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In the context of f(R) gravity with a spatially flat FLRW metric containing an ideal fluid, we use
the method of invariant transformations to specify families of models which are integrable. We find
three families of f(R) theories for which new analytical solutions are given and closed-form solutions

are provided.
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I. INTRODUCTION

The discovery of the accelerated expansion of the
Universe has led to many cosmological models which
aim to explain this phenomenon, using a spatially flat
geometry and a cosmic dark sector formed by cold dark
matter and some form of dark energy, with negative
pressure. Among the large family of possible cosmological
scenarios, the modified gravity models occupy a much-
studied position in cosmological studies, since they provide
a way of explaining the accelerated expansion of the
universe, under a modification of Einstein-Hilbert action.
Traditionally, the simplest term which has been added to
the gravitational action is the squared Ricci scalar which
leads to a model of inflation [1,2]. The latter corresponds to
a family of models in which the gravitational action is a
function of the Ricci scalar of the underlying geometry and
consequently the cosmological field equations are fourth-
order in time. This class of models belongs to the so called
f(R) extended theory of gravity [3-5], and it has been
applied in various areas of the gravitational and cosmo-
logical studies (see [6—12] and references therein).

The modification of the Einstein-Hilbert action by intro-
ducing other kind of invariants has lead to an entire
menagerieof f theories [12-28]. Some theories are sec-
ond-order, like general relativity, while others are of at least
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fourth order. In the context of modified gravity, the field
equations form a system of nonlinear ordinary differential
equations which may not be integrable. In general, the role
of integrability in any dynamical problem is to provide the
necessary conditions to compute its solution. Obviously,
the latter achievement is very important in cosmology. For
example, one of the main problems that integrability solves is
the determination of the initial conditions in cosmological
simulations. Various methods have been proposed in order to
study the integrability of dynamical systems. In Liouville’s
integrability approach to (classical) Hamiltonian systems,
there is a point transformation for which the action is
determined by the method of separation of variables. This
is equivalent with the existence of a second conservation
law which defines a support manifold such that intersects the
phase space volume. However, this is not the only possibility,
since the Hamilton-Jacobi can be solved explicitly without the
existence of a coordinate system that leads to a separation of
variables. In the second case, the conservation law provides a
Lie-supported manifold for the dynamical system [29].

Conservation laws provide sufficient constraints to
solve the Hamilton-Jacobi equation and they are related
directly to the existence of transformations (‘“‘symmetries”)
which maintain dynamical invariance. Another way to
study the integrability of a dynamical system is by the
method of singularity analysis in which a necessary
condition for success is the existence of a singular solution.
Singularity analysis has been performed in various gravi-
tational studies, and it can be used to determine important
information about the evolution of the system close to a
singularity [30-38].

© 2018 American Physical Society
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In this work, we are interested in algebraic integrability
in the sense that we will search for those f(R)-models for
which the polynomial in the momentum conservation law
exists and can be used to write the field equations as a
system of two first-order differential equations. In order
to determine the conservation laws, we use Noether’s
theorems. Specifically, from the first theorem we find
the necessary conditions that the f(R) theory needs to
obey in order for there to exist a (generalized) symmetry
vector, while from the second theorem the conservation
law is determined. This is an analogue of the Ovsiannikov
classification of the nonlinear heat equation [39] which has
been applied in various gravitational theories and has led to
new integrable models (see [40—55] and references therein).
Noether’s Theorem is the main mathematical tool that we
use in this study and specifically we select to work within
the framework of the so-called “contact symmetries” [56].
We extend our previous works [57,58] to complete the
classification of the integrable models in f(R) gravity
[59,60]. The plan of the paper is as follows.

In Sec. II, we briefly present the main points of f(R)
modified gravity with an ideal gas. Next, we derive the field
equations and we discuss the minisuperspace Lagrangian in
the context of the classical Hamiltonian formalism.
Sections III and IV then present the main results of our
analysis, namely we identify those families of f(R) models
for which the field equations admit extra local conservation
laws and so form integrable dynamical systems. Finally,
our conclusions are presented in Sec. V.

II. THE GRAVITATIONAL FIELD EQUATIONS

In this section, we introduce the main ingredients of
f(R) gravity. Specifically, the modified Einstein-Hilbert
action of f(R) gravity is

S—/wﬁﬁﬂiﬂm+L4, (1)

where R is the Ricci scalar, g is the determinant of the
metric tensor, k = 82G and L,, is the Lagrangian function
for the matter source. Varying S with respect to the metric,
we obtain the gravitational field equations

1
f/R/w - zfg/u/ - (vuvy - g/wvavd)f/ = kT;tw (2)

where f'(R) = Z—ﬁ, R, is the Ricci tensor, and T, = 35,4
the energy-momentum tensor for the matter source. It is
interesting to see that the field equations can be cast in the

following form

is

1
R/w - ERgﬂIJ = keff(T;u/ + T,];l(/R)), (3)

(R)

where ko = f’(im‘ Also, the quantity 74" can be viewed as

the effective energy-momentum tensor of the modifications
of the Einstein-Hilbert action, and is expressed as

1
T = (V,V, - 9., V,V) f + 5 (f =Rf)gu (4)

Of course, for f(R) = R the above formulas reduce to those
of GR.

Now, assuming a spatially flat Friedmann-Lemaitre-
Robertson-Walker (FLRW) metric,

ds? = —dP? + a*(1)(dx* + dy? + d2?), (5)

the field equations (2) give the modified Friedmann’s
equations:
!
R— .
3pH = ko, + T sk (o)

and
2f’H+ 3f/H2 — _2Hf//R _ (f///RZ +f”R)

_f-Rf
2

where a(t) is the scale factor, H = a/a is the Hubble
parameter’ and R = 6[%+ (4)?] in which the dot denotes
derivative with respect to the comoving proper time, t.
Notice that p,, = T, u'u”* and p,, = T, (9" + u*u") are
the energy density and pressure of the matter source,
where u* is the normalized four-velocity vector. For the
equation of state of the cosmic matter, we use p,, = W0
which corresponds to an ideal gas, namely with w, =
y — 1 = const, and w,, € [0, 1] (or y € [1,2]). Utilizing the
conservation law 7%’ = 0 it is easy to show that p,, evolves
as p,, = Pmod "7, where p,, is the corresponding density
at the present time (a = ay = 1). It is worth noting that
for dominant relativistic matter we have y = 4/3 (when
w,, = 1/3), while in the case of pressureless matter we get
y=1w,=0).

If we focus on the first Friedmann equation (6), then we
can introduce an effective dark energy sector of (modified)
gravitational origin. Indeed, the dark energy density and
pressure are rewritten as

_fR-f
Py = 2

- kpmv (7)

—3Hf"R, (8)

J—RSf
2 Y
while the effective equation of state (EoS) parameter
wp = % is given by [6,7,43],

(f_Rf/) +4Hf”R—|—2(f”’R2 —l—f”R)

Ve (f = Rf') +6H['R - 10

pf=2Hf//R—|—(f///R2 —l—f//R)—i-

'Recall that for an arbitrary lapse function N(7) in the line
element (5) the Hubble function is defined as H = 3.
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A. Minisuperspace Lagrangian

From the technical point of view it will help our analysis
to insert the Lagrange multiplier [61-63] A in the action (1)
as follows

S:/dxw——g[f<R>—ﬂ[R-6<g+ (‘)2”

+ 2pmoa‘3(7“>] : (11)

where we have set \/=gL,, = p,0a>""" and k=
872G = 1. Now, if we vary the action with respect to R
(g_zse =0) we find A = f'(R). Therefore, using the latter
condition it is straightforward to obtain the overall
Lagrangian of the current dynamical problem, namely

L(a.a,R,R) = 6af'a> + 6a*f"a R +a*(f'R — f)

+ 2/),”()61_3(7—1)- (12)
One may check that, with the aid of Eq. (12), the Euler-
Lagrange equations provide Eq. (7) and the definition of the
Ricci scalar respectively. Furthermore, introducing a lapse
function N in the FLRW metric (5) the total Lagrangian
becomes

. 1 .
L(N,a,a,R,R) = ¥ (6af'a* + 6a*f"aR)
+ N&*(f'R = f) + 2p,oNa=3=1),
(13)

The fact that the Lagrangian is independent from deriva-
tives of N implies that the corresponding Hessian vanishes
and so the system is singular. Indeed, the first Friedmann
equation (6) is the constraint equation, namely g—f, =0, and
it plays a central role in the Hamiltonian formalism as well
as in the quantization of gravity. Moreover, without loss of
generality we assume N = N(a, R) which means that the
constraint equation (6) can be viewed as a conservation
law of the field equations. Lastly, we stress that based on
the effective gravitational parameter k. = f’(im = ﬁ we
can provide the scalar-tensor representation of the f(R)
gravity which is equivalent to that of Brans-Dicke theory in
the form of O’Hanlon [64]. In particular, considering an
effective scalar field such as ¢ = f'(R) the action integral
(11) takes the following form

S = / dx*\/=gl¢R + V(¢) = 2poa"V]  (14)

with

L(N,a,a,¢.¢) = % (6agpi® + 6a2a ) + Na*V ()

+2p,oNa=3r=1), (15)
where we have set V(¢) = f'R — f. Obviously, this result
corroborates, in the effective scalar field language, the
transit of the f(R) theory into the scalar-tensor regime
which is a second-order theory [5].

The scalar field description of f(R) gravity is useful
because the order of the theory is reduced, while at the same
time the number of the dependent variables is increased.
Moreover, with the aid of the scalar field description one
can use the Lagrange multiplier towards extracting a
classical pointlike Lagrangian, which can be used in order
to write the corresponding Hamiltonian and thus to derive
the field equations [65,66]. Therefore, utilizing the latter
mathematical treatment we can apply the known results of
analytical mechanics in order to study the integrability of
our dynamical system [67]. As an example, it is well known
in analytical mechanics that the Legendre transformation
relates the second-order Euler-Lagrange equations with the
first-order Hamilton’s equations, while the solutions and
the integrability survive through the transformation.
Following a similar ideology, one may easily understand
the role of the transformation ¢ = f'(R) in f(R) gravity,
namely it decreases the order of the theory from four to two
([61-63,65,66]), while the solution trajectories remain
invariant.

In addition, there is a conformal equivalence between
f(R). gravity theories and general relativity with a scalar
field. The former theories are fourth order in the metric
variables and the latter are second order in the effective
scalar field, which is determined by the logarithm of the
scalar curvature, R. From the point of view of the initial
value problem, the general solution of general relativity
plus a scalar field is determined by six independently
arbitrary functions of the three spatial variables on a
hypersurface of constant time, whereas the general solution
of f(R) gravity in vacuum is determined by 16 arbitrary
spatial functions [68,69]. However, if the metric is spe-
cialized to the zero curvature Friedmann model then no free
functions are required in either case. Likewise, all vacuum
or trace-free fluid solutions of general relativity are also
particular solutions of f(R) gravity theories if f(0) = 0 and
are characterized by the same number of free spatial
functions in both theories.

1. Hamilton’s equations

Using the standard Hamiltonian approach, and with the
aid of Eq. (15), we calculate the canonical momenta

Np, = 12a¢a +6a*p,  Np,=6a’a, (16)

so the Hamiltonian function becomes
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PaPy PPy

H=N
6a> 64’

@V($) = 2puoa”"V |, (17)

where the field equations of the previous section are those
of Hamilton’s equations and the constraint H = 0. In order
to proceed with the dynamical analysis, we need to
introduce the functional form of the lapse function N.
Without loss of generality and in order to simplify the field
equations we prefer to utilize N = a’*~" and so the
equations of motion reduce to the following system:

. a3y—5 . a37—5
a = 6 P> ¢: (pu_gp(ﬁ)? (18)

6
a3y—6
p¢ = 6 pé =+ a3yV,¢, (19)
and
) a3y—7
3V (). 20)

Dynamically speaking, these form a two-dimensional
autonomous Hamiltonian system. Except for the nominal
conservation law, namely H = 0, it is essential to determine
a second conservation law in order to characterize the
dynamical system as integrable. However, the existence of
a second conservation law depends strongly on the func-
tional form of the effective potential V(¢), or equivalently,
on the form of f(R). It is important to mention that our
analysis and the solutions that we find below can be
transformed for any other lapse function N(t), for more
details we refer the reader to the discussion in [70].

In the rest of the paper, we will study a family of effective
potentials for which the corresponding field equations are
integrable.

III. ANALYTIC SOLUTIONS

The fact that the field equations in f(R) gravity form a
canonical Hamiltonian system implies that we can use the
basic tools of classical mechanics in order to investigate the
integrability of the system. Specifically, we are interested in
those cases where the field equations are invariant under
generalized symmetries and are linear in the momentum:
the so-called contact symmetries. These symmetries pro-
vide quadratic conservation laws in the momentum and
they can be determined by using Noether’s second theorem.
In the Appendix, we provide the basic mathematical tools
of the method used here. More details regarding the
application of generalized symmetries in modified theories
of gravity can be found in Refs. [57,58,60].

The application of the generalized symmetries provides
the following general form of the effective potential

V(p) = V" + Vo2, (21)

where the constants P, Q are functions of the barotropic
parameter y. Obviously, this potential describes a large
body of f(R) models. In what follows, we discuss the
different cases for the parameters P, Q, which follow from
the symmetry conditions in order for the field equations to
admit extra conservation laws.

A. Model A
For (P, Q) = (0, —14) the potential is

Valp) =V, + Vo, (22)

and the field equations (18)—(20) admit the following extra
conservation law:

Ih = 6a°"a[(3y = 4)pa + a) - & <§ Vir+ V2¢‘%>,

5
(23)
for y #3, or
I, =30a " a[p(Ina — 1)a + galna
—5d5Ina(V, + Vyp2) + V,a® (24)

for y = 5/3. At this point we should mention that the above
effective potential (22) has been studied in [60] and it
corresponds to f(R) = R: — f, gravity. However, the con-
servation law (23) is more general with respect to that of
[60], since in the latter article only the case of a dust fluid
(y = 1) has been used. 1 ]

Performing the transformation a = x %=, ¢p = yx¥-3, for
Yy # % the constraint equation and the conservation law 14
are written as

5-3 ‘ ray
B-3) PPy — Vi — Voxdy = 2p,0 =0, (25)

6
and
5-3y 3 5 TR
( 3 )py(ypy—xz?x)+§7/V1x5*3y+sz2<5*3”y =1, =0,
(26)
with
. 5-3y . 5-3y
==y, ==, 27
X g P A g P (27)

Hence, from Egs. (25), (26), the action S(x,y) can be
determined and the field equations are reduced to those
of (27) where

024026-4



NEW INTEGRABLE MODELS AND ANALYTICAL ...

PHYS. REV. D 97, 024026 (2018)

IS(x,y)
Ox

dS(x,y) '

o (28)

Py = and p, =

We find after some calculations that in the cases of dust
(y = 1) and relativistic matter (y = 4/3) the corresponding
actions S(x,y) are given by

5
S(5,9) = = 222\ YLy + 109,00+ 2V,)
d
/ \/_V2X4 X for y = 1
\/ SIA + 1Opm0x + 2V1X2)
(29)
and
0 5
S(06,3) = =5\ 354 + 10,00+ V15%)
VEOVarids for 4/3
) }/ - .
V(514 + 10p,0x + V1x°)
(30)

1. Special case

In order to complete the analysis of the potential (22), we
consider the case of y = % Utilizing the coordinate trans-
formation a = e“, ¢p = ve™ the constraint equation and the
conservation law I, become

p”6pv — Ve — ey —2p,0 =0, (31)
and
5 5 11 1 7
gp,,(upu —vp,) + Ve (1 = 5u)=5Vyer uv2 -1, = 0.

(32)
Therefore, the action is calculated to be
2+4/30 Z
S(u,v) = —\g_ \/v(lOume + Vet —1,)
e
_ V30V, / o (33)
\/(10”Pmo + Vlesu - IA)

while the field equations are reduced to the two-
dimensional system,

V30

i=———1/(10up,,o + Ve —1,), (34)
v

V30 Vi 42,00 + 0V,
6 /(10up,o+ Ve — 7A)1J'

Qualitative Evolution of we"(z)
-0.7 T T T T T T

-0.8

EoS parameter w_(z)
o
©
T

FIG. 1. Qualitative evolution of the equation of state parameter
(39). For the plot we selected V, = 2. The solid line is for
V| = 0.65, the dash-dash line for V; = 0.70 while the dash-dot
and dot-dot liens are for V| = 0.75 and V| = 0.80 respectively.

For large values of u, that is in the late universe, this
system approximates to

v30 v30
i=—Y2 e, =Yy, (36)
v 6\/Vl

which means that [4v= —(6‘/721) [e*du and In(v) =

(- 3‘;2])6%'4. In this case, after some calculations, we find
1V, 5
= ——= 37
$(a) 9V, a@ + go. (37)

Lastly, the Hubble function for large values of a takes the
form

ViV,

H=aiexp ( ﬁ). (38)

Also, the effective equation of state (EoS) parameter is
found to be

V30V,
18

werr(a) = =1 — (3- 2V2V1\/5)a%- (39)

Notice that, in fig. 1, we present the redshift evolution of
the latter EoS parameter.

B. Model B

In this class of models, the constants P and Q in
the effective potential (21) have the following simple
expressions

024026-5
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3y — 10
_ , 40
0=-3 (40)

Obviously, the prohibited values y # 4/3 and y # 2 imply
that in this case the cosmic fluid cannot be that of radiation
or stiff matter. These two special cases need to be studied
separately.

Now, the conservation law is

3y -5)

. 2
Iy = a3y — 4)pa + ag)* — ( 3 V,aS .

(41)

for y # % At this point we use the normal coordinates
(x,y) = (re’, re7?), where the pair (x,y) is given by
a=x75,¢ = yxis, for y # 2. It is worth noting that in
the new coordinates the conservation law is that of the
Lewis invariant which means that the dynamical system
admits as a conservation law’ the Lewis-invariant [75].
Within this framework, we define the constraint equation
and the conservation law, I, by

2 2
\%
(3y—5><”’+ £ ) Vi = e = 2,0 = 0.

24 2477
(42)
2
P 5 120
3—g+2‘/2 <§—}/) e43r _IB = 0, (43)
with
5—-3y 3y -5
=— = - . 44
r 12 Pr 12r2 Peo ( )

After some simple algebra, we obtain the corresponding
action S(r, 0)

s(r,e):/\/72<<y—§>v2e%’r—73>d9+ (45)

5 5 1.
_/\/72 <_2pm0 (J/_§> - <J/_§> Vir 2”—%131‘_2) dr.

(46)

Using the conservation law, we find that the constraint
equation reads

*For more applications of the Ermakov-Pinney system in
gravitational theories and cosmology, see [71-74].

231
4= Br =SV + =2 =20y =5)p,0. (47)

Inserting the expression 7 = % p, into Eq. (47), we have

(3y —5)i? 2 31p
———— = Virr 4+ ——m5=2p,0.
3456 Y By Sy e
Interestingly, in the case of y = 0 (w,, = —1), the above

equation becomes
) I
et =Vi=2pu0=Clpmo, Vi). (48)

a solution of which is

3 3 _ -
(1) (c+1p)+ s (—=c,Ct + CP)

~5C
3 a 12
:ro—l—g(—cht—i—Ct)

where c¢; is an integration constant, C is a constant that
depends from (p,,0.V,) and C = 1152C. Hence, this
analytical solution behaves as r =t and r = ¢*> for small
and large values of ¢, respectively.

Moreover, in the case of Iz =0, it follows that

! =0y([ %)W), which implies that for small or large

values of ¢t we have a(t) =r"")(Inr)2") and a(r)=
(1)t (V), where A(y) are constants related to the barotropic
index y. Recall that these solutions are expressed in the time
in which the lapse function is N(t) = a*~1),

Below, we will consider some special cases, namely
y=15/3,4/3 and 2.

1. Special case y=5/3
Here we consider y = %; hence, from Eq. (40), we have
P=Q =5 and the effective potential is given by
V(¢) «x ¢°. The coordinates that we use here are those
of Sec. Il A 1, namely, (u, v). In this context, we obtain the
constraint equation and the conservation law Ip:

pupv

6 + (Vi + V)0’ +2p,0 =0, (49)
2
Pu
Lu_p,=0.
By 1y =0 (50)

with v = % Pyt = % p,. Here, the action takes the form

2|pmol Vi+Va) ¢
S(u,v) = 6+/1 - ; 51
(u.0) Y AT, LR

that is,

024026-6
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. . 20pmol  (Vi+Va)
= /I d =210 > 52
’ S V) PR T/ P 52)
or equivalently
Vi + V,)(Ip)?

R/ 180

Notice, that the scale factor of the universe is approximated

[omol
by a(t) = e* = eV's” and a(t) = e~ for small
and large values of t, respectively, where for the latter case
we need to have V| + V, < 0. Furthermore, the expression
for the Hubble function at small values of ¢ is found to be

Vi +V)Up)?
180

H(a) =a"?(Ina)'/?, (54)

while for large values of ¢ we get

H(a) =—(V, + V,)a*(Ina)®". (55)

2. Radiation fluid

As we have already discussed, Model B does not exist
for y = g—‘ (w,, = 1/3). In this case, the potential is

V() = Vid?, (56)

while the corresponding conservation law generated by the
same Killing tensor becomes

Iy = a**. (57)

transformation  a = r(¢)[cosh 9(¢)+

Performing  the
sinh 9(1)], ¢ = r(r)[cosh 9(¢) —sinh 9(7)], we find that
(r)

the constraint equation and the conservation law [’ are
written as

Vit 4 6i2 = 2py + 6r29> =0 (58)
6r*9> — I = 0. (59)

from which we obtain directly
Virt + 6% = 2p, +i—’j =0. (60)

Solving the above set of equations, we can define the
quantities r(7) and 6(¢). For example, if we assume for
simplicity that py = I = 0, then we find

6
)=t ——nr——, I(t) = ¢y, 61
I‘() \/TV](CI—Z‘) () (%] ( )
and thus Cl(t) = m,gﬁ(l‘) = im In this

case, the Hubble function can now be directly calculated

(N = a) and shown to be a constant, that is (H(a))* =
o = ‘V | , which is the de Sitter solution. That is an expected
result smce the current potential corresponds to the

f(R) = R? theory.

C. Model C

The third model that we find is that for which the
constants P and Q are expressed in terms of the barotropic
index by

3y +5

2 b
For this model the corresponding conservation law is
calculated to be

P =

0 =3y. (62)

Ic =3y —4)a>V¢*a® +3(y -

3y—=5
+_(76 ) 3y+1¢

a3 pagp + a3 §*

T+3y 3]/ -5 3y+1
T 37/7‘/2(6145) .
(63)

Using the transformation a = 775, ¢p = wz¥-5, we write the
constraint equation and the conservation law in the new
coordinate system as

5+3y

5—-3y
—Vow¥ — V1 —Z +— 122 PwP: —4pmo =0, (64)
2
WP Dy 2 Vi(5-3y) 7
lr=——>(5-3 5-3 _
c="gp, O-¥H 144( e

V27(5 - 37’) 143y
—_ , 65
21+3y) (65)

where now z = 5123! Py and w = 512? D

Following [29], we can see that the dynamical system is
supported by a Lie surface and the solution of the
Hamilton-Jacobi equation provides the action

24V, B0

SZ,W =z IC—|——W37+1+ m

) \/ (5-3)@r+1) 53"
(66)

1y, Sy
/ dw 245\/ : 8 . (67)
W N
\/Ic+ e mrermy A o v A

where y # 5/3.

1. Special case y=5/3

Again, in the special case of y :%, we utilize the
coordinates of Sec. IIl A 1, (u, v). Therefore, the constraint

(u)

equation and the conservation law /.’ now take the form
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—PuPy + 6(V1 + VZ)US + 4pn10 = O’ (68)
2
Pu
——1-=0. 69
Pl (69)

Now, we obtain

\%
b= \/I§"> and i = —2mo + (Vi+ Vo) v,
o0/ 1 6/

where & = { p,., it = { p,. Hence, we can write an analytic
solution in closed-form, namely

(70)

v(t) = \/Ict and

Pmo (Vl + VZ)(IC)% 6
= , 71
u(t) 9\/Et+ 26 1 +c (71)

and thus we obtain

Pmo (Vi + Vo)) 6
1) = t t . 72
a( ) exp <9\/E + 36 + c ( )

For small values of ¢, we easily see that a(f)=
exp (Agt) + ¢, while for large values of ¢ the scale factor
becomes a(r) = exp (A;1°) + c. Using the expression of

the Hubble function H(a)= 4% where now N = a?
we find

1
Na

H(a)=a"i — ca™ (73)
for small values of ¢, and
H(a) = 6(A,)s(In (a — ¢))i(a — ¢)a™s, (74)

for large values of the cosmic time. Finally, in this scenario
the corresponding action is given by

S(u,v) = I2[(V + Va)t® + 24uppg + 36ulc).  (75)

IV. QUINTESSENCE AND ACCELERATION
FOR EMPTY SPACETIME

The action integral of the O’Hanlon field ¢ in a four-
dimensional empty spacetime is given from the following
expression:

5= [ arv=gor-vip). (76)

Under the conformal transformation g;; = ¢g;;, Eq. (76)
becomes

R 1_. 2y
SMN = /dx4 V=g |:_§ + Eguvywvvw —-e€ ﬁV(W):| ’
(77)

where R now is the Ricci scalar of the conformal metric g; j
and y is related with the field ¢ as

w=1V3Ing or ¢=exp (?10 (78)

The main difference between the fields ¢ and y is that they
are defined in different frames. Specifically, y is minimally
coupled scalar field, while ¢y is nonminimally coupled and
defined in the Jordan frame.

In our case, with the aid of Eq. (78), the family of
potentials provided by Eq. (21) is written in terms of y as
follows,

V(y) = Viexp (ay) + Vyexp (ay), (79)

in which @ = (P —2)/v/3 and = (Q —2)//3.

This class of potentials has been studied in the early
universe in Ref. [76], and recently a special case of this
family of potentials has been investigated in the constant-
roll inflationary regime in Ref. [77]. Barreiro et al. [76]
have shown that Eq. (79) can describe various scaling
solutions in the early universe which depend on the
constants appearing in the exponential terms, namely «

and ﬂ:%As was discussed in [76], one of the

coefficients a,  has to be greater than 5.5, (for example,
we assume |a| > 5.5), in order for the theory to be in
agreement with the constraints imposed by the primordial
nucleosynthesis. Furthermore, in order to have a quintes-
sence description with equation of state parameter that fits
observations, the second free parameter is constrained by
f < 0.8. Moreover, for those values of the parameters
where aff > 0, there exists a late-time attractor which
describes and accelerated universe with equation of state
parameter different from —1. However, for aff <0 the
equation of state parameter of the late-time attractor has
an oscillatory behavior until it mimics the cosmological
constant.

In Fig. 2, we present the exponential rates of the potential
(79) for the second family class of models. If we assume
that y is to be the parameter of a barotropic fluid, that is,
y € [1,2) the vertical axis is constrained by the same
bounds. In general, mathematically y can take any value
except y # ‘3—‘. However, close to the value y = %, which
corresponds to the limit where the matter source is
radiation, we can see that our parameters are in agreements
with the bounds that we discussed on the previous para-
graph and specifically those arising when af > 0.
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— T T ——T

-4

e I S
FIG. 2. Exponential rates of the early universe potential (79) for
the family class of models B which corresponds to the Ermakov-
Pinney system.

V. CONCLUSIONS

In this work, we have provided new analytical solutions for
f(R) gravity models which contain an ideal fluid in a
spatially flat FLRW universe. In order to determine the
f(R) models which admit exact solutions, we applied the
well known method of invariant transformations and, with
the aid of Noether’s second theorem, we constructed the
corresponding conservation law which was used to solve the
Hamilton-Jacobi equation. Then, this solution was applied in
order to reduce the field equations to a system of two first-
order ordinary differential equations and express the solution
in closed-form (where possible). It is interesting to mention
that some of the current f(R) models have been discussed in
Ref. [59], and in the framework of Brans-Dicke gravity in
Ref. [58]. However, in this work we found new cases of
integrable f(R) models. Therefore, in the context of spatially
flat FLRW metrics, the combination of the present work with
those of Paliathanasis et al. [59] and Papagianopoulos et al.
[58] provides a complete study of the integrable f(R) models
that contain conservation laws that are quadratic in momen-
tum. Finally, since the issue of frames are still open, namely
if analytical solutions have to be interpreted either in the
Einstein frame or in the Jordan frame, we have studied
conformally related metrics and scalar fields in the frame-
work of O’Hanlon’s theory. In the Jordan frame, we
determined the corresponding minimally coupled scalar field
potential which corresponds to the integrable models that we
found in the Einstein frame.
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APPENDIX: SYMMETRIES AND
CONSERVATION LAWS

In this appendix, we present the basic mathematical
material which applied in this work towards determining
the conservation law of the gravitational field equations.

Consider a differential function F(x',u®, u’, u%;...)

) ij
which is defined in the jet space {x’, u”, u{} ut, .} where

Jdjo
x' denotes the independent variables and u* are dependent
variables. The differential function F will be invariant
under the infinitesimal transformation,

X =x e (1 ul uf ul ),

A= ut et (X, WP ufuf L),

if and only if tF(x', ut,ul, ufy...) = F(&, @t wh, il-...),
which means that at every point the value of the differential
function will be the same [78,79]. This is equivalent to the
following mathematical expression,

X"F =F, (A3)
where X is the generator of infinitesimal transformation
(A1)—(A2) defined as

X =& uf ul ub )0+t (6 uP ul uf )0,

(A4)

X" denotes its extension in the jet space {x,u?,
ut, uf}/, ..yand A = A(x',u,u; u ;...) is a function which
should determined. If there is a function A such that the
condition (A3) holds then the generator X is called a
symmetry of the differential function.

The functional form of the generator (A4) defines the
kind of symmetries. For instance, when &, »* are functions
only of {x', u*} then X is called a point symmetry, while if
& A are linear in the first derivatives, u , then X is called
contact symmetry. Of course, all the Vector fields are Lie
symmetries because we are dealing with local infinitesimal
transformations.

There are various methods to construct conservation
laws for differential functions/equations with the aid of the
symmetry vectors. However, the simplest method is to
apply Noether’s theorems. The first of these states that if
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the action integral is invariant under the action of an
infinitesimal transformation then the field equations are
invariant. For Lagrangian functions of the form £(¢, ¢', ¢'),

which describe second-order differential equations,
Noether’s first theorem takes the form,
d
X% o (A5)

where ¢ is the component of the generator X in the direction
of the independent variables and ® = ®(z,¢,g) is a
boundary function.

In our discussion, the Lagrangian of the field equations has
the form £ = T — V; thatis, £(¢*, ¢*) =1v,;4'¢’ — V(q*)

where 7,;(¢*) is the minisuperspace metric. Therefore, with
this family of Lagrangians, and for contact symmetries in
which X = K'(, ¢*)¢'d;, the Noether symmetry condition
(AS) gives the condition
K’]Vj + (D,i - O, (A6)
where K;; =K;;(¢*) is a Killing tensor of the
minisuperspace.
Finally, Noether’s second theorem can be applied to
write the explicit form of the corresponding conservation

law, which for these types of contact symmetry takes the
simple form, [ = Kijc']jg—éﬁ - ®.
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