
 

Electrically charged black hole on AdS3: Scale invariance
and the Smarr formula

Cristián Erices,1,2,* Oscar Fuentealba,1,† and Miguel Riquelme1,‡
1Centro de Estudios Cientficos (CECs), Casilla 1469, Valdivia, Chile

2Physics Division, National Technical University of Athens, 15780 Zografou Campus, Athens, Greece

(Received 21 October 2017; published 25 January 2018)

The Einstein-Maxwell theory with negative cosmological constant in three spacetime dimensions is
considered. It is shown that the Smarr relation for the electrically charged Bañados-Teitelboim-Zanelli
(BTZ) black hole emerges from two different approaches based on the scaling symmetry of the asymptotic
behavior of the fields at infinity. In the first approach, we prove that the conservation law associated to the
scale invariance of the action for a class of stationary and circularly symmetric configurations, allows to
obtain the Smarr formula as long as a special set of holographic boundary conditions is satisfied. This
particular set is singled out making the integrability conditions for the energy compatible with the scale
invariance of the reduced action. In the second approach, it is explicitly shown that the Smarr formula is
recovered through the Euler theorem for homogeneous functions, provided the same set of holographic
boundary conditions is fulfilled.
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I. INTRODUCTION

Since the early stage of the thermodynamical description
of black holes, the Smarr formula [1] has been an intensive
subject of study as an analogous of the Euler equation for
black hole mechanics. This formula can be understood as an
integrated form of the first law under certain homogeneity
assumptions for the extensive variables. Specifically, this
relation states the energy as a bilinear form of the global
charges of the black hole along with their corresponding
chemical potentials, as long as the entropy is a homogeneous
function of a definite degree in the conserved charges. In the
case of three-dimensional Einstein gravity on AdS3, the
Bañados-Teitelboim-Zanelli (BTZ) black hole [2,3] natu-
rally satisfies this requirement. Indeed, the entropy of the
BTZ black hole can bewritten in terms of the global charges
through the Cardy formula [4];

S ¼ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c
12

ðMlþ JÞ
r

þ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c
12

ðMl − JÞ
r

; ð1Þ

where c ¼ 3l
2G stands for theBrown-Henneaux central charge

[5]. From (1) is evident that the entropy is a homogeneous

function of degree 1
2
in ðM; JÞ. Hence, by direct application

of the Euler theorem, it is possible to write the energy as a
Smarr relation [6,7];

M ¼ 1

2
TSþΩJ: ð2Þ

In the Einstein-Maxwell theory with negative cosmo-
logical constant in three dimension the situation is rather
different. As shown in [8,9], the energy spectrum of the
electrically charged rotating BTZ black hole [10,11] is
highly sensitive to the choice of boundary conditions,1 what
makes its thermodynamical description a very subtle
problem. For instance, for the simplest choice of boundary
conditions the energy spectrum turns out to be unbounded
from below [11]. Indeed, by considering the same set of
boundary conditions, the following formula of the energy
holds

M ¼ 1

2
TSþ ΩJ þ 1

2
ΦeQe þ

1

8π
ð1 − l2Ω2ÞQ2

e; ð3Þ

which is certainly not a Smarr relation. As mentioned in
[12], this is because of the logarithmic contributions of the
gauge potential, which spoils the homogeneity property
of the extensive quantities, in the sense that entropy is no
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1It is worthwhile to point out that we refer to boundary
conditions to conditions that are held fixed at the boundary, while
we mean by asymptotic conditions to the asymptotic behaviour of
the fields at infinity.
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longer a homogeneous function with a definite degree in
the conserved charges. In what follows, we show that it
possible to recover the aforementioned homogeneity prop-
erty by considering the asymptotic conditions of the
Einstein-Maxwell theory on AdS3 introduced in [8,9]
endowed with an appropriate set of boundary conditions.
The aim of this work is to show how the Smarr formula

for the charged BTZ black hole emerges through two
different approaches. Both of them are based on the
preservation of the fall-off of the fields at infinity, given
in [8], under a specific set of scale transformations that
leaves the reduced action principle invariant for a wide
class of configurations. In particular, we will use the
method developed in [13] that recovers the Smarr formula
for three-dimensional hairy black holes from a radial
conservation law related to a scale invariance of the reduced
action. However, the assumptions considered in this
method are that the matter fields must be finite at the
event horizon and vanish at infinity, where the latter is
clearly not satisfied by the charged BTZ black hole because
of the presence of the logarithmic terms. In spite of that, we
will show herein that this method can still be applied in the
case of the Einstein-Maxwell theory on AdS3 by imple-
menting the asymptotic conditions proposed in [8,9]. As
consequence, it can be proved that the Smarr formula for
the charged BTZ black hole holds as long as a special set of
holographic boundary conditions is satisfied.
The next section is dedicated to a brief review of the

main results found in [8], related to the global charges and
their integrability conditions for stationary and circularly
symmetric configurations in the Einstein-Maxwell theory
on AdS3. In Sec. III, we prove that the conservation law
associated to the scale invariance of the action for the
aforementioned class of configurations, allows us to obtain
the Smarr formula as long as a special set of holographic
boundary conditions is satisfied. This particular set is
singled out by requiring compatibility of the integrability
conditions for the energy with the scale invariance of the
reduced action principle. In Sec. IV, it is shown that the
same set of holographic boundary conditions ensures
the right homogeneous transformation laws for the exten-
sive quantities of the black hole under scaling transforma-
tions, allowing to recover the Smarr formula through the
Euler theorem along the lines of its original derivation
for the Kerr-Newman black hole in [1]. We conclude with
some ending remarks in Sec. V.

II. A REVIEW ON THE EINSTEIN-MAXWELL
THEORY ON AdS3 AND GLOBAL CHARGES

This section is devoted to a brief review of the results
found in [8]. It is shown the reduced action principle of
the Einstein-Maxwell theory on AdS3 in a canonical form
for stationary and circularly symmetric configurations,
the variation of the global charges and their appropriate
integrability conditions.

A. Action principle for stationary and circularly
symmetric configurations

The action of the Einstein-Maxwell theory with negative
cosmological constant in three spacetime dimensions is
given by

IEM ¼
Z

d3x
ffiffiffiffiffiffi
−g

p �
1

2κ
ðR − 2ΛÞ − 1

4
FαβFαβ

�
: ð4Þ

Here the Newton constant G and the AdS radius l are
defined through κ ¼ 8πG and Λ ¼ −l−2, respectively.
We consider stationary and circularly symmetric space-

times, which describe a wide class of configurations
already reported in the literature [2,10,11,14–29]. The line
element for this family of solutions is given by

ds2 ¼ −N ðrÞ2F ðrÞ2dt2 þ dr2

F ðrÞ2
þRðrÞ2ðN ϕðrÞdtþ dϕÞ2; ð5Þ

where the gauge field is chosen as

A ¼ AtðrÞdtþAϕðrÞdϕ: ð6Þ

The reduced action principle in the canonical form can be
obtained by replacing the class of configurations described
by (5) and (6) in (4), which reads

I ¼ −2πðt2 − t1Þ
Z

drðNHþN ϕHϕ þAtGÞ þ B; ð7Þ

where the boundary term B must be added in order to have
a well-defined variational principle. The surface deforma-
tion generators H, Hϕ and the generator of gauge trans-
formations G, acquire the following form

H ¼ −
R
κl2

þ 4κRðπrϕÞ2 þ ðprÞ2
2R

þ F 2ðA0
ϕÞ2

2R

þ ðF 2Þ0R0

2κ
þ F 2R00

κ
; ð8Þ

Hϕ ¼ −prA0
ϕ − 2ðR2πrϕÞ0; ð9Þ

G ¼ −∂rpr; ð10Þ

where N , N ϕ and At stand for their corresponding
Lagrange multipliers. The only nonvanishing components
of the momenta πij and pi are explicitly given by

πrϕ ¼ −
N ϕ0R
4κN

; pr ¼ R
N

ðA0
ϕN

ϕ −A0
tÞ: ð11Þ

Note that prime denotes derivative with respect to r.
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B. Global charges and integrability conditions

Hereafter, it is considered that the class of configurations
that we are dealing with are given by asymptotically AdS3
spacetimes with the following behavior at infinity2

R2 ¼ r2 −
κl2

π

�
hR log

�
r
l

�
−
fR
2

�
þ � � �

F 2 ¼ r2

l2
−
κ

π

��
2hR þ 1

4π
ðq2t þ q2ϕÞ

�
log

�
r
l

�
þ fF

�

þ � � �

N ϕ ¼ Nϕ
∞ þ κ

2π
N∞

�
l
2π

qtqϕ log
�
r
l

�
− j

�
1

r2
þ � � �

N ¼ N∞ þ � � �

At ¼ −
1

2π
ðqtN∞ þ qϕlN

ϕ
∞Þ log

�
r
l

�
þ Nϕ

∞φϕ þ N∞
φt

l

−Φþ � � �

Aϕ ¼ −
qϕl

2π
log

�
r
l

�
þ φϕ þ � � � ð12Þ

which was proposed in [8]. Here the coefficients hR, fR,
fF , j, φt, φϕ, qt, qϕ are constants, which are assumed to

vary in the phase space, whileN∞,N
ϕ
∞ andΦ correspond to

arbitrary constants without variation, which are kept fixed
at the boundary.
Following the canonical approach given in [31], as

shown in [8], the variation of the energy for the class of
configurations (5), (6) endowed with the fall-off for the
fields (12), is given by

δM ¼ δ

�
fR þ fF þ hR þ 1

l
qϕφϕ

�
−
1

l
φμδqμ; ð13Þ

where φμ ¼ ðl−1φt;φϕÞ and qμ ¼ ðl−1qt; qϕÞ are assumed
to be Lorentz covariant vectors, whose indices are raised
and lowered by the flat (conformal) boundary metric
ημν ¼ diagð−l−2; 1Þ. The rest of the global charges; angular
momentum J and electric charge Qe, can be directly
integrated, and they read

J ¼ jþ l
4π

qtqϕ − qtφϕ; ð14Þ

Qe ¼ qt: ð15Þ

As explained in [8], (13) yields a nontrivial integrability
condition for φμ and qμ. The integrability for the energy

is ensured by the condition δ2M ¼ 0, which is satisfied
provided

φμ ¼ −
δV
δqμ

; ð16Þ

where V ¼ VðqμÞ is an arbitrary function of qt and qϕ.
In consequence, the energy and the angular momentum are
then given by3

M ¼ fR þ fF þ hR þ 1

l

�
V − qϕ

δV
δqϕ

�
; ð17Þ

J ¼ jþ l
4π

qtqϕ þ qt
δV
δqϕ

: ð18Þ

In sum, the global charges are determined by the function
V that describes the set of boundary conditions compatible
with the integrability of the energy.

III. SCALE INVARIANCE AND RADIAL
CONSERVATION LAW

In this section, we will make use of the approach given in
[13], where the Smarr formula for three-dimensional hairy
black holes is recovered from a radial conservation law
associated to a scale invariance of the reduced action.
The assumptions considered in this approach are that the
matter fields must be finite at the event horizon and vanish
at infinity, which due to the presence of the logarithmic
terms is clearly not satisfied by the charged BTZ black hole.
Nonetheless, we will show that this method can still be
applied in the case of the Einstein-Maxwell theory on AdS3
by implementing the asymptotic conditions proposed
in [8,9].
In this case, it is possible to prove that the reduced action

principle given in (7) is invariant under the following set of
transformations

R̄ðr̄Þ ¼ λRðrÞ; N̄ ðr̄Þ ¼ λ−2N ðrÞ;
F̄ ðr̄Þ2 ¼ λ2F ðrÞ2; N̄ ϕðr̄Þ ¼ λ−2N ϕðrÞ;
Āϕðr̄Þ ¼ λAϕðrÞ; Ātðr̄Þ ¼ λ−1AtðrÞ;
p̄rðr̄Þ ¼ λprðrÞ; π̄rϕðr̄Þ ¼ πrϕðrÞ; ð19Þ

spanned by the scalings r̄ ¼ λr, t̄ ¼ t and ϕ̄ ¼ ϕ, where λ is
a positive constant. Note that similar scaling symmetries

2The dots “� � �” stand for subleading terms that can be
consistently gauged away because they do not appear either in
the global charges or in the gauge transformations of the
dynamical fields [30].

3Note that as shown in [9], the integrability condition (16)
endowed with a very precise set of boundary conditions ensures
that the canonical generators fulfill a Poisson bracket algebra,
otherwise the Jacobi identity would not be satisfied, spoiling the
whole canonical structure. As a consequence, the reduced phase
space (5), (6), with the asymptotic conditions (12), does possess a
well-defined symplectic structure since it is already contained in
the fall-off of the fields in [9].
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were firstly observed in the matter-free case [32] and in the
context of three-dimensional hairy black holes in [13].
A direct application of the Noether theorem, by consid-

ering the infinitesimal transformation laws derived from
(19) on the reduced action principle (7), yields the
following conserved quantity4

CðrÞ ¼ 2πprðAt þN ϕAϕÞ þ 8πN ϕR2πrϕ

−
2πF 2NAϕA0

ϕ

R
þ πNRðF 2Þ0

κ

þ 2πF 2RN 0

κ
−
2πF 2NR0

κ

þNR
�
2π

κl2
−
πðprÞ2
R2

− 8πκðπrϕÞ2

þ πF 2ðA0
ϕÞ2

R2
−
πðF 2Þ0R0

κR
−
2πF 2N 0R0

κNR

�
r; ð20Þ

along the radial direction, i.e. C0 ¼ 0, by virtue of the field
equations. We will explore whether it is possible to find a
Smarr formula for the charged rotating black hole [10,11]
from the conserved quantity (20). Thus, in the particular
case of the black hole solution with event horizon located
at rþ, Cð∞Þ ¼ CðrþÞ.
In what follows, we proceed to compute CðrÞ at infinity

by considering the asymptotic behaviour of the fields given
in Sec. II B, and then at the event horizon by imposing
appropriate regularity conditions.

A. Conserved charge at infinity: Holographic
boundary conditions

By considering the fall-off of the fields (12), the radial
conserved charge (20) at the asymptotic region becomes

Cð∞Þ ¼ 2N∞

�
fF þ fR þ hR þ l

8π
ðq2ϕ − q2t Þ

þ 1

l
ðqtφt þ qϕφϕÞ

�

− 2Nϕ
∞

�
jþ l

4π
qtqϕ − qtφϕ

�
−Φqt; ð21Þ

recalling that φμ ¼ − δV
δqμ.

In order to determine the functional form of V some
physically reasonable criteria must be used. In this case,
we will require compatibility of the asymptotic conditions
given in (12) and the scale invariance of the reduced action
under transformations (19), which allows to find the
explicit form of this function. In particular, considering

the scale transformations Ātðr̄Þ ¼ λ−1AtðrÞ and Āϕðr̄Þ ¼
λAϕðrÞ implies the following transformation rules for φμ

and qμ

φ̄μ ¼ λ

�
φμ þ

lqμ
2π

logðλÞ
�
; q̄μ ¼ λqμ: ð22Þ

It must be highlighted that the transformations rules (22)
precisely coincide with the ones found in [8], where it was
made use of a scaling symmetry that leaves the configu-
ration invariant and rescales the reduced action as Ī ¼ λ2I.
Compatibility of the transformation rules (22) under

scalings with the integrability condition for the energy (16)
requires, up to an arbitrary integration constant without
variation, that the function V must obey the following
differential equation

qt
∂V
∂qt þ qϕ

∂V
∂qϕ ¼ 2V þ l

4π
ðq2t − q2ϕÞ: ð23Þ

The general solution of equation (23) is given by

V ¼ q2t F

�
qϕ
qt

�
þ l
8π

½q2t ðlog½q2t � − 1Þ − q2ϕðlog½q2ϕ� − 1Þ�;

ð24Þ

where F is an arbitrary function that describes a special
set of boundary conditions compatible with the scale
invariance. Hereafter, following [8], we will refer them
as “holographic boundary conditions.”5

By using the integrability condition (16) and holographic
boundary condition determined by (23), it is found that
Cð∞Þ in terms of the global charges (13), (14) and (15) is
given by

Cð∞Þ ¼ 2N∞M − 2Nϕ
∞J −ΦQe: ð25Þ

In the following subsection we focus in the value of the
Noether quantity (20) in the case of the configurations that
possess an event horizon, that is the case of the charged
BTZ black hole, where it is mandatory to impose some
regularity conditions in order to ensure a well-defined
Euclidean action principle (see e.g. [33]).

B. Conserved charge at the event horizon:
Regularity conditions

In order to evaluate the conserved charge (20) at the
event horizon, that for the class of configurations (5) is
determined by F 2ðrþÞ ¼ 0, we have to consider smooth

4Note that the conserved charge (20) could also be obtained
from the surface integral defining the canonical generators.
Hence, it would be interesting to study its role in the Poisson
bracket algebra of the global charges.

5It is worth to note that requiring invariance of the holographic
boundary conditions under Lorentz symmetry singles out a very
special set of boundary conditions, which remarkably, has shown
to be compatible with the full conformal symmetry at infinity [9].
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configurations which must satisfy regularity of the
Euclidean geometry around the event horizon. These
regularity conditions are generically given by

AτðrþÞ ¼ 0; N ϕðrþÞ ¼ 0;

N ðrþÞðF 2Þ0ðrþÞ ¼ 4π: ð26Þ

Hence, making use of the constraint H ¼ 0, (20) at the
event horizon becomes

CðrþÞ ¼
4π2

κ
RðrþÞ ¼ S; ð27Þ

which turns out to be the well-known Bekenstein-Hawking
entropy of the charged BTZ black hole, i.e., S ¼ A

4G
recalling that κ ¼ 8πG.
Finally, the Smarr formula naturally emerges as conse-

quence of the equality CðrþÞ ¼ Cð∞Þ, and it is given by6

S ¼ 2N∞M − 2Nϕ
∞J −ΦQe: ð28Þ

Once the regularity conditions are taking into account it is
possible to identify N∞ ≡ β, Nϕ

∞ ≡ βΩ and Φ≡ βΦe,
where β is the inverse of the Hawking temperature, while
Ω and Φe are the chemical potentials thermodynamically
conjugated to the angular momentum J and the electric
charge Qe, respectively. Thus, the Smarr formula reads

M ¼ 1

2
TSþ ΩJ þ 1

2
ΦeQe: ð29Þ

It is reassuring to verify that the charged BTZ black hole
does satisfy the Smarr formula (29), as long as the special
set of holographic boundary conditions, determined by
(23), is satisfied. In order to carry out this computation
one has to consider the explicit form of the global charges
for the black hole, obtained in [8], which are given by

M ¼ πr2þ
κl2

�
1þ ω2

1 − ω2

�
−
q2t
4π

�
ω2 þ ð1þ ω2Þ log

�
rþ
l

��

þ 1

l

�
V − qϕ

δV
δqϕ

�
; ð30Þ

J ¼ 2πr2þω
κlð1 − ω2Þ −

q2tωl
4π

�
1þ log

�
r2þ
l2

��
þ qt

δV
δqϕ

; ð31Þ

Qe ¼ qt; ð32Þ

with ω ¼ −qϕ=qt. The Hawking temperature and the
chemical potentials are

T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2

p

2πl2rþ

�
r2þ −

κl2

8π2
q2t ð1 − ω2Þ

�
; ð33Þ

Ω ¼ ω

l
; ð34Þ

Φe ¼ −
qt
2π

ð1 − ω2Þ log
�
rþ
l

�
−
ω

l
δV
δqϕ

þ 1

l
δV
δqt

; ð35Þ

where the entropy is explicitly given by S ¼ 4π2rþ
κ
ffiffiffiffiffiffiffiffi
1−ω2

p .

IV. SMARR FORMULA FROM THE
EULER THEOREM

In this section we will show that by virtue of the special
set of holographic boundary conditions determined by (23),
it is possible to obtain a homogeneous transformation law
for the extensive quantities, allowing to use the Euler
theorem in order to recover the Smarr formula (29) along
the lines of its original derivation given in [1] for the Kerr-
Newman black hole.
Let us consider the scale transformations for the coef-

ficients of the fall-off (12) appearing in the energy (17) and
angular momentum (18), which are given by

f̄F ¼ λ2
�
fF −

�
2hR þ 1

4π
ðq2t þ q2ϕÞ

�
logðλÞ

�
;

f̄R ¼ λ2½fR þ 2hR logðλÞ�;

j̄ ¼ λ2
�
jþ l

2π
qtqϕ logðλÞ

�
;

h̄R ¼ λ2hR: ð36Þ
In the case of a generic V, the mass (17), the angular
momentum (18) and the electric charge (15) transform as

M̄ ¼ λ2ðfR þ fF þ hRÞ −
1

4π
ðq2t þ q2ϕÞλ2 logðλÞ

þ 1

l

�
V̄ − qϕ

δV̄
δqϕ

�
; ð37Þ

J̄ ¼ λ2
�
jþ l

4π
qtqϕ

�
þ l
2π

qtqϕλ2 logðλÞ þ qt
δV̄
δqϕ

;

ð38Þ

Q̄e ¼ λQe: ð39Þ
Note that the electric charge already transforms as homo-
geneous function of degree one, while the energy and the

6Similar relations for the entropy of three-dimensional black
holes and cosmological configurations as a bilinear combination
of the global charges along with their corresponding chemical
potentials have been found in the context of higher spin gravity
[33,34,35], hypergravity [36,37] and extended supergravity [38],
where the coefficients in front of each term in the entropy formula
turn out to be the spin (conformal weight) of the corresponding
generator.
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angular momentum possess anomalous scale transforma-
tion laws.
By implementing the holographic boundary conditions,

one gets that the scale transformation of the function V
inherited from (22) is given by

V̄ðλqμÞ ¼ λ2
�
V þ l

4π
ðq2t − q2ϕÞ logðλÞ

�
: ð40Þ

Remarkably, by replacing (40) into (37) and (38), the
additional anomalous logarithmic terms precisely cancel
out, such that the energy and the angular momentum now
transform as homogeneous functions of degree two, i.e.,

M̄ ¼ λ2M; J̄ ¼ λ2J; ð41Þ

where M and J are given in (17) and (18), respectively.
At this point, we focus in the charged BTZ black hole,

whose entropy, given by S ¼ 4π2

κ RðrþÞ, transforms as a
homogeneous function of degree one, i.e., S̄ ¼ λS. In
consequence, the entropy is a homogeneous function of
degree 1

2
in ðM; J;Q2

eÞ, i.e.,

SðσM; σJ; σQ2
eÞ ¼ σ1=2SðM; J;Q2

eÞ: ð42Þ

Hence, by direct application of the Euler theorem for
homogeneous functions, the above equation yields

1

2
S ¼ M

∂S
∂M

����
J;Qe

þ J
∂S
∂J

����
M;Qe

þ 1

2
Qe

∂S
∂Qe

����
M;J

; ð43Þ

and by virtue of the first law δS¼N∞δM−Nϕ
∞δJ−ΦδQe;

N∞ ¼ ∂S
∂M

����
J;Qe

; Nϕ
∞ ¼ −

∂S
∂J

����
M;Qe

; Φ ¼ −
∂S
∂Qe

����
M;J

;

ð44Þ
the Eq. (43) can be cast directly to the expected Smarr
formula

S ¼ 2N∞M − 2Nϕ
∞J −ΦQe; ð45Þ

provided N∞ ¼ β, Nϕ
∞ ¼ βΩ and Φ ¼ βΦe.

Note that for the simplest choice of boundary conditions,
V ¼ 0, the global charges given by (17), (18) correspond to
the ones found in [11]. In this case, the logarithmic terms
in (36) lead to non-homogeneous contributions in the scale
transformations of the global charges (17), (18), as it can be
seen explicitly

M̄ ¼ λ2M −
1

4π
ðq2t þ q2ϕÞλ2 logðλÞ; ð46Þ

J̄ ¼ λ2J þ l
2π

qtqϕλ2 logðλÞ; ð47Þ

yielding, by means of the Euler theorem, the relation (3)

M ¼ 1

2
TSþΩJ þ 1

2
ΦeQe þ

1

8π
ð1 − l2Ω2ÞQ2

e: ð48Þ

Therefore, the logarithmic terms in (46) and (47)
preclude the possibility to obtain the Smarr formula (29),
since the assumption of the homogeneity scaling property
of the global charges are no longer satisfied.

V. ENDING REMARKS

In this work it has been shown that the Smarr fomula for
the charged BTZ black hole emerges from two different
approaches. Both of themare based on the preservation of the
fall-off of the fields under scale transformations which leave
the reduced action principle invariant. In the first approach,
we have proved that the scale invariance of the theory for
stationary and circularly symmetric configurations is asso-
ciated to a radially conserved charge. This conservation law
leads to the Smarr formula as long as a special set of
holographic boundary conditions is fulfilled. In the second
approach, it was found that the same set of holographic
boundary conditions confers the homogeneity scaling prop-
erty to the global charges, allowing to derive the Smarr
formula of the black hole through the Euler theorem.
Throughout this work, we have considered that the

cosmological constant is a coupling constant fixed without
variation. Nonetheless, the problem related to the spoil of
the homogeneity property in the extensive variables of the
electrically charged BTZ black hole has been addressed at
some extent under the rescaling of the cosmological constant,
which leads to the introduction of additional thermodynam-
ical terms both in the first law and in the energy formula (3)
(see e.g. [39,40,41,42]). This treatmentmight be consistently
carried out promoting the cosmological constant to a
canonical variable through the mechanism described in
[43]. However, recent results has shown the existence of a
superselection rule that forbids a superposition of quantum
states with different values of the cosmological constant in
three dimensions [44], so that its valuewould be definite, and
in consequence, it cannot be rescaled.
Finally, it is noteworthy that apart of obtaining the Smarr

formula for the charged BTZ black hole, the set of holo-
graphic boundary conditions endowed with the additional
requirement of Lorentz symmetry makes the energy spec-
trum of the black hole nonnegative, and the electric charge
bounded from above, for a fixed value of the energy [8].
This strongly suggests that the solution might be stable, so
it would be interesting to carry out a thermodynamical
analysis of the stability of the charged BTZ black hole by
considering a generic set of boundary conditions.
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