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(Received 25 September 2017; published 11 January 2018)

We present a manifestly Lorentz-covariant description of the phase space of general relativity with the
Immirzi parameter. This formulation emerges after solving the second-class constraints arising in the
canonical analysis of the Holst action. We show that the new canonical variables give rise to other Lorentz-
covariant parametrizations of the phase space via canonical transformations. The resulting form of the first-
class constraints in terms of new variables is given. In the time gauge, these variables and the constraints
become those found by Barbero.
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I. INTRODUCTION

Loop quantum gravity [1–4] is one of the most prom-
ising candidates to successfully achieve a nonpertubative
and background-independent quantization of the gravita-
tional field. It is based on the Ashtekar-Barbero variables
for general relativity [5], which emerge from the canonical
analysis—with a partial gauge fixing–of the Holst action
[6]. Although this action gives rise to the same gravitational
dynamics dictated by Einstein’s equations, it contains a free
parameter1 that turns out to be meaningful at the quantum
level, since it shows up in the spectra of quantum
observables [8] and in the black hole entropy [9]. It is
believed that the presence of the so-called Immirzi param-
eter [10] may be due to the fact that the Ashtekar-Barbero
variables are obtained through the use of the time gauge
(a different gauge fixing has been recently studied in [11]),
which breaks the Lorentz invariance down to rotational
invariance in order to simplify the construction of the
associated quantum theory. Because of this, there have been
several attempts to construct a Lorentz-covariant canonical
description of the phase space of general relativity seeking
to resolve the Immirzi ambiguity [12–14] (see also [15] for
a lower-dimensional model).
The Lorentz-covariant canonical analysis of general

relativity features the presence of second-class constraints.
They can be equivalently dealt with either by introducing the

Dirac bracket [12] or by solving them in an explicit manner
[14,16,17]. In this paper we follow the latter direction. It is
worth mentioning that, although the approach derived in
[16,17] certainly is Lorentz covariant, it is not manifestly
Lorentz covariant, since it splits the Lorentz group into
boosts and rotations. Given that we would like to maintain
untouched the classical symmetries of general relativity as
much as possible, we ask whether it is plausible to solve the
second-class constraints in a manifestly Lorentz-covariant
fashion. The answer given in this paper is in the affirmative,
showing that we can describe the phase space of general
relativity using several canonical pairs, one of which is made
up of Lorentz vectors. It turns out that the different canonical
pairs are related to one another by canonical transformations
that can be regarded as the Lorentz-covariant generalization
of Barbero’s canonical transformation. As expected, the
canonical variables found in this paper lead to the Ashtekar-
Barbero variables in the time gauge. For that reason, the
new canonical variables reported here certainly constitute
a Lorentz-covariant extension of the Ashtekar-Barbero
variables.

II. HAMILTONIAN ACTION

Our notation is as follows. Internal (Lorentz) indices are
denoted by I; J;…, and take the values f0; ig, where i ¼ 1,
2, 3. Likewise, a; b;… label spatial coordinates. The
internal indices are raised and lowered with the metric
ηIJ ¼ diagðσ; 1; 1; 1Þ, where σ ¼ −1ð¼þ1Þ for Lorentzian
(Euclidean) signature. The internal group, denoted by
SOðσÞ, corresponds to the Lorentz group SO(1,3) for
σ ¼ −1 or the rotation group SO(4) for σ ¼ þ1. The
weight of a tensor is sometimes indicated with the presence
of a tilde over or below it, whereas the time derivative is
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represented by a dot over the corresponding variable.
The internal tensor ϵIJKL is totally antisymmetric and
such that ϵ0123 ¼ þ1. Similarly, the spatial tensor density
η
~
abc (~ηabc) is totally antisymmetric and satisfies η

~
123

¼ 1

(~η123 ¼ þ1). The symmetrizer and antisymmetrizer are
defined correspondingly by AðαβÞ ≔ ðAαβ þ AβαÞ=2 and
A½αβ� ≔ ðAαβ − AβαÞ=2. Furthermore, for any antisymmet-
ric quantity AIJ we define its internal (Hodge) dual
as ⋆AIJ ≔ ð1=2ÞϵIJKLAKL and also the corresponding

γ-valued quantity AIJ
ðγÞ

≔ PIJ
KLAKL ¼ AIJ þ ð1=γÞ⋆AIJ,

where γ is the Immirzi parameter.
In the first-order formalism, general relativity with the

Immirzi parameter can be described either by the Holst
action or by a BF-type action supplemented with con-
straints [18] (the BF-type formulations play a fundamental
role in the spin-foam approach to quantum gravity [19]).
By performing the 3þ 1 decomposition of the Holst action
in an SOðσÞ-covariant fashion [16] (we assume that the
spacetime has a topology R ×Ω, with Ω a spacelike three-
dimensional manifold without a boundary), it takes the
simplified form

S ¼
Z
R
dt

Z
Ω
d3xð ~ΠaIJ

ðγÞ
_ωaIJ − ~HÞ; ð1Þ

where ðωaIJ; ~ΠaIJ
ðγÞ

Þ are canonical coordinates2 and ~H is the
Hamiltonian (density), which is given by

~H ¼ N
~

~~Hþ Na ~Va þ ξIJ ~G
IJ þ φ

~
ab

~~Φ
ab þ ψabΨab: ð2Þ

Here N
~
; Na; ξIJ;φ

~
ab, and ψab (of weight −2, so that Ψab

has weight þ3) are Lagrange multipliers imposing the
constraints

~GIJ ≔ Da
~ΠaIJ
ðγÞ

≈ 0; ð3aÞ

~Va ≔
1

2
~ΠbIJ F

ðγÞ
baIJ ≈ 0; ð3bÞ

~~H ≔
1

2
~ΠaIK ~Πb

K
JF
ðγÞ

abIJ þ σΛg ≈ 0; ð3cÞ

~~Φ
ab

≔ −2σ⋆ ~Πa
IJ
~ΠbIJ ≈ 0; ð3dÞ

Ψab ≔ ϵIJKL ~ΠðajIM ~Πc
M
JDc

~ΠjbÞKL ≈ 0; ð3eÞ

where FabIJ ≔ 2ð∂ ½aωb�IJ þ ω½ajIKωjb�KJÞ is the curvature
of ωaIJ,Da is the spatial component of the SOðσÞ-covariant

derivative, g ≔ detðgabÞ is the determinant of the spatial
metric gab (the induced metric on Ω) whose inverse is
defined by ggab ≔ ðσ=2Þ ~ΠaIJ ~Πb

IJ, and Λ is the cosmo-

logical constant. As a result, the constraints ~GIJ, ~Va, and
~~H

(they are called Gauss, vector, and scalar constraints,
respectively) are first class, and generate the gauge sym-
metries of the theory. Sometimes, instead of ~Va, we
consider the diffeomorphism constraint ~Da ≔ ~Va þ
ð1=2ÞωaIJ

~GIJ. On the other hand, the constraints ~~Φ
ab

and Ψab are second class. These constraints arise from
the implementation of the Dirac procedure and are neces-
sary to obtain the correct physical degrees of freedom of
general relativity. It is worth realizing that, although the
expressions for the constraints (3c) and (3e) differ
from the corresponding ones reported in [20], they are
actually equivalent to them, since we have the relation
~ηabcgcd ~Πd

IJ ¼ �σϵIJKL ~ΠaKM ~Πb
M
L when the constraint

(3d) holds, the sign having to do with the sign ambiguity
in the solution of the simplicity constraint in the BF
formalism.

III. SOLUTION OF THE SECOND-CLASS
CONSTRAINTS

We now solve the second-class constraints, and we
proceed in such a way that we keep the explicit SOðσÞ
covariance of the theory. The constraint (3d) amounts to a
total of six restrictions on the 18 variables ~ΠaIJ. Its solution
is then given in terms of 12 independent variables ~BaI as
(see [21,22])

~ΠaIJ ¼ ϵ ~Ba½ImJ�; ð4Þ

where ϵ ¼ �1 (since the constraint is quadratic in ~ΠaIJ) and

mI ≔
1

6
ffiffiffi
h

p ϵIJKLη
~
abc

~BaJ ~BbK ~BcL ð5Þ

for h ≔ detðhabÞ, with hab ≔ ~BaI ~Bb
I . Notice that mI

satisfies the identities mImI ¼ σ and ~BaImI ¼ 0.
Moreover, we have the relation 4ggab ¼ hab (thus, hab

can be regarded as the densitized metric). From now on,
the inverse of hab, of weight −2, is denoted hab. This
then implies the important relation qIJ ≔ hab ~B

aI ~Bb
J ¼

δIJ − σmImJ, which embodies the projector on the orthogo-
nal plane to mI .
It remains to solve the constraint (3e). This constraint

imposes six restrictions on the 18 components ωaIJ,
meaning that the general solution of (3e) takes the form

ωaIJ ¼ Ma
b
IJKCb

K þ NaIJ; ð6Þ
where the first and the second terms on the right are the
homogeneous and particular solutions of (3e), respectively.2We can also use the canonical variables ðωaIJ

ðγÞ
; ~ΠaIJÞ.

MONTESINOS, ROMERO, and CELADA PHYS. REV. D 97, 024014 (2018)

024014-2



Here, the 12 variables CaI parametrize the homogeneous
solution. To determine Ma

b
IJK and NaIJ, we demand the

independent variables ~BaI and CaI to be canonically
conjugate to each other. This is allowed, since the solution
(4) induces a reduction of the symplectic structure in (1),

~ΠaIJ
ðγÞ

_ωaIJ ¼ ~BaI _CaI; ð7Þ

where we have defined

CaI ≔ ϵðωðγÞaIJmJ þmIω
ðγÞ

bJKhac ~B
cJ ~BbKÞ: ð8Þ

Solving jointly (3e) and (8), we obtain

Ma
b
IJK ¼ ϵσ

�
−δbam½IηJ�K þ δbaðP−1ÞIJKLmL

− ðP−1ÞIJLMhac ~BcL ~BbMmK

þ 1

γ
⋆ðP−1ÞIJLMhac ~BbLmM ~Bc

K

�
; ð9Þ

NaIJ ¼ λ
~
ab

�
−σϵIJKL ~BbKmL þ 2

γ
~Bb

½ImJ�

�
; ð10Þ

with ðP−1ÞIJKL being the inverse of PIJ
KL that satisfies

PIJ
KLðP−1ÞKLMN ¼ δI½Mδ

J
N� and

λ
~
ab ≔

σ

2
ϵIJKLðhabhcd − 2hcðahbÞdÞ ~BcI ~BfJmL∂f

~BdK: ð11Þ

In short, the expression (6), together with (9) and (10), is
the solution of (3e). Notice that the quantities NaIJ
(or λ

~
ab ¼ λ

~
ba), which can be thought of as the components

of the connection not showing up in the symplectic
structure (7), are the ones getting fixed by the solution
of (3e).
Up to now, we have gotten rid of the second-class

constraints, leaving in the process a phase space para-
metrized by the canonical pair ðCaI; ~B

aIÞ subject to first-
class constraints only. It is then necessary to rewrite these
constraints in terms of the new canonical variables. To carry
out this, let us first introduce the covariant derivative
compatible with ~BaI satisfying

∇a
~BbI≔∂a

~BbIþΓa
I
J
~BbJþΓb

ac
~BcI−Γc

ac
~BbI¼0; ð12Þ

where ΓaIJ (¼ − ΓaJI) takes values in the Lie algebra of
SOðσÞ and Γb

ac ¼ Γb
ca. These 36 equations allow us to

completely fix the 36 quantities ΓaIJ and Γb
ac. In fact, Γb

ac
is nothing but the Christoffel symbol for the metric gab, that
is, the Levi-Civita connection compatible with the spatial
metric.

The introduction of Γa
bc and ΓaIJ, together with the

solutions for ~ΠaIJ and ωaIJ, allows us to express the first-
class constraints (3a)–(3c) as

~GIJ ¼ ~Ba½ICa
J� þ 2ϵPIJ

KL
~Ba½MmK�Γa

L
M ≈ 0; ð13aÞ

~Va ¼ ∇½bð ~BbICa�IÞ þ ϵ ~Bb½ImK� Γ
ðγÞ

aIJΓb
J
K

− ϵσ ~GIJðCaI − ϵΓ
ðγÞ

aIKmKÞmJ ≈ 0; ð13bÞ
~~H¼−

σ

8
~BaI ~BbJRabIJ

þ1

4
~Ba½Ij ~BbjJ�

�
CaICbJ−2ϵCaI Γ

ðγÞ
bJKmK

þ
�
ΓaILþ

2

γ
⋆ΓaIL

�
ΓbJKmKmLþ 1

γ2
qKLΓaIKΓbJL

�

−
ϵ

2
~BaImJ∇a

~GIJþ
σΛ
8

ffiffiffi
h

p
≈0; ð13cÞ

where RabIJ is the curvature of ΓaIJ and the terms propor-
tional to ~GIJ squared have been dropped. It is important to
note that although the constraints look rather complicated,
they collapse to the ones of the Ashtekar-Barbero’s
formulation once we take the time gauge (see below),
meaning that the variables ðCaI; ~B

aIÞ may be regarded as
the explicitly SOðσÞ-covariant version of the Ashtekar-
Barbero variables. Nonetheless, at the fully covariant level,
we can explore different parametrizations of the phase
space of the theory.

IV. OTHER LORENTZ COVARIANT
PARAMETRIZATIONS OF THE PHASE SPACE

Let us consider a change of coordinates in which the
momentum variables ~BaI remain unchanged, while the
configuration variables take the form

CaI ¼ ϵðΓaIJmJ þ hab ~B
bJ ~BcKΓcJKmIÞ þ KaI ð14aÞ

¼ ϵðΓ
ðγÞ

aIJmJ þ hab ~B
bJ ~BcK Γ

ðγÞ
cJKmIÞ þQaI: ð14bÞ

These transformations give rise to the canonical pairs
ðKaI; ~B

aIÞ and ðQaI; ~B
aIÞ. Indeed, a direct substitution of

(14) in (7) results in

~BaI _CaI ¼ ∂aðϵ _~B
aI
mIÞ þ ~BaI _KaI ð15aÞ

¼ ∂a

�
ϵ _~B

aI
mI −

ϵσ

2γ

ffiffiffi
h

p
~ηabchbdhce

_~B
dI ~Be

I

�

þ ~BaI _QaI: ð15bÞ
We see that, in any case, the symplectic structures in (15)
differ from one another by a divergence (which does not
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contribute if the spatial manifold has no boundary or if
suitable boundary conditions are imposed when it has a
boundary); this shows that the transformations associated to
(14) are canonical. Alternatively, given that the pair
ðCaI; ~B

aIÞ is canonical, it can be shown by using the
Poisson brackets that the relations (14) induce canonical
transformations among the different pairs considered.
Actually, the only complicated bracket is the one involving
the new configuration variable with itself, but, by following
a procedure close to that of [3,21], it can be shown that it
vanishes because the terms between parentheses in (14) can
be derived from a potential in each case.
For the sake of completeness, we display in the following

lines the form of the constraints in the new sets of canonical
variables. In the canonical coordinates ðKaI; ~B

aIÞ, the
constraints read

~GIJ ¼ ~Ba½IKa
J� þ ϵ

γ
ϵIJKL ~B

a½MmK�Γa
L
M ≈ 0; ð16aÞ

~Va ¼ ∇½bð ~BbIKa�IÞ þ
ϵ

γ
~Bb½ImK�⋆ΓaIJΓb

J
K

− ϵσ ~GIJ
�
KaI −

ϵ

γ
⋆ΓaIKmK

�
mJ ≈ 0; ð16bÞ

~~H ¼ −
σ

8
~BaI ~BbJRabIJ

þ 1

4
~Ba½Ij ~BbjJ�

�
KaIKbJ −

2ϵ

γ
KaI⋆ΓbJKmK

þ 1

γ2
qKLΓaIKΓbJL

�
−
ϵ

2
~BaImJ∇a

~GIJ

þ σΛ
8

ffiffiffi
h

p
≈ 0; ð16cÞ

whereas for the set ðQaI; ~B
aIÞ, the constraints are simply

~GIJ ¼ ~Ba½IQa
J� ≈ 0; ð17aÞ

~Va ¼ ∇½bð ~BbIQa�IÞ − ϵσ ~GIJQaImJ ≈ 0; ð17bÞ

~~H ¼ −
σ

8
~BaI ~BbJRabIJ þ

1

4
~Ba½Ij ~BbjJ�QaIQbJ

−
ϵ

2
~BaImJ∇a

~GIJ þ
σΛ
8

ffiffiffi
h

p
≈ 0: ð17cÞ

As can be inferred from (17a), both ~BaI and QaI transform
as SOðσÞ vectors. Meanwhile, in the other cases we observe
that ~BaI still transforms as an SOðσÞ vector but, according
to (13a) and (16a), the properties of CaI and KaI under
SOðσÞ transformations are nontrivial (but they contain a
vector part). Furthermore, notice that the diffeomorphism
constraint can be expressed as

~Da ¼ ~BbI∂ ½bUa�I þ
1

2
UaI∂b

~BbI; ð18Þ

forUaI¼CaI;KaI orQaI, which implies that these variables
transform as 1-forms under spatial diffeomorphisms.
It is worth realizing that the Immirzi parameter does not

explicitly appear in the constraints (17) (it however affects
the constants in front of some of the terms proportional to
~GIJ squared, which we have neglected). Hence, for the
canonical variables ðQaI; ~B

aIÞ, the Immirzi parameter
remains undetectable at the classical level. The constraints
(17) actually have the same form as those obtained for the
case of the Palatini action (with a cosmological constant)
alone (take the limit γ → ∞; see also [22]). Therefore, the
canonical transformation (14) allows us to connect the
Hamiltonian form of the Holst action with that of Palatini’s,
reinforcing the classical equivalence of them.

V. TIME GAUGE

Here we show how the previous SOðσÞ-covariant var-
iables lead to the Ashtekar-Barbero ones. To that end, we
adopt the time gauge, which allows us to reduce SOðσÞ to
its compact subgroup SO(3) by fixing the boosts. In
the present framework, this is accomplished by setting
~Ba0 ¼ 0, which is equivalent tomi ¼ 0 for a nondegenerate
~Bai (assumed in what follows). This gauge condition in turn
implies that the boost constraint ~G0i (in any case) must be
solved at once, since f ~Ba0ðxÞ; ~G0iðyÞg ¼ ðσ=2Þ ~Baiδ3ðx; yÞ
defines a nonsingular matrix and so ~Ba0 and ~G0i form a
second-class pair. From (13a), the solution of ~G0i reads
Ca0 ¼ σm0 ~Bbi∂bB

~
ai (for the other pairs of variables we

obtain Ka0¼0,Qa0 ¼ 0), with B
~
ai being the inverse of ~B

ai.
In consequence, the remaining internal symmetry is SO(3),
whose infinitesimal generator is the constraint ~Gij.
In the time gauge, we have, from (12), that Γa0i ¼ 0,

whereas Γai ≔ ð1=2ÞϵijkΓa
ij (ϵijk ≔ ϵ0ijk) becomes the

spin connection compatible with ~Bai,

Γai ¼ ϵijkð∂ ½bB
~
a�j þ B

~
a
½lj ~Bcjj�∂bB

~
clÞ ~Bbk: ð19Þ

The canonical transformation (14) then takes the form

Aai ¼ −ϵm0Qai þ
1

γ
Γai; ð20Þ

with Aai ≔ −ϵm0Caið¼ −ϵm0KaiÞ. Since Qai is a vector
and Γai is a connection, Aai is a connection, the gauge
group being in this case SO(3). The canonical trans-
formation (20) is nothing but Barbero’s canonical trans-
formation [5] (Barbero picks γ ¼ −1 to rewrite the
constraints), which here was derived from (14). Thus,
the latter corresponds to the SOðσÞ-covariant version of
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the canonical transformation implemented by Barbero in
order to obtain his canonical description of the phase space
of general relativity. Accordingly, the quantity −ϵm0Qai
can be related to the extrinsic curvature in the SO(3) ADM
formalism [21,23], while γAai corresponds to the Ashtekar-
Barbero connection.
Let us introduce the densitized triad ~Eai through

~Bai ≕ −2ϵm0 ~Eai. The phase space is now parametrized
by the pair ðAai; ~E

aiÞ satisfying the canonical commutation
relation fAaiðxÞ; ~EbjðyÞg ¼ ð1=2Þδbaδjiδ3ðx; yÞ. Notice that
since (19) is invariant under constant rescalings, Γai takes
exactly the same form in terms of the densitized triad. Since
Aai is an SO(3) connection (γAai to be more precise), let
Fabi ≔ 2∂ ½aAb�i − γϵijkAa

jAb
k be its field strength. Using

(20), the next identity arises right away,

Fabi ¼ −2ϵm0∇½aQb�i þ
1

γ
Rabi − γϵijkQa

jQb
k; ð21Þ

where Rabi≔ð1=2ÞϵijkRab
jk¼2∂ ½aΓb�i−ϵijkΓa

jΓb
k. With

the previous expression at hand, the constraints (17a)–
(17c) can be given, in the time gauge, the form

~Gi ≔
1

2
ϵijk ~G

jk ¼ 1

γ
ð∂a

~Ea
i − γϵijkAa

j ~EakÞ ≈ 0; ð22aÞ

~Va ¼ ~EbiFbai þ ðγAai − ΓaiÞ ~Gi ≈ 0; ð22bÞ

~~H ¼ −
1

2γ
ϵijk ~E

ai ~Ebj½Fab
k þ ðσγ − γ−1ÞRab

k�

þ 1

γ
~Eai∇a

~Gi þ σΛj ~~Ej ≈ 0; ð22cÞ

with ~~E ≔ det ~Eai. These are precisely the constraints of the
Ashtekar-Barbero formulation of general relativity. It is
worth stressing that although we followed a path resem-
bling the one walked by Barbero, the previous result can be
achieved regardless of the canonical pair considered. In
particular, since we may think of the constraints (13) as the
constraints (17) with the canonical transformation (14b)
already implemented, we can obtain (22) directly from (13)
in the time gauge. Notice that in our approach the Immirzi
parameter plays the role of a coupling constant for the local
SO(3) symmetry.

VI. CONCLUSIONS

In this paper we have solved the second-class constraints
arising in the Hamiltonian analysis of first-order general
relativity with the Immirzi parameter in a manifestly

SOðσÞ-covariant fashion (recall that σ ¼ −1 corresponds
to the Lorentz group). As a result, we obtained a description
of the phase space involving only first-class constraints
that exhibits a dependence on the Immirzi parameter. The
associated canonical variables, which we called ðCaI; ~B

aIÞ,
turn out to be related to other two sets of SOðσÞ-covariant
variables ðKaI; ~B

aIÞ and ðQaI; ~B
aIÞ by means of the

canonical transformations determined by (14). In contrast
to both KaI and CaI , whose transformation law under local
SOðσÞ transformations is nontrival [as can be deduced
from (13a) and (16a)], the configuration variable QaI
transforms as an SOðσÞ vector (because of the form of
the canonical transformation, ~BaI is an internal vector in
any case). In terms of the canonical pair ðQaI; ~B

aIÞ, the
constraints take the same form as those resulting from the
canonical analysis of the Palatini action, thus eliminating
the Immirzi parameter from the canonical theory.
Remarkably, in the time gauge the canonical transformation
(14b) becomes the transformation implemented by Barbero
in order to obtain his canonical formulation of general
relativity [5], the spatial components Cai (or Kai) being
related to the Ashtekar-Barbero connection. In conse-
quence, the canonical variables ðCaI; ~B

aIÞ [or ðKaI; ~B
aIÞ]

can be regarded as the SOðσÞ-covariant extension of the
Ashtekar-Barbero variables.
To sum up, here we have clarified the origin of the

Ashtekar-Barbero variables and their relation to the Holst
action. More interesting is the Hamiltonian formulation
embodied in the constraints (13), (16) or (17), which
explicitly exhibits the SOðσÞ invariance of the original
theory (on the other hand, the Ashtekhar-Barbero formu-
lation breaks it by resorting to the time gauge). This feature
is appealing since the Lorentz symmetry is thought to be
one of the fundamental symmetries of nature, and so it
would be desirable to preserve it to the utmost in a quantum
theory of gravity. Thus, the Hamiltonian formulation
presented in this paper could be an interesting starting
point for new developments to approach the quantization of
gravity, something we think will provide meaningful
results. In particular, we expect that this formulation might
help to determine the fate of the Immirzi parameter in
quantum gravity once for all.
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Tecnología (CONACyT), México, Grant No. 237004-F.

MANIFESTLY LORENTZ-COVARIANT VARIABLES FOR … PHYS. REV. D 97, 024014 (2018)

024014-5



[1] C. Rovelli, Quantum Gravity (Cambridge University Press,
Cambridge, 2004).

[2] A. Ashtekar and J. Lewandowski, Classical Quantum
Gravity 21, R53 (2004).

[3] T. Thiemann, Modern Canonical Quantum General
Relativity (Cambridge University Press, Cambridge,
2007).

[4] C. Rovelli, Living Rev. Relativity 11, 5 (2008); Classical
Quantum Gravity 28, 153002 (2011).

[5] J. F. Barbero G., Phys. Rev. D 51, 5507 (1995).
[6] S. Holst, Phys. Rev. D 53, 5966 (1996).
[7] M. Montesinos, D. González, M. Celada, and B. Díaz,

Classical Quantum Gravity 34, 205002 (2017).
[8] C. Rovelli and L. Smolin, Nucl. Phys. B442, 593 (1995); A.

Ashtekar and J. Lewandowski, Classical Quantum Gravity
14, A55 (1997).

[9] C. Rovelli, Phys. Rev. Lett. 77, 3288 (1996); A. Ashtekar,
J. Baez, and K. Krasnov, Adv. Theor. Math. Phys. 4, 1
(2000); K. A. Meissner, Classical Quantum Gravity 21,
5245 (2004); I. Agulló, J. F. Barbero G., J. Díaz-Polo, E.
Fernández-Borja, and E. J. S. Villaseñor, Phys. Rev. Lett.
100, 211301 (2008); J. Engle, K. Noui, and A. Perez, Phys.
Rev. Lett. 105, 031302 (2010).

[10] G. Immirzi, Classical Quantum Gravity 14, L177
(1997).

[11] H. Liu and K. Noui, Classical Quantum Gravity 34, 135008
(2017).

[12] S. Alexandrov, Classical Quantum Gravity 17, 4255 (2000);
S. Alexandrov and D. Vassilevich, Phys. Rev. D 64, 044023
(2001); S. Alexandrov and E. R. Livine, Phys. Rev. D 67,
044009 (2003).

[13] F. Cianfrani and G. Montani, Phys. Rev. Lett. 102, 091301
(2009).
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