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We discuss properties of black holes which are pierced by special configurations of cosmic strings. For
static black holes, we consider radial strings in the limit when the number of strings grows to infinity while
the tension of each single string tends to zero. In a properly taken limit, the stress-energy tensor of the string
distribution is finite. We call such matter stringy matter. We present a solution of the Einstein equations for
an electrically charged static black hole with the stringy matter, with and without a cosmological constant.
This solution is a warped product of two metrics. One of them is a deformed 2-sphere, whose Gaussian
curvature is determined by the energy density of the stringy matter. We discuss the embedding of a
corresponding distorted sphere into a three-dimensional Euclidean space and formulate consistency
conditions. We also found a relation between the square of the Weyl tensor invariant of the four-
dimensional spacetime of the stringy black holes and the energy density of the stringy matter. In the second
part of the paper, we discuss test stationary strings in the Kerr geometry and in its Kerr-NUT-(anti-)de Sitter
generalizations. Explicit solutions for strings that are regular at the event horizon are obtained. Using these
solutions, the stress-energy tensor of the stringy matter in these geometries is calculated. Extraction of the
angular momentum from rotating black holes by such strings is also discussed.
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I. INTRODUCTION

Cosmic strings are one-dimensional topological defects
which might be formed in the symmetry-breaking phase
transitions in the early universe [1]. The string’s tension μs
and its width ηs are related to the characteristic energy scale
of the corresponding phase transition m via

μs ∼
mPl

lPl

�
m
mPl

�
3

; ηs ∼ lPl
m
mPl

: ð1Þ

Cosmic strings formed in the early universe would distort
the cosmological microwave background (CMB). However,
the observations indicate that their contribution to CMB
cannot be more than 10% [2].
The dynamics of a test string in an external gravitational

field gμν is described by the Nambu-Goto action

I ¼ −μs
Z

d2ζ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðγabÞ

p
; γab ¼ gμν∂ζaxμ∂ζbx

ν:

ð2Þ
Here, μs is the string tension, and ζa (a ¼ 0, 1) are
coordinates on the string world-sheet. The functions
xμðζaÞ determine string’s embedding in the bulk spacetime.
The stress-energy tensor of the string is localized on its
surface and is of the form [1]

Tμν ¼ μsffiffiffiffiffiffi−gp
Z

d2ζ
ffiffiffiffiffiffi
−γ

p
γabxμ;axν;bδð4Þðxσ − xσðζaÞÞ: ð3Þ

For a straight string in z-direction in a flat spacetime with
Cartesian coordinates ðt; z; x; yÞ, it takes the form

Tμ
ν ¼ diagð−μ;−μ; 0; 0Þ; μ ¼ μsδðxÞδðyÞ: ð4Þ

The spacetime is locally flat outside the string, and it has
the angle deficit ν ¼ 8πμs. Such a space can be obtained by
cutting out a wedge of angle ν along the z-axis and gluing
together the edges [1,3].
Several interesting effects occur in a situation when a

cosmic string, passing near a black hole, is caught by the
latter (see, e.g., the book [4] and references therein). The
simplest case corresponds to an infinitely long straight
string piercing a black hole [5]. Properties of static black
holes pierced by a polyhedral set of radial straight strings
were discussed in [6,7]. In the paper [8], the authors
introduce a notion of a “thorny sphere”, which is every-
where locally isometric to a round two-dimensional sphere
except at a finite number of isolated points where it has
conical singularities. Using thorny spheres, a general
solution for a black hole pierced by an arbitrary number
of radial strings was constructed. Such configurations can
be used for quantum mining of energy from black holes
[9,10]. Such a model was discussed in connection with
the information loss paradox [11,12]. The interaction of
classical strings with a rotating black hole can also be used
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for extraction of the energy from the latter [13–16]. In some
aspects, this process is similar to the Blandford-Znajek
mechanism [17,18].
In the present paper, we continue the study of interaction

of cosmic strings with black holes. We generalize the
results on the thorny black holes to the case when the
number of strings attached to the black hole grows to
infinity while their tension decreases. In the properly
chosen limit (“smearing the string”), such a configuration
describes a radial distribution of what is called the stringy
matter. We discuss properties of static and stationary black
holes with such stringy matter hair.
The paper is organized as follows. After the Introduction,

we review geometrical properties of the spacetime for a
straight smeared string (Sec. II). In Sec. III, we describe a
solution of the Einstein equations for a static charged (anti-)
de Sitter [(A)dS] black hole with the stringy matter. The
corresponding metric is a warped product of a 2D metric of
the ðt; rÞ sector of the unperturbed solution and a 2D metric
of the distorted sphere, the Gaussian curvature of which is
determined by the stress-energy tensor of the stringy matter.
The embedding of a distorted sphere into 3D Euclidean
space, consistency conditions, and the relation between its
2D Gaussian curvature and 4D curvature invariants are also
discussed in this section. Single strings piercing a Kerr
black hole and the stress-energy tensor of corresponding
stringy matter are discussed in Sec. IV. Section V contains
the generalization of these results to the case of a
Kerr-NUT-(A)dS black hole. Section VI contains a brief
discussion of the obtained results.

II. GEOMETRY OF A STRAIGHT
SMEARED STRING

Since the force between any two straight cosmic strings
with arbitrary orientations vanishes, one can consider a
static ensemble of such cosmic strings which are in passive
equilibrium. In particular, one can choose a set of parallel
cosmic strings and take a limit of their continuous distribu-
tion. In such a limit, the number of strings grows to infinity,
while the tension of each individual string decreases. An
action for such stringy matter was discussed in [19,20].
The gravitational field for such one-dimensional straight
distribution of the stringy matter can be written as [1]

ds2 ¼ −dt2 þ dz2 þ dρ2 þ f2ðρ;ϕÞdϕ2: ð5Þ
Substituting the metric (5) in ðt; z; ρ;ϕÞ coordinates into the
Einstein equations

Gμ
ν ≡ Rμ

ν −
1

2
δνμR ¼ 8πTμ

ν; ð6Þ

where one finds

Tμ
ν ¼ diagðμ; μ; 0; 0Þ; μ ¼ μðρ;ϕÞ ¼ −

1

8π
f−1∂2

ρf:

ð7Þ

This is exactly what one would expect for a one-dimensional
stringy matter distribution.
We assume that the angle coordinate ϕ has the period 2π.

Then the regularity of the metric (5) at ρ ¼ 0 implies that
f ∼ ρ near this point.
In the domain outside the matter, the Gaussian curvature

vanishes, and the geometry can be embedded into three-
dimensional Euclidan space as a cylinder [21]. The metric
in this domain can be written in the form (5) with f ¼ bρ.
The parameter b is connected to the angle deficit via
ν ¼ 2πð1 − bÞ.
The tension μ of the stringy matter is directly related to

a special geometric invariant. Namely, consider the two-
dimensional metric

ds2ð2Þ ¼ dρ2 þ f2ðρ;ϕÞdϕ2: ð8Þ

The Gaussian curvature K of this 2D metric, which is
connected to the 2D Ricci scalar ð2ÞR via K ¼ ð2ÞR=2, is

K ¼ 1

2
ð2ÞR ¼ −f−1∂2

ρf: ð9Þ

Thus, one has

K ¼ 8πμ: ð10Þ

III. STATIC BLACK HOLES WITH
STRINGY HAIR

A. Geometry

Our starting point for constructing a solution for a static
black hole with stringy hair is the following metric:

ds20 ¼ −fdt2 þ dr2

f
þ r2dω2

0; ð11Þ

dω2
0 ¼ dθ2 þ sin2θdϕ2: ð12Þ

For

f ¼ 1 −
2M
r

þQ2

r2
−
1

3
Λr2; ð13Þ

this metric describes a static charged spherically symmetric
black hole in an asymptotically A(d)S spacetime; see also
[22]. It is a solution of the Einstein-Maxwell equations

Gμ
ν ≡ Rμ

ν −
1

2
δνμR ¼ 8πTμ

ν; ð14Þ

Fμν
;ν ¼ 0; Fμν ¼ 2A½ν;μ�; ð15Þ

with the potential

Aμ ¼ ðQ=rÞδtμ: ð16Þ
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The stress-energy tensor which enters the Einstein
equation is

Tμν ¼ −
1

8π
Λgμν þ TðemÞ

μν : ð17Þ

Here the first term in the right-hand side is just a
cosmological constant while the second term is the
stress-energy tensor of the static electric field

TðemÞ
μν ¼ 1

4π

�
FμβFν

β −
1

4
gμνFαβFαβ

�
;

gνρTðemÞ
μρ ¼ diagð−Y;−Y; Y; YÞ; Y ¼ Q2

8πr4
: ð18Þ

The corresponding black hole solution with the
stringy hair is obtained by the following deformation
of the metric (11):

ds2 ¼ −fdt2 þ dr2

f
þ r2dω2; ð19Þ

dω2 ¼ expð2σÞdω2
0: ð20Þ

The metric is still a warped space where the 2D round
sphere is distorted and possesses the metric dω2. Let us
note that the function fðrÞ remains the same. The radius rþ
of the black hole horizon, fðrþÞ ¼ 0, and its surface gravity,

κH ¼ 1

2

df
dr

����
H
; ð21Þ

are the same as that for the undistorted black hole.
Introducing the advanced time

dv ¼ dtþ dr
f
; ð22Þ

one can check that the metric in these coordinates,

ds2 ¼ −fdv2 − 2dvdrþ r2dω2; ð23Þ

is regular at the future event horizon.1 The surface area of
the horizon is

A ¼ r2þ

Z
dθdϕ expð2σÞ sin θ: ð25Þ

It is easy to check that
(i) The potential (16) is still a solution of the Maxwell

equations in the distorted metric (19);
(ii) The stress-energy tensor of this Maxwell field has

the same form (18);
(iii) The distorted metric (19) obeys the Einstein

equation (14) where the stress-energy tensor (17)
is modified by adding a term,

T μ
ν ¼ diag

�
−Φ
8πr2

;
−Φ
8πr2

; 0; 0

�
; ð26Þ

Φ ¼ expð−2σÞ½1 −△σ� − 1: ð27Þ

Here, △ is the Laplace operator on the unit
sphere

△ ¼ 1

sin θ
∂θðsin θ∂θÞ þ

1

sin2θ
∂2
ϕ: ð28Þ

We choose the notation for Φ so that for the matter
with positive energy density the functionΦ is also positive.
We call the matter with the equation of state (26) stringy
matter.
The Gaussian curvature of the 2D metric dω2 is con-

nected with the 2D Ricci scalar ð2ÞR via K ¼ ð2ÞR=2.
Simple calculations give

K ¼ 1

2
ð2ÞR ¼ expð−2σÞð1 −△σÞ: ð29Þ

For a unit round sphere, when σ ¼ 0, one has K ¼ 1.
Substituting (29) in (27) gives

K ¼ 1þΦ: ð30Þ

B. Embedding and consistency conditions

For positive energy density of the stringy matter, Φ ≥ 0,
so that K ≥ 1. If one applies the results to the case of
Φ < 0, we assume always that Φ > −1. This means that K
is positive, and because the sphere is compact, there exists
such a positive number c that K > c. This essentially
prevents the stringy matter from changing the topology of
the distorted 2-sphere. In this case, the distorted sphere can
be isometrically embedded into a flat three-dimensional
space E3 as a regular surface M2 [27].
Let us chose a point p on the deformed sphere M2 and

denote by n⃗ an outward unit vector normal to M at this
point. Let dA be the element of the surface area at p, then
we denote

1Let us notice that this metric is a special case of a general
class of Robinson-Trautman metrics [23–26]. The metric (23)
reproduces the Robinson-Trautman line element (see Chapter 28
of [26])

ds2 ¼ 2r2P−2dζdζ̄ − 2dudr − 2Hdu2; P;r ¼ 0: ð24Þ

after the evident changes 2H → f, u → v. The angular line
element 2P−2dζdζ̄ takes the form dω2 after the transformation
ζ ¼ ffiffiffi

2
p

eiϕ tan θ=2. In order to obtain the metric for a stringy
black hole, one can start with the ansatz (24) and obtain the metric
functions P and H by solving the Einstein equations in presence
of the stringy matter.
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dA⃗ ¼ n⃗dA: ð31Þ

The Gauss map Ψ of the convex surface M2 to the unit
round sphere S2 is defined as follows. It maps a point ofM2

with the normal vector n⃗ to the point of S2 with the same
normal vector [28,29] (see Fig. 1). Let us denote by dα
and dα⃗ ¼ n⃗dα the scalar and vector surface area elements at
ΨðpÞ, respectively. Then one has

dα ¼ KdA; dα⃗ ¼ KdA⃗: ð32Þ

The surface areas of M2 and S2 are

A ¼
Z
M2

dA; S ¼
Z
S2
dα ¼ 4π: ð33Þ

The second of these relations can be rewritten as
Z
M2

dAK ¼ 4π: ð34Þ

This is nothing but the Gauss-Bonnet theorem. Using the
relations (30) and (33), one also obtains

Aþ
Z
M2

dAΦ ¼ 4π: ð35Þ

Hence, for non-negative energy density of the stringy
matter, Φ ≥ 0, the surface area A of the distorted sphere
is less than or equal to 4π.
Another set of useful relations, called consistency con-

ditions, can be obtained by using the following divergence
theorem [30]:

Z
V
d3V∇⃗φ ¼

Z
∂V

dA⃗φ: ð36Þ

Here, ∂V is the boundary surface restricting three-dimen-
sional volume V, and dA⃗ is the vector surface area element
on this surface. The application of (36) to M2 and S2 for a
special choice φ ¼ 1 gives

Z
M2

dA⃗ ¼ 0;
Z
S2
dα⃗ ¼ 0: ð37Þ

The second of these relations can written in the forms

Z
M2

dAKn⃗ ¼
Z
M2

dAΦn⃗ ¼ 0: ð38Þ

For the black hole with stringy matter, the second relation
has a simple interpretation: The total force acting on the
black hole, which is induced by stringy matter tension,
must vanish [8]. It is this condition that secures our
deformed black hole solution to be static.

C. Curvature invariants

In the warped geometry (19), the stringy matter directly
affects the geometry of the distorted 2-sphere, and its
stress-energy tensor contributes to the Gaussian curvature
of the latter via the relation (30). Let us demonstrate that
the square of the Weyl tensor, characterizing the four-
dimensional spacetime curvature, is also simply related to
the energy density of the stringy matter. We write the metric
of the stringy black hole in the form

ds2 ¼ r2dŝ2; dŝ2 ¼ dα̂2 þ dω2; ð39Þ

dα̂2 ¼ −fr−2dt2 þ dr2

r2f
: ð40Þ

We denote the quadratic invariants of the Weyl tensor for
the metrics ds2 and dŝ2 by

C2 ¼ CμνρσCμνρσ; Ĉ2 ¼ ĈμνρσĈ
μνρσ; ð41Þ

respectively. Under the conformal transformation relating
these metrics, ds2 ¼ r2dŝ2, they transform as

C ¼ 1

r2
Ĉ: ð42Þ

Since the metric dŝ2 is a direct sum of two independent
metrics dα̂2 and dω2, one has [31]

Ĉ ¼ 2ffiffiffi
3

p ððα̂ÞK þ ðωÞKÞ; ð43Þ

where ðα̂ÞK and ðωÞK denote the Gaussian curvatures of the
corresponding 2-metrics

ðα̂ÞK ¼ −
1

2
r2f00 þ rf0 − f; ð44Þ

ðωÞK ¼ e−2σð1 − ΔσÞ: ð45Þ

Using (30), one obtains

C ¼ 2ffiffiffi
3

p
r2
ððα̂ÞK þ 1þΦÞ: ð46Þ

FIG. 1. Illustration of the Gauss map. This map Ψ∶ M2 → S2

transforms points on the deformed 2-sphere M2 to points on the
unit sphere S2.
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At the event horizon r ¼ rþ, this relation takes the
form

CH ¼ 2ffiffiffi
3

p
r2þ

ðBþΦÞ; B ¼ 1þ rþf0þ −
1

2
r2þf00þ:

ð47Þ

In the simplest case, when the charge and cosmological
constant vanish, B ¼ 3.

IV. ROTATING BLACK HOLE WITH
STRINGY HAIR

A. Principal Killing string in the Kerr spacetime

Let us consider a stationary string in the Kerr geometry.
This metric in the Boyer-Lindquist coordinates ðt; r; θ;ϕÞ is

ds2 ¼ −
�
1 −

2Mr
Σ

�
dt2 −

4Marsin2θ
Σ

dtdϕ

þ Asin2θ
Σ

dϕ2 þ Σ
Δ
dr2 þ Σdθ2: ð48Þ

Here,

Δ ¼ r2 − 2Mrþ a2; Σ ¼ r2 þ a2cos2θ;

A ¼ ðr2 þ a2Þ2 − Δa2sin2θ: ð49Þ

This metric has two Killing vectors,

ξ ¼ ∂t; η ¼ ∂ϕ: ð50Þ

We denote, as usual, by r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
the roots of

Δ ¼ 0. Then the event horizon, which is a null surface, is
located at r ¼ rþ. The Killing vector

n ¼ ξ þΩη; Ω ¼ a
r2þ þ a2

¼ a
2Mrþ

; ð51Þ

is tangent to null geodesics, which are generators of the
horizon.
The stationary string equations are completely integrable

in this metric [32,33]. There exists a special interesting
solution describing a stationary string in the Kerr geometry,
the world-sheet of which is a principal Killing surface. This
surface has two tangent vectors. One of them is ξ, whereas
the other coincides with the null vector l tangent to a
principal null geodesic. In [13], it was proven that the
principal Killing surfaces are the only stationary timelike
minimal 2-surfaces that (i) cross the static limit surface,
where ξ2 ¼ 0, and (ii) are regular in its vicinity. Such a
principal Killing surface represents what we call a principal
Killing string. Such a string crosses the event horizon,
and its representation in Boyer-Lindquist coordinates (for
a < M) is

ϕ ¼ ϕ0 þ
a

rþ − r−
ln

�
r − r−
r − rþ

�
; θ ¼ θ0 ¼ const:

ð52Þ

The string makes an infinite number of rotations before it
reaches the horizon. However, as we shall see in the next
section, this is a coordinate effect connected with the choice
of the angle variable ϕ in the Boyer-Lindquist coordinates.
Let us emphasize that the dependence of the angle ϕ on the
radius r is the same for any value θ0 of the cone solution.
Let us introduce dimensionless parameters

ρ ¼ r=M; α ¼ a=M; ρ� ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p
: ð53Þ

Then Eq. (52) takes the form

ϕ ¼ ϕ0 þ
α

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p ln

�
ρ − ρ−
ρ − ρþ

�
: ð54Þ

Figure 2 schematically shows a line (54) in polar coor-
dinates in a 2-plane.

B. Near horizon behavior

In order to discuss the properties of the principal Killing
string near the horizon, we perform the following coor-
dinate transformation:

dv ¼ dtþ ðr2 þ a2Þ dr
Δ

; dϕ̂ ¼ dϕþ a
dr
Δ

: ð55Þ

In these ingoing Kerr coordinates ðv; r; θ; ϕ̂Þ, which are
regular at the future horizon, the Kerr metric takes the form

ds2 ¼ −
Δ
Σ
ðdv− asin2θdϕ̂Þ2 þ sin2θ

Σ
½ðr2 þ a2Þdϕ̂− adv�2

þΣdθ2 þ 2drðdv− asin2θdϕ̂Þ: ð56Þ

In these new coordinates,

ffiffiffiffiffiffi
−g

p ¼ sin θΣ; ð57Þ

FIG. 2. Representing the string, a line (54) is shown in polar
coordinates ðρ;ϕÞ in a 2-plane.
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and the Killing vectors (50) have the form

ξ ¼ ∂v; η ¼ ∂ϕ̂: ð58Þ

The null generator of the horizon (51) is

nμ¼H
�
0;

Σþ
r2þ þ a2

; 0; 0

�
; ð59Þ

where Σþ ¼ Σjr¼rþ , and “¼H” denotes an equality that is
valid on the horizon.
Written in the incoming null coordinates ðv; r; θ; ϕ̂Þ, the

principal Killing string equation (52) takes the form

ϕ̂ ¼ ϕ̂0 ¼ const; θ ¼ θ0 ¼ const: ð60Þ

We use ðv; rÞ as the coordinates on the string surface.
Then the induced metric is

dγ2 ¼ Ξ
Σ
dv2 þ 2dvdr;

Ξ
Σ
≡ ξ2 ¼ −ðΔ − a2sin2θÞ:

ð61Þ

Inside the ergosphere, Ξ is positive, so that the Killing
vector ξ, tangent to the string surface, is spacelike. One also
has

∂2
γ ¼ γab∂a∂b ¼ 2∂v∂r −

Ξ
Σ
∂2
r ;

ffiffiffiffiffiffi
−γ

p ¼ 1: ð62Þ

Using (3), one obtains

Tμν
s ¼ qτμν; τμν ¼ 1

Σ

�
−2δðμv δνÞr þ Ξ

Σ
δμrδνr

�
; ð63Þ

q ¼ qðθ; ϕ̂jθ0; ϕ̂0Þ ¼ μs
δðθ − θ0Þδðϕ̂ − ϕ̂0Þ

sin θ
: ð64Þ

We include the subscript “s” in order to indicate that this is
the expression valid for a single string. The horizon surface
element is

dσμ ¼H − sin θΣþδrμdvdθdϕ̂

¼H − ðr2þ þ a2Þnμ sin θdvdθdϕ̂: ð65Þ

Thus,

Tμν
s dσν ¼H jμδðθ − θ0Þδðϕ̂ − ϕ̂0Þdvdθdϕ̂; ð66Þ

jμ ¼H μs

�
−δμv þ a2sin2θ0

ΣH
δμr

�
: ð67Þ

It is easy to show that

jμξμ ¼H 0; jμημ ¼H − μsasin2θ0: ð68Þ

To obtain the fluxes of some observable through the
horizon, one has to project Tμνdσν on the corresponding
generator and integrate the obtained scalar over v, θ, and ϕ̂.
Since the integrand does not depend on v, the integral over
this variable gives the constant Δv, which is the duration of
time for which the flux is calculated. To obtain the flux per
a unit of time v, one hence needs to divide the flux by Δv,
resulting in the following flux rates of energy, _E, and the
angular momentum, J̇:

Ė¼H jμξμ ¼ 0; J̇¼H jμημ ¼ −μsasin2θ0: ð69Þ

Here, J̇ takes its maximal (negative) value when
θ0 ¼ π=2, that is, when the string lies in the equatorial
plane. Since a ¼ J=M, one obtains the following equation
for the dynamics of the angular momentum of the black
hole:

J̇ ¼ −
μs
M

J: ð70Þ

Its solution is

J ¼ J0 expð−t=tμÞ; ð71Þ

where tμ ¼ M=μs is the characteristic time of the deceler-
ation of black hole rotation. We can rewrite this as

FIG. 3. Illustration of the calculation of the torque. The picture
shows a small piece of the sphere of large radius r. At a point A0

with spherical coordinates ðθ0;ϕ0Þ, one introduces a triad of unit
orthonormal vectors fe⃗r; e⃗θ; e⃗ϕg. Two of these vectors, in the θ
and ϕ directions, span a two-dimensional plane tangent to the
sphere. Because the sphere’s curvature is small, this plane
practically coincides with the sphere at A0. The string enters
the tangent plane orthogonally. Its direction coincides with e⃗r,

and its position is shifted from A0 by the distance l⃗ in the
direction of e⃗ϕ. The unit vector e⃗z is in the direction of the angular
momentum of the black hole.
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tμðMÞ ∼
�
M
mPl

��
mPl

m

�
3

tPl: ð72Þ

Clearly, for the electroweak scale, this time scale is much
larger than the age of the Universe (for both stellar mass
black holes and supermassive black holes). For the Planck
scale, one has tμðM⊙Þ ∼ μs and tμð106M⊙Þ ∼ s.

C. Asymptotics at spatial infinity

Let us now discuss the string properties at far distances
from the black hole. In this asymptotically flat domain, the
Boyer-Lindquist coordinates reduce to the standard spheri-
cal coordinates. Consider a sphere with radius r and a point
A0 with spherical coordinates ðθ0;ϕ0Þ on this sphere. These
coordinates characterize the chosen string, which at large r
has the following asymptotic form:

θ ¼ θ0; ϕ ¼ ϕ0 þ
a
r
þ � � � ð73Þ

To leading order, the stress-energy tensor is

Tμν
s ¼ −

q
r2

�
δμt δ

ν
t þ δμrδνr −

2a
r2

δðμr δ
νÞ
ϕ þ � � �

�
: ð74Þ

The radially inward pointing surface element is dσμ ¼
−δrμr2 sin θdθdϕ, such that one obtains for the flux vector
in the limit r → ∞ the following expression:

jμ ¼
Z
S2
Tμν
s dσν ¼ μs

�
δμr −

a
r2
δμϕ

�
: ð75Þ

This results in a change of energy E and angular momen-
tum J according to

_E ¼ jμξμ ¼ 0; J̇ ¼ jμημ ¼ −μsasin2θ0: ð76Þ

Let us now interpret these results. We introduce three
mutually orthonormal vectors fe⃗r; e⃗θ; e⃗ϕg directed along r,
θ, and ϕ coordinate lines, respectively. For this choice,
the triad of the vectors has the right-hand orientation. The
displacement l⃗ of the string position from the origin of the
frame is a sin θ0 in the positive ϕ direction,

l⃗ ¼ þa sin θ0e⃗ϕ: ð77Þ
In order to keep the string in equilibrium, one needs to
apply a force along the string’s spatial tangent vector,
which asymptotically takes the form

F⃗ ¼ μse⃗r: ð78Þ

In the frame at A0, this force would provide the torque

τ⃗ ¼ l⃗ × F⃗ ¼ μsa sin θ0e⃗θ: ð79Þ

A unit vector e⃗z, which is parallel to the direction of the
angular momentum of the black hole, is

e⃗z ¼ cos θ0e⃗r − sin θ0e⃗θ: ð80Þ

Thus, the projection of the torque on the direction of the
angular momentum of the black hole is

τz ¼ −μsasin2θ0: ð81Þ

This torque decreases the angular momentum of the black
hole, and the rate of this process is in agreement with the
result (69).2 For a visualization of this calculation,
see Fig. 3.

D. Rotating black holes with stringy hair

It is rather straightforward to smear the string and
consider a continuous distribution of the stringy matter
around a rotating black hole. It is sufficient to use the
approach developed in [19,20]. In our case, the description
of a continuous ensemble of strings is greatly simplified
because, in the incoming coordinates ðv; r; θ; ϕ̂Þ, the string
looks like a straight object with θ and ϕ̂ constant on its
world-sheet. Using this property, we define the stress-
energy tensor of the string distribution as follows:

Tμν ¼
Z

dθ0dϕ̂0 sin θ0μ−1s μðθ0; ϕ̂0ÞTμν
s ; ð82Þ

where the function μðθ; ϕ̂Þ is the density distribution of the
stringy matter. The result of the averaging (82) is

Tμν ¼ μτμν: ð83Þ

The flux of the energy through the horizon vanishes, while
the flux of angular momentum per unit time is

J̇ ¼ −a
Z

dϕ̂dθsin2θμðθ; ϕ̂Þ: ð84Þ

V. PRINCIPAL KILLING STRINGS IN
KERR-NUT-(A)DS SPACETIME

A. Principal Killing strings

We consider now a generalization of a stationary single
string solution, which we discussed in the previous section.
Namely, instead of the Kerr metric, we consider its
generalization. For this purpose, we first rewrite the Kerr

2The force of the string on the black hole would also result in
the motion of the black hole as a whole in the external space.
In order to compensate this effect, it is sufficient to attach an
additional (“dual”) string with parameters θ00 ¼ π − θ0 and
ϕ0
0 ¼ π þ ϕ0. The action of such a dual string compensates

the force of the original one, whereas the loss of angular
momentum would be doubled.
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metric (48) in new coordinates

τ ¼ t − aϕ; y ¼ a cos θ; ψ ¼ ϕ=a: ð85Þ

Its form is

ds2 ¼ −
Δr

Σ
ðdτ þ y2dψÞ2 þ Δy

Σ
ðdτ − r2dψÞ2

þ Σ
Δr

dr2 þ Σ
Δy

dy2: ð86Þ

In the above, Σ ¼ r2 þ y2. For the Kerr metric, one has
Δr ¼ r2 − 2Mrþ a2 and Δy ¼ a2 − y2.
In what follows, we consider what is called off-shell

version of the canonical metric (86). Namely, we assume
that Δr and Δy are arbitrary functions of their arguments, r
and y, respectively. In particular, this means that in the
general case, the metric does not obey the vacuum Einstein
equations. The properties of such metrics are discussed in
[34,35]. For the special choice,

Δr ¼ ðr2 þ a2Þð1 − Λr2=3Þ − 2Mr; ð87Þ

Δy ¼ ða2 − y2Þð1þ Λy2=3Þ þ 2Ny; ð88Þ

the metric (86) describes the Kerr-NUT-(A)dS black hole,
with N being the NUT parameter.
In what follows, we shall use the following results:
(i) The metric (86) possesses the principal tensor h,

which is generated by the potential b:

h ¼ db; b ¼ −
1

2
½ðr2 − y2Þdτ þ r2y2dψ �; ð89Þ

(ii) The Killing vector ξ ¼ ∂τ is related to h as follows:

ξμ ¼ 1

3
∇νhνμ; ð90Þ

(iii) The principal tensor h has four eigenvectors:

hμνlν� ¼ ∓rlμ�; ð91Þ

hμνmν
� ¼ �iymμ

�: ð92Þ

These eigenvectors can be written as follows:

lμ� ¼
�
r2

Δr
;�1; 0;

1

Δr

�
; ð93Þ

mμ
� ¼

�
iy2

Δy
; 0;�1;−

i
Δy

�
: ð94Þ

(iv) The null vectors l� are generators of principal null
geodesics in the affine parametrization,

lν�l
μ
�;ν ¼ 0: ð95Þ

(v) The principal null vectors l� are also eigenvectors of
the 2-form Fμν ¼ ξμ;ν constructed from the primary
Killing vector ξ:

Fμ
νlν� ¼ �κlμ�; κ ¼ ∂r

�
Δr − Δy

2Σ

�
: ð96Þ

(vi) Let us denote the Lie derivative along ξ by Lξ.
Then one has

Lξl� ¼ ½ξ; l�� ¼ 0; Lξh ¼ 0: ð97Þ

These relations can be easily checked by using computer
programs, e.g., GRTENSOR.
The stationary string equations in four- and higher-

dimensional Kerr-NUT-(A)dS spacetime allow a complete
separation of variables [33,36]. Here, we consider a special
case of a stationary string which regularly crosses the
event horizon. We call this solution of the string equation a
principal Killing string.
To construct this solution, we choose one of two null

principal vector fields and denote it by l (without a
subscript�)3 Since two vectors ξ and l commute, according
to the Frobenius theorem, the spacetime is foliated by two-
dimensional surfaces Σ, such that both of these vectors are
tangent to it. There also exist coordinates xμ ¼ ðv; λ; yiÞ,
(i ¼ 2, 3), such that for each Σ one has yi ¼ const and
za ¼ ðv; λÞ, (a ¼ 0, 1), which are coordinates on Σ such
that

ξ ¼ ∂v; l ¼ ∂λ: ð98Þ

In the coordinates xμ ¼ ðza; yiÞ, one has

ds2 ¼ dγ2 þ bijdyidyj; ð99Þ

where dγ2 is the induced geometry on Σ,

dγ2 ¼ γabdzadzb ¼ ξ2dv2 þ 2ðξ; lÞdvdλ: ð100Þ

Denote by nμðiÞ two mutually orthogonal unit normal vectors

to Σ. An extrinsic curvature of Σ is

ΩðiÞab ¼ gμνn
μ
ðiÞx

ρ
;a∇ρxν;b: ð101Þ

3In what follows, in our construction of the stationary string
solution, we choose l ¼ l−, which is regular at the future event
horizon.
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The surface Σ is minimal if the following conditions are
valid:

ΩðiÞ ≡ γabΩðiÞab ¼ gμνn
μ
ðiÞZ

ν ¼ 0; ð102Þ

Zν ¼ γabxρ;a∇ρxν;b: ð103Þ

Using the relations

∂2
γ ¼

2

ðξ; lÞ ∂v∂λ −
ξ2

ðξ; lÞ2 ∂
2
λ ; xμ;v ¼ ξμ; xμ;λ ¼ lμ;

ð104Þ

one gets

Zν ¼ 1

ðξ; lÞ ðξ
ρ∇ρlν þ lρ∇ρξ

νÞ − ξ2

ðξ; lÞ2 l
ρ∇ρlν: ð105Þ

The properties of l and ξ, mentioned above imply that
Zν ∼ lν. Hence, the 2-surface generated by these vectors is
minimal. We call it principal Killing surface. Since one
of the tangent vectors, l, is null, the minimal surface Σ
is timelike and represents a special time-independent
solution of the Nambu-Goto equations. We call such strings
principal Killing strings.

B. Principal Killing strings in the incoming
null coordinates

Let us change coordinates in (86) to

dτ ¼ dv −
r2

Δr
dr − adϕ̂; dψ ¼ a−1dϕ̂ −

dr
Δr

: ð106Þ

The off-shell canonical metric in these new coordinates
ðv; r; y; ϕ̂Þ is then given by

ds2 ¼ −
Δr

Σ

�
dv−

a2 − y2

a
dϕ̂

�
2

þΔy

Σ

�
dv−

r2 þ a2

a
dϕ̂

�
2

þ 2

�
dv−

a2 − y2

a
dϕ̂

�
drþ Σ

Δy
dy2; ð107Þ

such that
ffiffiffiffiffiffi−gp ¼ Σ=a. The incoming principal null vector

l, see Eq. (93), takes the form l ¼ −∂r. Hence, one
can identify the affine parameter λ with the coordinate r.
One also has

ξ2 ¼ Ξ
Σ
; ðξ; lÞ ¼ −1; ð108Þ

Ξ ¼ Δy − Δr; ð109Þ

so that the induced metric on the surface of the principal
Killing string in the metric (107) is

dγ2 ¼ Ξ
Σ
dv2þ2dvdr: ð110Þ

The string in the incoming coordinates is “straightened”,
so that θ and ϕ̂ are constant on its surface. For this reason,
the calculation of the stress-energy tensor for such a string
is straightforward and can be simply obtained by repeating
the calculations for the Kerr metric:

Tμν
s ¼ qτμν; τμν ¼ 1

Σ

�
2δðμv δ

νÞ
r −

Ξ
Σ
δμrδνr

�
; ð111Þ

q ¼ qðy; ϕ̂jy0; ϕ̂0Þ ¼ μsaδðy − y0Þδðϕ̂ − ϕ̂0Þ: ð112Þ

Due to dy ¼ − sin θdθ, the horizon surface element is

dσμ ¼H þ Σþ
a

δrμdvdydϕ̂: ð113Þ

The flux vector is hence given by

jμ ¼H μs

�
−δμv þ Δy

ΣH
δμr

�
: ð114Þ

The fluxes of the energy and angular momentum through
the horizon are

_E¼H ξμjμ ¼ 0; J̇¼H ημjμ ¼ −
μs
a
Δy0 : ð115Þ

In general, the off-shell metric (107) is not asymptoti-
cally flat, which is why a discussion of asymptotic proper-
ties is not well-defined. We omit this here.
However, by repeating the arguments presented above,

we can define smeared principal Killing string matter:

Tμν ¼
Z

dy0dϕ̂0μ
−1
s μðy0; ϕ̂0ÞTμν

s ; ð116Þ

such that the flux of angular momentum turns out to be

J̇ ¼ −
1

a

Z
dydϕ̂Δyμðy;ψÞ: ð117Þ

VI. DISCUSSION

Strings that pierce a black hole can be used for effective
quantum energy mining from them. When the number of
strings becomes large, one can approximate their distribu-
tion by stringy matter. One might say that such black holes
have stringy hair. For static black holes, the stringy matter
deforms the black hole geometry, described by a warped
metric. This metric is a direct sum of the ðt; rÞ sector of the
original solution of the corresponding Einstein equations,
whereas the warped part is a deformed unit 2-sphere. The
Gaussian curvature K ¼ 1þΦ differs from the Gaussian
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curvature of a round unit sphere by a termΦ proportional to
the energy density of the stringy matter.
The case when the black hole is rotating is much more

complicated. The reason is that if a single string is attached
to the black hole, it produces a torque that permanently
decreases the angular momentum of the black hole.
Correspondingly, the stringy matter has a similar effect,
and we calculated the rate of the loss of the angular
momentum of the black hole for both cases. Moreover,
we obtained a new solution for a stationary string in the
spacetime of the Kerr-NUT-(A)dS black hole which we
call a principal Killing string. It has the property that both
the primary Killing vector and the tangent vector to the
principal null rays are tangent to it. Also, this string
configuration is regular in the vicinity of the event horizon.
We calculated the flux of the angular momentum from
such a black hole in the cases of a single string and stringy

matter. Unfortunately, the backreaction problem is rather
difficult in this case: this is caused by the time dependency
of the geometry, including the backreaction effects. The
study of the evolution of rotating black holes interacting
with cosmic strings is a quite interesting problem.
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