.3796i
3.0295-1.1482i1
2.8632-1.94681
2.6165-2.80041
2.2969-3.7378i

3.5937-0.38231
3.5204-1.15401
3.3738-1.9481i
3.1555-2.78291
2.8698-3.6796i
2.5247-4.66161

LU unn AR BRABR WWWLWW NDDODND ——= O

NPHhRXVNOFLO RPWLWNN—R,O WO NM—=O —O OB

1.1968-0.39781

1.9675-0.4197i
1.6232-1.29371

2.6056-0.47031
2.4023-1.44431
2.0392-2.49771

3.1972-0.48771
3.0274-1.4858i
2.7137-2.54141
2.2912-3.66381

3.7688-0.4968i
3.6211-1.50621
3.3407-2.5582i
2.9521-3.6661i
2.4763-4.82841

4.3286-0.50231
4.1979-1.51861
3.9462-2.56731
3.5902-3.66201
3.1475-4.8060i
2.6308-5.99571

2.5998-0.4897i
2.3449-1.6313i
1.9354-3.37911i

3.1984-0.49091
3.0248-1.5096i
2.6649-2.66791
2.1445-4.11601

3.7706-0.4975i
3.6269-1.50941
3.3302-2.58041
2.8719-3.7744i
2.2632-5.1748i

4.3299-0.50251
4.2034-1.51871
3.9440-2.57251
3.5428-3.70211
2.9968-4.9618i
2.3192-6.4154i

1.1967-0.39781

2.5998-0.48971
2.3449-1.6313i
1.9354-3.3791i

3.1984-0.4909i
3.0248-1.5096i
2.6649-2.66791
2.1445-4.11601

3.7706-0.4975i
3.6269-1.50941
3.3302-2.58041
2.8719-3.7744i
2.2632-5.1748i1

4.3299-0.50251
4.2034-1.51871
3.9440-2.57251
3.5428-3.7021i
2.9968-4.9618i
2.3192-6.4154i

TABLE V. Low-lying (n < [, with [ = j — 3/2) spin-3/2 field quasinormal frequencies using the WKB and the AIM with D =4, 5
and Q =M.

Four dimensions

Five dimensions

—_

=

WKB third order

WKB sixth order

AIM

—_

=]

WKB third order

WKB sixth order

AIM

LmUunnhnhnnunn A B BAEA WWWLWW DD —— O

N WNN—,O AL, O WO~ O DO —O O

0.5410-0.08671

0.8173-0.0874i
0.8027-0.26381

1.0810-0.08781
1.0701-0.26431
1.0491-0.44351

1.3395-0.0880i
1.3307-0.26461
1.3136-0.4430i
1.2889-0.62391

1.5953-0.08811
1.5879-0.2648i
1.5734-0.44271
1.5523-0.6225i1
1.5252-0.80471

1.8494-0.0882i1
1.8430-0.26491
1.8305-0.44251
1.8121-0.6216i
1.7883-0.80261
1.7596-0.98571

0.5414-0.08651

0.8174-0.08741
0.8032-0.26361

1.0811-0.08781
1.0704-0.26431
1.0491-0.44351

1.3396-0.0880i
1.3309-0.26461
1.3136-0.44301
1.2880-0.62451

1.5953-0.08811
1.5880-0.26481
1.5734-0.44271
1.5517-0.62281
1.5232-0.8060i

1.8494-0.08821
1.8431-0.2649i
1.8305-0.4425i
1.8117-0.6218i
1.7869-0.80341
1.7563-0.98791

0.5414-0.08641

0.8174-0.08731
0.8032-0.26361

1.0811-0.08771
1.0703-0.2642i
1.0490-0.44351

1.3395-0.0879i
1.3308-0.26451
1.3135-0.44301
1.2880-0.62451

1.5953-0.08811
1.5880-0.26481
1.5734-0.44271
1.5517-0.62281
1.5232-0.8060i

1.8494-0.08821
1.8431-0.2649i1
1.8305-0.4425i
1.8117-0.6218i
1.7869-0.80341
1.7563-0.98791

LU unnunn A BB BR WWWLWW NDDD —— O

NHE VUL O AW~ O WN—~,O ND—O — O O

0.8519-0.18751

1.3394-0.20771
1.2704-0.63201

1.7723-0.21441
1.7224-0.64901
1.6288-1.09851

2.1865-0.21741
2.1461-0.65591
2.0689-1.10481
1.9604-1.56751

2.5913-0.21891
2.5572-0.65951
2.4912-1.10761
2.3969-1.5663i1
2.2784-2.03701

2.9905-0.2199i
2.9610-0.66161
2.9034-1.10901
2.8201-1.5649i
2.7143-2.03071
2.5887-2.50661

1.3414-0.20981
1.2809-0.6422i

1.7735-0.21471
1.7266-0.64941
1.6337-1.10144

2.1872-0.21751
2.1486-0.6558i
2.0716-1.10491
1.9574-1.5732i

2.5917-0.21901
2.5587-0.6594i
2.4929-1.10751
2.3948-1.5691i
2.2655-2.05071

2.9908-0.21991
2.9620-0.6616i1
2.9045-1.10901
2.8186-1.56651
2.7049-2.0388i
2.5646-2.5311i

1.3413-0.20971
1.2809-0.6422i1

1.7735-0.21471
1.7266-0.64941
1.6337-1.10141

2.1872-0.2175i1
2.1486-0.65581
2.0716-1.10491
1.9574-1.57321

2.5917-0.21901
2.5587-0.6594i
2.4929-1.10751
2.3948-1.5691i
2.2655-2.05071

2.9908-0.2199i
2.9620-0.66161
2.9045-1.1090i
2.8186-1.56651
2.7049-2.0388i
2.5646-2.5311i
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TABLE VI. Low-lying (n < [, with [ = j — 3/2) spin-3/2 field quasinormal frequencies using the WKB and the AIM with D = 6, 7
and Q = M.

Six dimensions Seven dimensions
1 n WKB third order WKB sixth order AIM 1 WKB third order WKB sixth order AIM

Lmhahhnhununhn A B BAPE WWWLWW NDDODND ——= O
NN FR,O AW, O WNHNR,O ND—,O — O O

1.7521-0.3082i
1.6678-0.9419i

2.3058-0.3275i1
2.2126-0.9992i
2.0483-1.70971

2.8322-0.3371i
2.7461-1.0212i
2.5841-1.7318i
2.3621-2.4758i1

3.3424-0.3426i
3.2663-1.03441
3.1198-1.7450i
2.9124-2.48201
2.6545-3.24751

3.8425-0.34591
3.7753-1.0426i
3.6441-1.7533i
3.4554-2.4847i
3.2166-3.2404i
2.9346-4.02061

2.3115-0.32401
2.2297-0.97081
2.0302-1.64261

2.8345-0.3368i1
2.7554-1.0156i
2.5948-1.71061
2.3449-2.43671

3.3438-0.3426i
3.2720-1.0332i
3.1269-1.7402i
2.9058-2.47741
2.6054-3.26371

3.8435-0.34601
3.7792-1.0422i
3.6494-1.75171
3.4524-2.48541
3.1862-3.2573i
2.8505-4.0854i

0.9646-0.34811

1.7516-0.3053i
1.6970-0.9918i

2.3081-0.34011i
2.2375-1.0523i
2.1478-1.8272i

2.8345-0.3368i
2.7554-1.0156i
2.5948-1.71061
2.3449-2.43671

3.3438-0.3426i
3.2720-1.03321
3.1269-1.7402i1
2.9058-2.47741
2.6054-3.26371

3.8435-0.34601
3.7792-1.0422i
3.6494-1.75171
3.4524-2.48541
3.1862-3.2573i
2.8505-4.08541

Lmhahhnhununn A B BAEA WWWW DD ——= O

N PHELODFR,O RAPWLWNNR,O WNORO MR, O —O OB

2.7749-0.4333i
2.7194-1.3659i
2.7162-2.4111i

3.3789-0.4424i
3.2568-1.3524i
3.0467-2.3221i
2.7896-3.35001

3.9683-0.45251
3.8448-1.3713i
3.6112-2.32771
3.2891-3.33401
2.8991-4.3888i

4.5446-0.45951
4.4302-1.3874i
4.2074-2.34141
3.8883-3.3348i
3.4880-4.3739i
3.0202-5.45811i

2.8918-0.34191

3.3883-0.4341i
3.3296-1.2462i

3.9713-0.4516i
3.8600-1.3555i1
3.6410-2.2421i
3.3018-3.03891
2.7814-3.5851i

4.5466-0.45951
4.4389-1.3841i
4.2195-2.32301
3.8773-3.2798i
3.3887-4.25481
2.7165-5.25051

2.7749-0.4333i
2.7194-1.3659i
2.7162-2.4111i

3.3883-0.4341i
3.3296-1.2462i
3.3425-1.7230i
3.9401-1.1831i

3.9713-0.4516i
3.8600-1.3555i
3.6410-2.2421i
3.3018-3.0389i
2.7814-3.5851i

4.5466-0.45951
4.4389-1.3841i
4.2195-2.32301
3.8773-3.2798i
3.3887-4.2548i
2.7165-5.25051

there is no TT eigenfunction related case in the four-
dimensional Reissner-Nordstrom spacetime because of the
absence of the TT eigenmodes on the 2-sphere. In
Tables VII-XII we present the TT QNMs for Q = 0.1M,
Q0 =0.5M,and Q = M from D = 5to D = 7. The change
in QNM frequencies is similar to that for non-TT cases
when either n or D is changed. To see how the frequencies
are affected by the change in the charge Q, we plot in Fig. 4
the first three modes in more detail for Q =0 to 1. The
red, blue and green colors represent five, six, and seven
dimensions. The result indicates that when Q becomes

FIG. 2. Potential function with j =3/2 and Q =1 for D =4
to D =09.

larger, the real part decreases and the absolute value of the
imaginary part also decreases. This is consistent with the
change of the TT potential with Q, which is plotted in
Fig. 5. We can see that when Q is increased, the maximum
value of the potential decreases. This implies that the real
part of the QNM frequency decreases accordingly. In
addition to this the potential broadens when Q is increased,
so the mode decays slower, which implies that the absolute
value of the imaginary part of the frequency becomes
smaller. Note that this trend is the exact opposite to that for
the non-TT cases for D < 7.

FIG. 3. The non-TT effective potential with D = 5Sand j = 5/2
forQ=0to Q0 =1.
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TABLE VIL

Low-lying (n <[, with [ = j—3/2) spin-3/2

field quasinormal frequencies using the WKB and the AIM with
D=5and Q=0.1 M.

Five dimensions

[u—

WKB third order

WKB sixth order

AIM

L nn B BB WWWW DD == O

N A RN~ O AL FRO WL, O VRO —mO OB

0.8443-0.2482i

1.2093-0.2487i
1.1297-0.76591

1.5677-0.2490i
1.5069-0.7580i
1.4010-1.29041

1.9239-0.2492i
1.8747-0.75451
1.7854-1.27671
1.6663-1.81671

2.2791-0.24931
2.2379-0.75271
2.1608-1.2687i
2.0557-1.79971
1.9280-2.3440i

2.6340-0.24931
2.5983-0.75171
2.5307-1.26371
2.4367-1.78831
2.3212-2.32501
2.1873-2.87201

0.8538-0.24931

1.2124-0.2490i
1.1384-0.7640i

1.5690-0.2490i
1.5108-0.7572i
1.4002-1.2962i

1.9245-0.2492i
1.8767-0.7541i
1.7840-1.27951
1.6530-1.8392i

2.2795-0.24931
2.2390-0.75251
2.1596-1.27031
2.0451-1.8126i1
1.9017-2.38901

2.6342-0.24931
2.5990-0.7516i1
2.5297-1.2647i
2.4286-1.7961i
2.2998-2.35331
2.1482-2.94301

0.7755-0.1916i1

1.2355-0.2633i
0.8044-0.67291

1.5690-0.2490i
1.5108-0.75721
1.4002-1.2962i1

1.9245-0.2492i
1.8767-0.75411
1.7840-1.27951
1.6530-1.8392i

2.2795-0.24931
2.2390-0.75251
2.1596-1.27031
2.0451-1.81261
1.9017-2.3890i

2.6342-0.2493i1
2.5990-0.7516i1
2.5297-1.26471
2.4286-1.79611
2.2998-2.35331
2.1482-2.94301

TABLE VIIIL

and Q =0.1 M.

C. Large angular momentum limit

In the previous sections we have seen that the fermionic
QNMs in a Reissner-Nordstrom spacetime have a different
set of solutions associated to either the spin-1,/2 or the spin-
3/2 particles, this being due to the fact that we have
introduced a supercovariant derivative for the spin-3/2 case
in order to satisfy the gauge symmetry. However, in our
previous work we showed that the QNMs for the TT modes
of the spin-3/2 particles coincide with those of the spin-1/2
particles [4]. In this section we expand on this analysis by
considering the large angular limit of our potential.

To first order the large angular momentum limit for the
QNMs can be approximated as

. 1 s 1/2
o |Vy—i n—i—i (2V)V2+ |,

1 (_2V//)1/2
1/2 . 0
NVO —l<n+§>W+,

(4.10)
where V is the maximum of the effective potential, and
prime represents derivatives with respect to the tortoise
coordinate r,. The large angular momentum limit of the
super potentials, Eqgs. (3.19) and (3.27), and those in
Refs. [4,10], have the same corresponding effective poten-

tial of the general form

Low-lying (n < [, with [ = j — 3/2) spin-3/2 field quasinormal frequencies using the WKB and the AIM with D = 6, 7

Six dimensions

Seven dimensions

[—

=

WKB third order

WKB sixth order

AIM

—_—

=

WKB third order

WKB sixth order

AIM

Lmhahhnhununn A BB BAEA WWWLWW NDDND ——= O

N WNN—=O ALV, O WO~ O DO —O O

1.2853-0.38611

1.7613-0.3889i
1.5809-1.2099i

2.2243-0.39011
2.0867-1.1939i
1.8433-2.0498i

2.6826-0.3906i
2.5712-1.18681
2.3663-2.0196i
2.0899-2.8930i

3.1389-0.39091
3.0451-1.18301
2.8685-2.00231
2.6248-2.85501
2.3261-3.73901

3.5942-0.39101
3.5129-1.1808i
3.3578-1.9914i
3.1401-2.8297i
2.8703-3.6960i
2.5549-4.58721

1.3064-0.39611

1.7692-0.39171
1.6097-1.21061

2.2281-0.3906i
2.1008-1.1922i
1.8483-2.06181

2.6846-0.3906i
2.5787-1.18531
2.3672-2.02401
2.0549-2.94621

3.1400-0.39081
3.0493-1.18211
2.8678-2.00441
2.5975-2.88471
2.2457-3.85541

3.5948-0.39101
3.5156-1.1802i
3.3567-1.99261
3.1191-2.84761
2.8067-3.7686i
2.4278-4.78181

1.3063-0.39611i

1.7692-0.39171
1.6097-1.21061

2.2282-0.39041
2.1008-1.1922i
1.8483-2.06181

2.6846-0.3906i
2.5787-1.18531
2.3672-2.02401
2.0549-2.94621

3.1400-0.39081
3.0493-1.18211
2.8678-2.00441
2.5975-2.88471
2.2457-3.85541

3.5948-0.39101
3.5156-1.1802i
3.3567-1.99261
3.1191-2.84761
2.8067-3.7686i
2.4278-4.78181

LML unn A BRABA WWWLWW DD —— O

NHE WL O AW, O WD~ O ND—O — O O

1.7137-0.50751

2.2717-0.51491
1.9511-1.61391

2.8099-0.5180i
2.5668-1.5899i
2.1240-2.75391

3.3403-0.51911
3.1444-1.57971
2.7746-2.70181
2.2680-3.90311

3.8673-0.51961
3.7024-1.57431
3.3855-2.67301
2.9404-3.83381
2.3917-5.0594i

4.3926-0.51981
4.2497-1.57101
3.9722-2.6553i1
3.5760-3.78901
3.0802-4.97851
2.5001-6.22171

1.7430-0.54081

2.2844-0.52471
2.0126-1.6368i

2.8176-0.5196i
2.6000-1.5911i
2.1468-2.77661

3.3445-0.5191i
3.1633-1.5766i
2.7858-2.7031i
2.1975-3.9815i1

3.8696-0.5194i
3.7135-1.5716i
3.3908-2.67051
2.8874-3.87001
2.2039-5.2494i

4.3940-0.51971
4.2566-1.5691i
3.9746-2.6529i
3.5363-3.80791
2.9360-5.0898i
2.1857-6.56631

1.7430-0.54081

2.2844-0.52471
2.0126-1.6368i

2.8176-0.5196i
2.6000-1.5911i
2.1468-2.77661

3.3445-0.5191i
3.1633-1.5766i
2.7858-2.7031i
2.1975-3.98151

3.8696-0.5194i
3.7135-1.5716i
3.3908-2.67051
2.8874-3.87001
2.2039-5.2494i

4.3940-0.51971
4.2566-1.5691i
3.9746-2.6529i
3.5363-3.8079i
2.9360-5.0898i
2.1857-6.5663i1
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TABLE IX. Low-lying (n < I, with [ = j —3/2) spin-3/2 field
quasinormal frequencies using the WKB and the AIM with
D=5and Q=0.5M.

TABLE XI.

Low-lying (n < I, with [ = j — 3/2) spin-3/2 field

quasinormal frequencies using the WKB and the AIM with
D=5and Q=M.

Five dimensions

Five dimensions

[u—

WKB third order

WKB sixth order

AIM

[u—

WKB third order

WKB sixth order

AIM

LM A B BAEA WWWLWW NDDODND ——= O

N HE WD —,O AL FRO WNOR,O VRO —mO O|=

0.8029-0.2388i

1.1737-0.24141
1.0949-0.74341

1.5374-0.24271
1.4783-0.73881
1.3751-1.25751

1.8990-0.2436i
1.8516-0.73751
1.7654-1.24751
1.6504-1.77471

2.2597-0.24421
2.2202-0.73721
2.1463-1.2422i
2.0453-1.76161
1.9228-2.2938i

2.6201-0.24461
2.5860-0.73731
2.5214-1.2392i
2.4316-1.7530i
2.3212-2.27861
2.1933-2.8141i

0.8131-0.2411i

1.1769-0.2418i
1.1046-0.74191

1.5387-0.2428i
1.4825-0.73811
1.3754-1.2628i

1.8996-0.2436i
1.8537-0.7372i
1.7647-1.2502i
1.6389-1.7957i

2.2601-0.2442i
2.2213-0.73701
2.1454-1.24371
2.0361-1.77361
1.8992-2.3356i

2.6203-0.2446i1
2.5867-0.7372i
2.5207-1.24001
2.4245-1.76031
2.3020-2.3048i
2.1580-2.87991

0.3915-0.2511i

1.1768-0.24181
1.1045-0.74191

1.5387-0.2428i
1.4825-0.73811
1.3754-1.26281

1.8996-0.2436i
1.8537-0.73721
1.7647-1.25021
1.6389-1.79571

2.2601-0.2442i1
2.2213-0.73701
2.1454-1.24371
2.0361-1.77361
1.8992-2.3356i

2.6203-0.24461
2.5867-0.73721
2.5207-1.24001
2.4245-1.76031
2.3020-2.30481
2.1580-2.8799i

LN hnn BB BB WWLWWW PDODND —~—= O

NHErLNOFR,O AW, O WNOR,O NM—RO O OB

0.7636-0.2260i1

1.1542-0.2239i
1.0713-0.69001

1.5404-0.2232i
1.4797-0.67871
1.3701-1.15601

1.9256-0.2229i
1.8779-0.6740i
1.7885-1.13941
1.6656-1.6221i

2.3105-0.22271
2.2713-0.67171
2.1961-1.13051
2.0903-1.60271
1.9591-2.0886i

2.6953-0.2226i1
2.6620-0.67031
2.5973-1.1252i
2.5048-1.59051
2.3884-2.0674i
2.2513-2.5556i

0.7748-0.22671

1.1579-0.2242i
1.0828-0.68661

1.5420-0.22331
1.4853-0.6776i
1.3734-1.15631

1.9264-0.2229i
1.8809-0.6735i
1.7906-1.13931
1.6574-1.63231

2.3110-0.22271
2.2731-0.6714i
2.1975-1.1304i
2.0852-1.60761
1.9383-2.1120i

2.6957-0.22261
2.6631-0.6701i
2.5982-1.1252i
2.5014-1.5932i
2.3738-2.08061
2.2176-2.5942i

0.7748-0.2266i1

1.1578-0.2242i
1.0827-0.68661

1.5420-0.2233i
1.4853-0.6776i
1.3734-1.15631

1.9264-0.2229i
1.8809-0.6735i
1.7906-1.13931
1.6574-1.6323i

2.3110-0.22271
2.2731-0.6714i
2.1975-1.1304i
2.0852-1.60761
1.9383-2.1120i

2.6957-0.22261
2.6631-0.67011
2.5982-1.1252i
2.5014-1.5932i
2.3738-2.0806i1
2.2176-2.5942i

TABLE X. Low-lying (n <[, with [ = j — 3/2) spin-3/2 field quasinormal frequencies using the WKB and the AIM with D = 6, 7
and Q =05 M.

Six dimensions

Seven dimensions

[

=

WKB third order

WKB sixth order

AIM

—_—

WKB third order

WKB sixth order

AIM

LN A BB BABR WWWLWW DDODND ——= O

N AW, O AR, O WNORO DO — O O

1.2225-0.37061

1.7034-0.37641
1.5222-1.17101

2.1698-0.37891
2.0344-1.1593i1
1.7938-1.9903i1

2.6314-0.38031
2.5230-1.1553i
2.3230-1.9653i
2.0525-2.81501

3.0911-0.3813i
3.0003-1.1538i
2.8293-1.9521i
2.5928-2.7828i
2.3025-3.64371

3.5499-0.38191
3.4716-1.1532i
3.3221-1.9444i
3.1120-2.7621i
2.8514-3.60671
2.5466-4.47551

1.2484-0.3817i

1.7124-0.37901
1.5568-1.1692i

2.1739-0.3794i
2.0504-1.15721
1.8052-1.99761

2.6335-0.38041
2.5313-1.1538i
2.3273-1.9684i
2.0259-2.86051

3.0923-0.3813i1
3.0051-1.1529i
2.8307-1.95371
2.5712-2.80881
2.2336-3.74791

3.5506-0.3819i1
3.4746-1.15271
3.3224-1.9454i
3.0951-2.7781i
2.7965-3.6724i
2.4344-4.65231

1.2484-0.3816i

1.7130-0.37771
1.5568-1.1692i

2.1739-0.3794i
2.0504-1.15721
1.8052-1.99761

2.6335-0.38041
2.5313-1.1538i
2.3273-1.9684i
2.0259-2.86051

3.0923-0.38131
3.0051-1.1529i1
2.8307-1.95371
2.5712-2.80881
2.2336-3.74791

3.5506-0.38191
3.4746-1.15271
3.3224-1.94541
3.0951-2.7781i
2.7965-3.6724i
2.4344-4.65231

LN ununn A BRBRABR WWWLWDDODND —— O

N PE WD, O RALWNNR,O WO, O NN, O —O O3

1.6352-0.4888i

2.1983-0.4993i1
1.8724-1.56501

2.7387-0.50371
2.4972-1.54521
2.0540-2.67721

3.2711-0.50571
3.0786-1.53831
2.7136-2.63031
2.2117-3.80071

3.8003-0.50691
3.6393-1.53541
3.3291-2.60611
2.8920-3.7372i
2.3523-4.93241

4.3278-0.5077i
4.1890-1.5341i
3.9188-2.5922i
3.5322-3.69791
3.0476-4.85791
2.4801-6.07081

1.6769-0.51751

2.2147-0.50671
1.9497-1.5713i1

2.7474-0.50461
2.5363-1.5413i
2.0923-2.6761i

3.2757-0.50561
3.1001-1.5339i
2.7337-2.62361
2.1600-3.84991

3.8028-0.5067i
3.6518-1.5324i
3.3398-2.60081
2.8530-3.7610i
2.1898-5.0856i

4.3294-0.5076i
4.1967-1.5323i
3.9248-2.5888i
3.5026-3.7110i
2.9241-4.94991
2.1989-6.3684i

1.6769-0.5175i

2.2147-0.50671
1.9497-1.57131

2.7471-0.50461
2.5363-1.54131
2.0923-2.6761i

3.2757-0.50561
3.1001-1.5339i
2.7337-2.62361
2.1600-3.8499i

3.8028-0.5067i
3.6518-1.5324i
3.3398-2.6008i
2.8530-3.7610i
2.1898-5.0856i

4.3294-0.5076i
4.1967-1.5323i
3.9248-2.5888i
3.5026-3.71101
2.9241-4.9499i
2.1989-6.36841
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TABLE XII. Low-lying (n < I, with [ = j — 3/2) spin-3/2 field quasinormal frequencies using the WKB and the AIM with D = 6,7
and Q = M.

Six dimensions Seven dimensions
1 n WKB third order WKB sixth order AIM 1 WKB third order WKB sixth order AIM

Lnmhnhhnhununn A B BAPE WWWW NDDODND ——= O
NPHELWNDFR,O AW, O WNNR,O ND—O — O O

1.1597-0.3598i

1.6468-0.35751
1.4621-1.1141i

2.1237-0.35651
1.9865-1.09051
1.7385-1.8755i1

2.5979-0.35591
2.4891-1.0802i
2.2845-1.83791
2.0038-2.63731

3.0710-0.3555i
2.9808-1.07481
2.8077-1.81741
2.5640-2.59201
2.2621-3.4002i

3.5438-0.3552i
3.4667-1.0716i1
3.3169-1.80511
3.1025-2.5636i
2.8329-3.3502i
2.5157-4.16451

1.1816-0.36751

1.6557-0.3593i
1.4941-1.10811

2.1282-0.3568i1
2.0037-1.08671
1.7499-1.87331

2.6003-0.35591
2.4990-1.0780i
2.2927-1.83461
1.9791-2.66101

3.0725-0.3555i
2.9869-1.07361
2.8134-1.81501
2.5492-2.6021i
2.1950-3.46471

3.5448-0.35521
3.4707-1.0709i
3.3209-1.8036i1
3.0932-2.5684i
2.7864-3.3853i
2.4036-4.27941

1.1816-0.36741

1.6557-0.3593i
1.4941-1.10811

2.1282-0.3568i1
2.0037-1.08671
1.7499-1.87331

2.6003-0.35591
2.4990-1.0780i
2.2927-1.83461
1.9791-2.66101

3.0725-0.3555i
2.9869-1.07361
2.8134-1.81501
2.5492-2.60211
2.1950-3.46471

3.5448-0.3552i1
3.4707-1.07091
3.3209-1.8036i1
3.0932-2.5684i
2.7864-3.3853i
2.4036-4.27941

LML A BB BRABR WWWLW NDDODND ——= O

NPHERXNOFLO RAPWLWNN—R,O WO NMN—=O —O OB

1.5619-0.48251

2.1226-0.48251
1.7977-1.51481

2.6667-0.48191
2.4248-1.4788i
1.9778-2.56751

3.2055-0.48111
3.0132-1.4630i
2.6446-2.50311
2.1348-3.62541

3.7422-0.48051
3.5823-1.45461
3.2705-2.4682i
2.8265-3.54331
2.2767-4.6878i1

4.2782-0.48001
4.1410-1.44951
3.8711-2.44751
3.4802-3.49201
2.9864-4.5939i
2.4079-5.75431

1.5886-0.51041

2.1369-0.4882i
1.8602-1.51971

2.6752-0.4824i
2.4613-1.4728i
2.0051-2.5593i

3.2103-0.48091
3.0353-1.4574i
2.6659-2.4884i
2.0774-3.64831

3.7452-0.48031
3.5963-1.4508i
3.2860-2.45681
2.7943-3.5431i
2.1118-4.7819i

4.2801-0.47991
4.1502-1.4471i
3.8824-2.4397i
3.4614-3.48661
2.8744-4.63531
2.1250-5.94891

1.5886-0.51041

2.1369-0.4882i
1.8602-1.51971

2.6752-0.4824i
2.4613-1.4728i
2.0051-2.5593i

3.2103-0.48091
3.0353-1.4574i
2.6659-2.4884i
2.0774-3.64831

3.7452-0.4803i
3.5963-1.4508i
3.2860-2.45681
2.7943-3.5431i
2.1118-4.7819i

4.2801-0.47991
4.1502-1.4471i
3.8824-2.43971
3.4614-3.4866i
2.8744-4.6353i
2.1250-5.94891

W

W|j—>oo %T

(4.11)

where f is given by Eq. (4.1). The corresponding 7., which represents V(ry.) as the maximum of the effective
potential is

(D-3)

4(D —2)(r r )P

Fmax = = . (4.12)
=D 4 0 (D= 12(FP 4 P2 16(D — 2) (ry )P
Then
2 o2l
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the QNMs in the large angular limit is aal — D=7
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FIG. 4. The change of the first three QNM frequencies when Q
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FIG. 5. The TT effective potential of D =5 and j = 5/2 for

0=0t Q=1.

Lastly, we have to note that this analytic form is a general
one for fermionic fields in Schwarzschild (Q = 0) and
Reissner-Nordstrom (Q < M) spacetimes.

V. ABSORPTION PROBABILITIES

In this section we present the absorption probabilities
associated with our spin-3/2 fields near a Reissner-
Nordstrom black hole. We use the same approach as in

107

0.8+

Ref. [4], and as such only present the analysis of the results
here, and refer the reader to Ref. [4] for the implementation
of the method.

A. Non-TT eigenmodes related

In Fig. 6 we see that for a specific Q and D, the
behavior of the absorption probability shifts from lower
energy to higher energy as j increases, and this trend is
similar to the Schwarzschild case. For fixed j and Q,
we can compare the scale of each subplot and realize a
lower energy to higher energy shift as D increase. For a
fixed j and D, the absorption probability also shifts
from left to right as Q increases. This is due to the
maximum value of the corresponding potential increas-
ing as Q increases, as shown in Fig. 3 for the case of
D=5, j=5/2. An exception is in j=3/2, D=7
case, where the curve shifts to the left instead. This is
because the maximum value of the potential decreases
instead of increasing as Q is increased. Moreover, we
have left out the absorption probability in the case of
j=3/2, D=7, and Q =1. We could not obtain a
satisfactory curve for this case and believe this is due to
the fact that the effective potential has two local
maxima rather than one, thus rendering the WKB
approximation inapplicable.

1.0

0.8

— Q=0
— Q=0.1M
— Q=0.5M
— Q=M

25

1.0p

0.87

0.67

[A(w)]?

0.4f

02

Les?’

0.0 0.5 1.0

0.0

FIG. 6. Spin-3/2 field absorption probabilities for various dimensions and j = 3/2 (dotted), j = 5/2 (dashed) and j = 7/2 (solid).
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— Q=0
— Q=0.1M
— Q=0.5M
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FIG. 7. Spin-3/2 field absorption probabilities with various dimensions and j = 3/2 (dotted), j = 5/2 (dashed) and j = 7/2 (solid).

B. TT eigenmodes related

The absorption probabilities associated with the TT
eigenmodes are present in Fig. 7. It is clear that the
absorption probabilities shift from lower energy to higher
energy when we increase j (with fixed Q and D), and when
we increase D (with fixed Q and j). However, when Q is
increased with fixed D and j, the absorption probabilities
shift from higher energy to lower energy. This is due to the
maximum value of effective potential decreasing when Q
increases, as shown in Fig. 5 for the typical case of
D=5 j=5/2.

VI. DISCUSSION AND CONCLUSION

In this paper we continue with our previous consider-
ation of spin-3/2 fields in higher dimensional spherically
symmetry black hole spacetimes [3,4]. The first difference
we encounter is the modification of the covariant derivative
to the supercovariant derivative for spacetimes with a
nonvanishing Ricci tensor, in which Reissner-Nordstrom
black hole spacetime was the example studied here. This
modification is necessary to maintain the supersymmetric
gauge symmetry. We have not shown it explicitly in this
paper, but the same procedure can also be applied to
asymptotic nonflat cases, like black holes in de Sitter and
anti—de Sitter spaces.

Our main results on the QNM frequencies and the
absorption probabilities of the spin-3/2 fields for both
non-TT eigenmodes and TT eigenmodes are given in
Secs. IV and 'V, respectively. First we looked at the non-
TT modes, where we found that when the charge of the
black hole Q is increased from 0 to M the maximum value
of the effective potential increases, while the peak of the
potential becomes sharper (Fig. 3 is a typical example). The
result of this on the quasinormal frequencies is that both
the real part and the magnitude of the imaginary part
increase. For the absorption probability the curve shifts to
higher energy when Q is increased. However, this trend is
reversed from the j = 3/2 and D = 7 case upwards, such
that the maximum value of the potential instead decreases
as Q is increased. For higher dimensions, more and more
modes would have this behavior.

For the TT modes, the situation seems to be simpler. First
we need to mention that the effective potential in this case
is not the same as the one for Dirac fields in the same
spacetime; this is due to the extra terms present in the
supercovariant derivative. A typical example of the change
of the potential with changing Q is given in Fig. 5. We can
see that when Q is increased, the maximum value of the
potential decreases and the peak broadens. Hence, the
corresponding real part of the quasinormal frequency
decreases, and so too the magnitude of the imaginary part.
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For the absorption probability the curve then shifts to lower
energies as Q is increased. This is opposite to the trend
observed for the non-TT cases when the dimension
is D <17.

We have found that for higher dimensions, and espe-
cially for the charge Q near the extremal value, the effective
potential develops another maximum. We believe that this
is also a property of the potentials in high enough
dimensions. The shape of the potential becomes more
complicated due to the appearance of more maxima and
minima. This poses difficulties to the WKB approximations
and the AIM we used to evaluate the QNMs, as well as the
absorption probabilities. This problem is more prominent
for larger values of Q, especially for the extremal cases.

Since our method is applicable to spherically symmetric
spacetimes, the immediate applications would be to con-
sider spin-3/2 fields for Schwarzschild and Reissner-
Nordstrom black holes in de Sitter and anti—de Sitter
spaces. Charged black holes in anti—de Sitter spaces are
particularly interesting because of their relevance to the

ground state of supergravity. With these studies we may
have a general discussion of fermionic QNMs in spheri-
cally symmetric spacetimes, such as those that were done
for bosonic fields; see Refs. [12,13]. We are also interested
in working out the absorption cross sections in our
subsequent works. To do that we need to find the
degeneracies of the eigenspinor vectors on the N sphere.
One should be able to do that by following the method of
Camporesi and Higuchi developed for Dirac spinors [14].
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