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I dynamically evolve spherically symmetric spacetimes containing gravitational ’t Hooft–Polyakov
monopoles and determine the stable end states of the evolutions. I do so to study stability and critical
behavior of the well-known static gravitational monopole solutions. For the static solutions, there exist
regions of parameter space where two static monopole black holes and the static Reissner-Nördstrom black
hole have the same mass. I find strong evidence that one of the static monopole black hole solutions is a
critical solution, to which near-critical solutions are dynamically attracted before evolving to one of the
other two static solutions as end states. I also discuss the no-hair conjecture for this model in the context of
collapse.
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I. INTRODUCTION

Magnetic monopole solutions can be found in some
spontaneously broken non-Abelian gauge theories [1]. First
discovered in its simplest adaptation, SUð2Þ with a real
triplet scalar field, the ’t Hooft–Polyakov monopole is a
classical solution to the equations of motion with finite
energy [2,3]. It was subsequently generalized to curved
space [4] and static solutions for both regular and black
hole gravitational monopoles were found [5–9].
Stability of the static gravitational monopole solutions is

nontrivial [10–14]. There exist regions of parameter space
where two static black hole monopole solutions and the
static Reissner-Nordström (RN) black hole solution all
exist with the same mass and it is not so simple as the least
massive solution is stable with the others unstable. I study
stability by dynamically evolving the system to determine
the stable end state of the evolution. I find that one of the
static monopole black hole solutions and the static RN
solution are both stable and the other static monopole black
hole solution is unstable.
Black holes are well known to exhibit critical phenomena

[15–17]. It is here that unstable solutions can be particularly
interesting as critical solutions, acting as intermediate
attractors between two different end states. There has been
substantial study of critical solutions at the threshold of
collapse [16,17], but comparatively less for critical solutions
sitting between different black hole end states [18–20]. I find
strong evidence that the unstable black hole monopole
solutions are critical solutions sitting between a stable black
hole monopole and the RN black hole.
As far as I am aware, numerical simulations of the

gravitational ’t Hooft–Polyakov monopole system has been
presented only once before in [21] (for simulations in flat
space see [22,23]), which focused on vacuum values of the
scalar field larger than or near its maximum value, above

which static solutions no longer exist. Here my interest is
precisely with the static solutions and, thus, for smaller
values of the scalar field vacuum value. I solve for the
dynamic solutions with a code making use of black hole
excision techniques. Black hole excision allows the code to
be run indefinitely, even in the presence of a black hole, so
that stable end states may be determined.
In the next section, I present the fully time-dependent

equations that contain the gravitational ’t Hooft–Polyakov
monopole and review boundary conditions. In Sec. III,
I review regular and black hole static solutions of gravi-
tational monopoles including their stability. In Sec. IV,
I present dynamic solutions of gravitational monopoles,
describe the code used to find them, and study stability and
critical behavior. I also comment on the no-hair conjecture
in the context of collapse. In Sec. V, I conclude by
discussing expectations for areas of parameter space not
considered here.

II. EQUATIONS AND BOUNDARY
CONDITIONS

A. Metric equations

Since the (flat space) ’t Hooft–Polyakov monopole
follows from a spherically symmetric ansatz it seems
natural and convenient to restrict my study of gravitational
monopoles to those in spherically symmetric spacetimes.
The general spherically symmetric metric in the ADM
formalism [24,25] is

ds2 ¼ −ðα2 − a2β2Þdt2 þ 2a2βdrdtþ a2dr2

þ Br2ðdθ2 þ sin2θdϕ2Þ; ð1Þ

where the metric functions α, β, a, and B are functions of t
and r only and I use units such that c ¼ 1 throughout. α is
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the lapse and measures how quickly time moves froward
from one slice to the next and β is the only nonvanishing
component of the shift vector βi ¼ ðβ; 0; 0Þ in spherically
symmetric spacetimes and measures how coordinates
relabel themselves from once slice to the next. The lapse
and shift are gauge functions parameterizing the coordinate
freedom of general relativity.
The geometry of each slice is described by the spatial

three-metric, which in spherical symmetry is diagonal:
γij ¼ diagða2; Br2; Br2sin2θÞ. The extrinsic curvature, Ki

j,
describes how each slice resides in the full spacetime and in
spherical symmetry has only two nontrivial components,
Kr

r and Kθ
θ ¼ Kϕ

ϕ, with the rest vanishing. All geometric
quantities obey the Einstein field equations,

Gμν ¼ 8πGTμν; ð2Þ

where Tμν is the energy-momentum tensor to be given in
the next subsection.
Static monopole solutions are most commonly studied in

radial-polar gauge. In radial gauge, the radial coordinate r
is chosen such that spheres of radius r have area 4πr2 and is
the radial coordinate used in Schwarzschild coordinates.
Radial gauge fixes B ¼ 1. Polar slicing is defined by
Kθ

θ ¼ 0, which in conjunction with radial gauge conven-
iently fixes β ¼ 0. In radial-polar gauge, the metric is
described entirely in terms of the metric function a and the
lapse α which obey

a0

a
¼ 4πGra2ρ −

a2 − 1

2r
α0

α
¼ 4πGra2Srr þ

a2 − 1

2r
; ð3Þ

where a prime denotes an r-partial derivative, which follow
from the Einstein field equations. The energy density ρ
and Srr are matter functions derived from the energy-
momentum tensor and are given in the next subsection.
I use radial-polar gauge in my review of static monopole
solutions in Sec. III.
In my study of dynamic monopole solutions in Sec. IV,

I use radial-maximal gauge. Any numerical study in which
black holes are present must take special care to avoid the
singularity since infinities are disastrous for computer code.
Many techniques have been developed to avoid singular-
ities. I will use black hole excision methods [26,27] which
have the advantage that code can be run indefinitely, even
in the presence of a black hole, and thus can be used
to determine the stable end state of a system. Physically
anything outside a black hole is causally disconnected from
anything inside the black hole and, thus, after a black hole
forms if one removes or excises the interior region of the
black hole from the simulation, and, thus, removes the
singularity, the determination of the exterior region should
be unaffected. This presupposes that the horizon can be

determined, which in fact is impossible without knowing
the complete spacetime. The standard approach is to
instead excise the region inside the apparent horizon. It
is well known that coordinates in radial-polar gauge do not
penetrate apparent horizons and for this reason I use radial-
maximal gauge.
Radial-maximal gauge also uses radial gauge and fixes

B ¼ 1. Maximal slicing is defined by K ¼ 0, where
K ¼ Kr

r þ 2Kθ
θ is the trace of the extrinsic curvature,

and retains the shift β. The Einstein field equations give the
following equations for these three metric functions:

a0 ¼ 3

8
ra3ðKr

rÞ2 þ 4πGra3ρ −
aða2 − 1Þ

2r

α00 ¼ α0
�
3

8
ra2ðKr

rÞ2 þ 4πGra2ρ −
a2 þ 3

2r

�

þ αa2
�
3

2
ðKr

rÞ2 þ 4πGðρþ SÞ
�

Kr
r
0 ¼ 8πGjr −

3

r
Kr

r; ð4Þ

where ρ, S, and jr are derived from the energy-momentum
tensor and will be given in the next subsection. I opted to
write these equations in terms of Kr

r instead of β, as they
are related algebraically via

β ¼ −
1

2
αrKr

r: ð5Þ

Regions of spacetime inside or on the boundary of an
apparent horizon satisfy [24,25]

1

2
arKr

r ≤ −1: ð6Þ

Following [18] to ensure the inner boundary lies strictly
inside the apparent horizon, I excise all grid points that
satisfy

1

2
arKr

r ≤ −μH ð7Þ

and use μH ¼ 1.1.
If a black hole forms and is excised the inner boundary of

the computational domain moves from the origin at r ¼ 0
to the apparent horizon. Inner boundary conditions for
r ¼ 0, which are described in Sec. II C, can no longer be
used and a new method for obtaining boundary values is
needed. I will use the evolution equations for a and Kr

r,
which as usual follow from the Einstein field equations, to
determine their boundary values:
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_a ¼ −
1

2
αrKr

r

�
4πGra3ρ −

aða2 − 1Þ
2r

þ 3

8
ra3ðKr

rÞ2
�

−
1

2
raKr

rα
0 − 4πGrαajr

_Kr
r ¼

3

4
αðKr

rÞ2 − 8πGα

�
Srr þ

1

2
rKr

rjr

�

−
αða2 − 1Þ

r2a2
þ 2

ra2
α0; ð8Þ

where a dot denotes a t-partial derivative. These evolution
equations could be used in general, but the constraint
equations in (4), being ODEs instead of PDEs, are easier to
solve and give more stable code. The above evolution
equations are then available for testing the consistency of
results, which will be done in Sec. IVA. Unfortunately, an
evolution equation for α does not exist and its boundary
value must be determined in another way. Again following
[18] I “freeze” the values of α and α0 at the inner boundary
after black hole formation.

B. Matter equations

The matter content of the ’t Hooft–Polyakov monopole
is an SUð2ÞYang-Mills theory with a real triplet scalar field
in the adjoint representation. This introduces the gauge
field Aa

μ and scalar field ϕa, where a ¼ 1, 2, 3 is the gauge
index (which can equivalently be placed up or down). For
SUð2Þ the generators satisfy ½Ta; Tb� ¼ iϵabcTc, where ϵabc
is the completely antisymmetric symbol with ϵ123 ¼ 1.
In the adjoint representation, I define the components of the
generator matrices as ðTaÞbc ¼ −iϵabc with normalization
TrðTaTbÞ ¼ 2δab, where Tr here and below indicates a
trace over generator matrices. It is common to refer to this
as a Yang-Mills-Higgs theory. Defining

ϕ≡ Taϕa; Aμ ≡ TaAa
μ; Fμν ≡ TaFa

μν; ð9Þ

where a sum over repeated gauge indices is implied, Fa
μν is

the field strength, and where such a definition for ϕa is
possible because I am in the adjoint representation, the
Yang-Mills-Higgs matter Lagrangian is

LYMH ¼ −
1

2
Tr½ðDμϕÞðDμϕÞ� − V −

1

8g2
TrðFμνFμνÞ

ð10Þ

where g is the gauge coupling constant,

Dμϕ ¼ ∇μϕ − i½Aμ;ϕ�
Fμν ¼ ∇μAν −∇νAμ − i½Aμ; Aν�; ð11Þ

and V is the scalar potential whose form I give below.
Gauge transformations are defined by

ϕ → ϕ0 ¼ UϕU−1

Aμ → A0
μ ¼ UAμU−1 − ið∇μUÞU−1

Fμν → F0
μν ¼ UFμνU−1; ð12Þ

where U ¼ e−iΛ and Λ ¼ ΛaTa with Λa the gauge
functions.
Spherical symmetry constrains the fields. The general

spherically symmetric SUð2Þ gauge field takes the form
[9,28,29]

At ¼ T3ut

Ar ¼ T3ur

Aθ ¼ T1w1 þ T2w2

Aϕ ¼ ð−T1w1 þ T2w2 þ T3 cot θÞ sin θ; ð13Þ

where ut, ur, w1, and w2 parametrize the gauge field and are
functions of t and r only, and the real triplet scalar field
takes the form

ϕ ¼ φffiffiffi
2

p T3; ð14Þ

where φ is a canonically normalized real scalar field and
is a function of t and r only. There are a couple gauge
equivalent ways these fields are commonly written in the
literature [9]. I have chosen to write them in a gauge such
that the generators Ta are constant. I shall adhere to this
gauge throughout. The components of the spherically
symmetric field strength are

Ftr ¼ T3ð _ur − u0tÞ
Ftθ ¼ T1ð _w2 − utw1Þ þ T2ð _w1 þ utw2Þ
Ftϕ ¼ ½T2ð _w2 − utw1Þ − T1ð _w1 þ utw2Þ� sin θ
Frθ ¼ T1ðw0

2 − urw1Þ þ T2ðw0
1 þ urw2Þ

Frϕ ¼ ½T2ðw0
2 − urw1Þ − T1ðw0

1 þ urw2Þ� sin θ
Fθϕ ¼ −T3ð1 − w2

1 − w2
2Þ sin θ: ð15Þ

The gauge fields obey a Uð1Þ invariance:

ui → u0i ¼ ui −∇iτ; w → w0 ¼ we−iτ; ð16Þ

where i ¼ t, r, w ¼ w1 þ iw2, and τ is the gauge parameter.
Thus, ut and ur transform as two components of a two-
dimensional Abelian vector and w transforms as a complex
scalar. This invariance will be made use of when I fix the
gauge below.
The scalar potential for the ’t Hooft–Polyakov monopole

is

V ¼ λ

4
ðφ2 − v2Þ2; ð17Þ
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where λ is a constant and v is the vacuum value of φ. This
scalar potential spontaneously breaks the SUð2Þ symmetry
down to Uð1Þ giving rise to massive vector bosons and a
massive scalar field with masses

mV ¼ gv; mS ¼
ffiffiffiffiffi
2λ

p
v: ð18Þ

There are a number of ways to derive the matter equations
of motion. For example, they can be obtained from
conservation of the energy-momentum tensor or by coupling
the Lagrangian to gravity by constructing the Einsten-
Yang-Mills-Higgs Lagrangian LEYMH ¼ ffiffiffiffiffiffi−gp

LYMH, whereffiffiffiffiffiffi−gp ¼ αaBr2 sin θ is the determinant of the metric, and
then deriving the Euler-Lagrange equations. For numerical
purposes, it is important to have the equations of motion in
first order form. I, thus, define

Φ≡ φ0 Π≡ aB
α

ð _φ − βΦÞ

Q1 ≡ w0
1 þ urw2 P1 ≡ a

α
ð _w1 þ utw2 − βQ1Þ

Q2 ≡ w0
2 − urw1 P2 ≡ a

α
ð _w2 − utw1 − βQ2Þ

Y ≡ Br2

2αa
ð _ur − u0tÞ: ð19Þ

I shall list the equations of motion grouped in families. First
φ, Φ, and Π:

_φ ¼ α

aB
Πþ βΦ

_Φ ¼ ∂r

�
α

aB
Πþ βΦ

�

_Π ¼ 1

r2
∂r

�
αBr2

a
Φþ r2βΠ

�
− αaB

∂V
∂φ

−
2αa
r2

ðw2
1 þ w2

2Þφ; ð20Þ

then w1, Q1, and P1:

_w1 ¼
α

a
P1 − utw2 þ βQ1

_Q1 ¼ ∂r

�
α

a
P1 þ βQ1

�
− utQ2 þ ur

�
α

a
P2 þ βQ2

�

þ w2

2αa
Br2

Y

_P1 ¼ ∂r

�
α

a
Q1 þ βP1

�
− P2ðut − βurÞ þ

α

a
urQ2

þ αa
Br2

w1ð1 − w2
1 − w2

2Þ − g2αaw1φ
2; ð21Þ

and w2, Q2, and P2:

_w2 ¼
α

a
P2 þ utw1 þ βQ2

_Q2 ¼ ∂r

�
α

a
P2 þ βQ2

�
þ utQ1 − ur

�
α

a
P1 þ βQ1

�

− w1

2αa
Br2

Y

_P2 ¼ ∂r

�
α

a
Q2 þ βP2

�
þ P1ðut − βurÞ −

α

a
urQ1

þ αa
Br2

w2ð1 − w2
1 − w2

2Þ − g2αaw2φ
2; ð22Þ

and finally

_ur ¼
2αa
Br2

Y þ u0t

_Y ¼ α

a
ðw1Q2 − w2Q1Þ þ βðw1P2 − w2P1Þ

Y 0 ¼ w1P2 − w2P1: ð23Þ

Note that I do not have an evolution equation for ut, which
I will handle when fixing the SUð2Þ gauge.
For the Yang-Mills-Higgs Lagrangian (10) the energy-

momentum tensor is

Tμν ¼ Tr½ðDμΦÞðDνΦÞ� − gμν
2

Tr½ðDσΦÞðDσΦÞ� − gμνV þ 1

g2
gσλFa

μσFa
νλ −

gμν
4g2

Fa
σλF

σλ
a : ð24Þ

The nonvanishing components work out to be

Ttt ¼
�
αΠ
aB

þ βΦ
�

2

þ 4α2

g2B2r4

�
1 −

a2β2

α2

�
Y2 þ 2α2

g2a2Br2

��
P1 þ

aβ
α
Q1

�
2

þ
�
P2 þ

aβ
α
Q2

�
2
�
− ðα2 − a2β2ÞLYMH

Ttr ¼
�
αΠ
aB

þ βΦ
�
Φ −

4a2β
g2B2r4

Y2 þ 2α

g2aBr2

��
P1 þ

aβ
α
Q1

�
Q1 þ

�
P2 þ

aβ
α
Q2

�
Q2

�
þ a2βLYMH

Trr ¼ Φ2 −
4a2Y2

g2B2r4
þ 2ðQ2

1 þQ2
2Þ

g2Br2
þ a2LYMH

Tθθ ¼
Tϕϕ

sin2θ
¼ ðw2

1 þ w2
2Þφ2 þQ2

1 þQ2
2 − P2

1 − P2
2

g2a2
þ ð1 − w2

1 − w2
2Þ2

g2Br2
þ Br2LYMH: ð25Þ
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From these follow the matter functions, which in spherical
symmetry are given by

ρ ¼ nμnνTμν; Srr ¼ γrrTrr; Sθθ ¼ Sϕϕ ¼ γθθTθθ;

jr ¼ −nμTμr; ð26Þ

along with S ¼ Srr þ Sθθ þ Sϕϕ, where nμ ¼ ðα−1;
−α−1β; 0; 0Þ is the timelike unit vector normal to the spatial
slices, which are used in the metric equations in the
previous subsection. I find

ρ ¼ 1

2a2

�
Φ2 þ Π2

B2

�
þ ðw2

1 þ w2
2Þφ2

Br2
þ V þ ð1 − w2

1 − w2
2Þ2

2g2B2r4
þQ2

1 þQ2
2 þ P2

1 þ P2
2

g2a2Br2
þ 2Y2

g2B2r4

Srr ¼
1

2a2

�
Φ2 þ Π2

B2

�
−
ðw2

1 þ w2
2Þφ2

Br2
− V −

ð1 − w2
1 − w2

2Þ2
2g2B2r4

þQ2
1 þQ2

2 þ P2
1 þ P2

2

g2a2Br2
−

2Y2

g2B2r4

Sθθ ¼ Sϕϕ ¼ 1

2a2

�
Π2

B2
−Φ2

�
− V þ ð1 − w2

1 − w2
2Þ2

2g2B2r4
þ 2Y2

g2B2r4

jr ¼ −
ΦΠ
aB

−
2ðQ1P1 þQ2P2Þ

g2aBr2
: ð27Þ

The equations above are clearly complicated. They can
be significantly simplified as follows [18]. First, using the
residual Uð1Þ symmetry (16) I can set ut ¼ 0, which is
welcome since I do not have an evolution equation for ut.
The ’t Hooft–Polyakov ansatz for the monopole sets the
electric field to zero. I can do the analogous thing here and
make what is called the “magnetic ansatz,” which sets the
electric field of the residual Uð1Þ to zero and leads to a
dramatic simplification. I note that the magnetic ansatz is
not a gauge choice, but is a physical restriction of the
theory. I, thus, set Y ¼ 0, since as can be seen in (19) Y is
proportional to the Uð1Þ field strength. Since ut ¼ 0,
setting Y ¼ 0 amounts to ur being time-independent.
I can, thus, make a Uð1Þ transformation with a
time-independent gauge parameter to remove ur without
affecting ut. There is still someUð1Þ symmetry that remains
unfixed. It can be used to remove either the real or imaginary
part of w ¼ w1 þ iw2. It is not difficult to show that the
t- and r-derivatives of the gauge parameter that does this is
proportional to _Y and Y 0, respectively, which are zero by the
magnetic ansatz. I choose to remove w2. Thus, by making
the magnetic ansatz and judicious gauge choices, the only
nonzero matter fields are w1 and φ.
As mentioned in the previous subsection I will be using

radial-polar and radial-maximal spacetime gauges, both of
which set the metric function B ¼ 1. Setting B ¼ 1 and
simplifying the notation by defining w≡ w1, Q≡Q1, and
P≡ P1 the matter evolution equations reduce to

_φ¼α

a
ΠþβΦ _Φ¼∂r

�
α

a
ΠþβΦ

�

_Π¼ 1

r2
∂r

�
αr2

a
Φþr2βΠ

�
−αa

∂V
∂φ−

2αa
r2

w2φ

_w¼α

a
PþβQ _Q¼ ∂r

�
α

a
PþβQ

�

_P¼ ∂r

�
α

a
QþβP

�
þαa

r2
wð1−w2Þ−g2αawφ2; ð28Þ

and the energy-momentum matter functions reduce to

ρ ¼ Φ2 þ Π2

2a2
þ w2φ2

r2
þ V þ ð1 − w2Þ2

2g2r4
þQ2 þ P2

g2a2r2

Srr ¼
Φ2 þ Π2

2a2
−
w2φ2

r2
− V −

ð1 − w2Þ2
2g2r4

þQ2 þ P2

g2a2r2

Sθθ ¼ Sϕϕ ¼ Π2 −Φ2

2a2
− V þ ð1 − w2Þ2

2g2r4

jr ¼ −
ΦΠ
a

−
2QP
g2ar2

: ð29Þ

C. Boundary conditions

To solve the system of equations, I need boundary
conditions for many of the variables and, in the case of
dynamic solutions, initial data. Boundary conditions
include both conditions at the boundary of space and the
boundary of the computational domain. I list a number of
boundary conditions in this subsection, with additional
boundary conditions and initial data presented when
needed.
The matter part of the monopole is parameterized in terms

of the functions φðt; rÞ, representing the scalar field, and
wðt; rÞ, representing the gauge field. If the vacuumvalue ofφ
is v then their well-known boundary conditions are [1]

φðt; 0Þ ¼ 0; φðt;∞Þ ¼ �v;

wðt; 0Þ ¼ 1; wðt;∞Þ ¼ 0; ð30Þ

with a plus sign for the monopole and a negative sign for the
antimonopole. Their parity properties are φ is odd and w
is even.
Inner boundary conditions for metric functions follow

from finiteness of the metric equations (3) and (4). These
are aðt; 0Þ ¼ 1, which is the flat space value a has when
inside a spherically symmetric matter distribution, and
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βðt; 0Þ ¼ Kr
rðt; 0Þ ¼ 0. As can be seen by the α0 equation

in (3) and the α00 equation in (4) any solution for α can be
scaled by a constant and still be a solution. Thus, one may
use αðt; rÞ ¼ 1=aðt; rÞ for large r, which follows from the
assumption that the spacetime is asymptotically Reissner-
Nördstrom. Parity properties are a, α, and Kr

r are even and
β is odd. It follows that Φ and P are even and Π, Q, and α0
are odd.

III. STATIC SOLUTIONS

Static monopole solutions in curved space were first
studied by van Nieuwenhuizen, Wilkinson, and Perry [4]
and later by Lee, Nair, and Weinberg [5], Ortiz [6], and
Breitenlohner, Forgács, and Maison [7]. In this section,
I review only those aspects of static solutions that I need for
the next section, where we will find that the static solutions
are end states of dynamic solutions and are critical
solutions. A comprehensive analysis of static solutions is
given in [7,8].
A standard approach for finding static solutions is to

convert the ’t Hooft–Polyakov ansatz,

φa ¼ xa

r
φðrÞ; Aa

0 ¼ 0; Aa
i ¼ −ϵiak

xk

r
1 − wðrÞ

r
;

ð31Þ

written here in Cartesian coordinates, to spherical coor-
dinates, insert it into the flat space Yang-Mills-Higgs
Lagrangian, couple the Lagrangian to spherically symmet-
ric gravity, and then derive the equations of motion [4].
Since I have the complete spherically symmetric time-
dependent system of equations, which I listed in the
previous section, I shall instead start with them and take
the static limit. As the monopole solution is known to be
spherically symmetric and with vanishing electric field,
I may use the reduced set of equations in (28). I note that
the gauge field given in (13) cannot be directly compared to
the ansatz in (31), even after (31) is converted to spherical
coordinates, because they are written in different gauges.
Gauge transforming (31) with gauge parameter U ¼
expðiT2θÞ expðiT3ϕÞ will put (31) in the same gauge as
(13). The equations of motion can be compared directly
without making the gauge transformation.
Static solutions are most easily found in radial-polar

gauge. Upon setting Π ¼ P ¼ 0 I have four equations: the
two radial-polar metric equations in (3) and the _Π and _P
evolution equations in (28) but with their left hand sides set
to zero. It is convenient to parameterize the metric functions
in terms of σðrÞ and the mass function mðrÞ defined by

σðrÞ≡ αðrÞaðrÞ

NðrÞ≡ 1 −
2GmðrÞ

r
≡ 1

a2ðrÞ ; ð32Þ

where I also introduced NðrÞ≡ 1=grr for convenience.
The resulting system of equations is

σ0

σ
¼ 4πG

�
rφ02 þ 2w02

g2r

�

m0 ¼ 4π

�
Nw02

g2
þ ðw2 − 1Þ2

2g2r2

þ r2

2
Nφ02 þ w2φ2 þ r2V

�

∂rðr2Nσφ0Þ ¼ σ

�
2w2φþ r2

∂V
∂φ

�

∂rðNσw0Þ ¼ σ

�
wðw2 − 1Þ

r2
þ g2φ2w

�
: ð33Þ

In the literature, there exist two common mass scales
used for constructing dimensionless quantities: mP and v,
wheremP ¼ 1=

ffiffiffiffi
G

p
is the Planck mass and v is the vacuum

value of the scalar field. I shall use the mass scale mP and,
thus, introduce

r̄≡ ðgmGÞr; φ̄≡ φ=mG; m̄≡ ðgmG=m2
PÞm;

v̄≡ v=mG; λ̄≡ λ=g2; ð34Þ

where mG ≡mP=
ffiffiffiffiffiffi
4π

p
with the

ffiffiffiffiffiffi
4π

p
included for

convenience. I note that w is already dimensionless and
v̄ ¼ mV=gmG and λ̄ ¼ ðmS=

ffiffiffi
2

p
mVÞ2, wheremV andmS are

the vector and scalar masses in (18).
The σ0 equation in (33) may be used to eliminate σ from

the other equations after which it decouples. Since I do not
need the result for σ in radial-polar gauge I drop the σ0
equation. Moving to dimensionless quantities the system of
equations becomes

m̄0 ¼ Nw02 þ ðw2 − 1Þ2
2r̄2

þ 1

2
r̄2Nφ̄02

þ w2φ̄2 þ r̄2
λ̄

4
ðφ̄2 − v̄2Þ2

φ̄00 ¼ −φ̄0
�
2

r̄
þ N0

N
þ r̄φ̄02 þ 2w02

r̄

�

þ 1

N

�
2w2φ̄

r̄2
þ λ̄ φ̄ ðφ̄2 − v̄2Þ

�

w00 ¼ −w0
�
N0

N
þ r̄φ̄02 þ 2w02

r̄

�

þ 1

N

�
wðw2 − 1Þ

r̄2
þ φ̄2w

�
; ð35Þ

where a prime indicates a derivative with respect to r̄
and where
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N ¼ 1 −
2m̄
r̄

; N0 ¼ 2m̄
r̄2

−
2

r̄
m̄0: ð36Þ

This system of equations has regular and singular (black
hole) solutions. Once appropriate boundary conditions are
identified the equations can be solved numerically using
standard integration techniques.
To reduce the vast number of solutions that can be

presented in this and the next section I consider only
fundamental monopoles and ignore the excited solutions
(i.e. solutions with a nonzero number of nodes or zero-
crossings of the gauge field). I also restrict attention to
λ ¼ 0 and v̄ ¼ 0.2, 0.3, and 0.4. At the end I’ll comment
on results for nonzero λ and other values of v̄.
For regular monopoles the boundary conditions were

given in Sec. II C. In particular, φ is odd and φð0Þ ¼ 0, w is
even and wð0Þ ¼ 1, and m is odd and mð0Þ ¼ 0. After
expanding these quantities in a power series consistent with
these properties and plugging them into the system of
equations in (35) it can be shown that near the origin [5–7]

m̄ ¼ Oðr3Þ; φ̄ ¼ cr̄þOðr3Þ;
w ¼ 1 − br̄2 þOðr4Þ: ð37Þ

Given values for b and c the above equations give inner
values at some small r̄ ¼ r̄min, from which solutions for
r̄ > r̄min can be found by integrating outward. The con-
stants b and c are determined using the shooting method,
with outer boundary conditions φ̄ ¼ �v̄ and w ¼ 0 at large
r. In this and the next section, I consider only φ̄ ¼ þv̄
solutions. Once a solution is found the asymptotic value of
m̄ is the ADM mass M̄ ¼ ðg= ffiffiffiffiffiffi

4π
p

mPÞM. Solutions are
shown in Fig. 1(a).
The outer boundary conditions for black hole monopoles

are the same as for regular monopoles since in both cases
the spacetime is assumed asymptotically flat. The inner
boundary conditions are Nðr̄hÞ ¼ 0 and Nðr̄Þ > 0 for
r̄ > r̄h, where r̄h is the horizon radius. As with the regular
solutions we expand the quantities, but this time around r̄h,
and plug them into (35). Since φ and w should be regular
across the horizon the coefficients of terms that go like
1=ðr̄ − r̄hÞ must vanish. The result is [7]

φ̄ ¼ φ̄h þ
1

N1

�
2w2

hφ̄h

r̄2h
þ λ̄φ̄hðφ̄2

h − v̄2Þ
�
xþOðx2Þ

w ¼ wh þ
wh

N1

�
w2
h − 1

r̄2h
þ φ̄2

h

�
xþOðx2Þ

N ¼ N1xþOðx2Þ ð38Þ

where x≡ r̄ − r̄h and

N1 ¼
1

r̄h
−
2w2

hφ̄
2
h

r̄h
−
ðw2

h − 1Þ2
r̄3h

− r̄h
λ̄

2
ðφ̄2

h − v̄2Þ2: ð39Þ

These equations give inner values at r̄ very near r̄h, from
which the solutions for r̄ > r̄h can be solved for by
integrating outward. As explained in [7] black hole
monopole solutions for a given v̄ are uniquely identified
by their value of wh (or φ̄h), but not by r̄h, as there can exist
multiple solutions with the same horizon radius. In practice,
I fix wh to any value in 0 < wh < 1 and use the shooting
method to determine φ̄h and r̄h for outer boundary con-
ditions φ̄ ¼ v̄ and w ¼ 0 at large r. Black hole solutions are
shown in Fig. 1(b) for r̄h ¼ 1. Figures 1(c) and (d) are the
same plot, with (d) on a log scale, of both regular and black
hole solutions with v̄ ¼ 0.4. The log scale allows the region
just outside the black hole to be seen more easily. For a
comprehensive display of regular and black hole solutions
see [7].
The equations in (35) also contain the Reissner-

Nördstrom (RN) black hole, which occurs for φ̄ and w
having constant values

φ̄ ¼ �v̄; w ¼ 0: ð40Þ

Moving back to unbarred quantities, the solution is
m ¼ M − ð2π=g2Þ=r and, thus,

FIG. 1. (a) Regular monopole solutions for λ ¼ 0 and (from
right to left for w and bottom to top for φ) v̄ ¼ 0.2 (purple), 0.3
(blue), and 0.4 (black). (b) Black hole monopole solutions for
λ ¼ 0, r̄h ¼ 1, and the same values of v̄ as in (a). (c) and (d) are
the same plot with (d) on a log scale to see more easily the region
just outside the black hole. Both show regular and black hole
monopole solutions for λ ¼ 0, v̄ ¼ 0.4, and r̄h ¼ 0 (black), 1
(medium gray), and 1.5 (light gray).
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g−1rr ¼ N ¼ 1 −
2MG
r

þ 4πG=g2

r2
: ð41Þ

As I have set the electric field to zero through the magnetic
ansatz this is the RN spacetime with unit magnetic charge
1=g. In fact, it can be shown that, in the large r limit, the
general solution to (35) is the RN solution, and thus, in this
sense, all monopole solutions also have unit charge [11].
An RN black hole with unit charge can only exist for
M̄ ¼ ðg= ffiffiffiffiffiffi

4π
p

mPÞM ≥ 1 and r̄h ≥ 1, where r̄h is the outer
horizon radius. If M̄ ¼ 1 it is an extremal RN black hole
with a single horizon with radius r̄h ¼ 1.
To recap, the solutions we’ve found to the system of

equations in (35) include a regular monopole, black hole
monopoles, of which there can be multiple solutions with
the same horizon radius, and the RN black hole. In this and
the following section, I take as the black hole mass the
ADM mass, M̄ ¼ m̄ð∞Þ. In Fig. 2, I’ve plotted the horizon
radius r̄h of static solutions as a function of their mass M̄. In
Fig. 2(a), we see that for M̄ < 1 there exists a unique static
solution for a given v̄. For M̄ ≥ 1multiple solutions appear.
In the magnifications in Figs. 2(b–d), we can see regions
where up to three different static black hole solutions have
the same mass. The points labeled B are known as
bifurcations, where two monopole solution branches
appear, and the points labeled A are known as cusps,
where the two branches meet.
An important question is whether these static solutions

are stable under (spherically symmetric) radial perturba-
tions? Lee, Nair, and Weinberg studied the stability of the
RN black hole in this system [10] and found it could be
unstable but did not give precise details of its instability
with respect to the other solutions. Aichelburg and Bizoń
studied the stability of the black hole solutions [11], but
only rigorously for λ → ∞, which effectively fixes φ̄ ¼ v̄
and simplifies the analysis, where they found that (funda-
mental) monopole black holes are always stable.
Nevertheless, from their results they inferred for finite λ

that the black hole monopole solutions in the upper
branches in Figs. 2(b–d) are stable, the solutions in the
bottom branches are unstable, and the RN solution is
unstable for 1 < M̄ < M̄B and stable for M̄ > M̄B, where
B is the bifurcation point. Their inference was corroborated
by Maeda, Tachizawa, et al. [12,13] using catastrophe
theory. Finally, Hollmann studied the stability of regular
monopoles [14] and found that for the values of v̄ used here
they are always stable. (For larger values of v̄; there can
exist two regular solutions with the same mass and only the
smaller mass solution is stable).
In Sec. IV B, I study stability by dynamically solving the

system, allowing for collapse, and determining the end
state. My results corroborate those above. As far as I am
aware, the number of unstable modes in a lower branch
solution has not been determined. If there is only a single
unstable (radial) mode then the solution is a prime
candidate for being a critical solution. In Sec. IV C, I find
strong evidence that the unstable lower branch solutions are
in fact critical solutions.

IV. DYNAMIC SOLUTIONS

In this section, I present the principle results of this paper,
the dynamic evolution of spherically symmetric spacetimes
containing gravitational monopoles. I wish to determine the
final state of the evolution and, thus, need code that retains
stability well after black hole formation. For this reason I use
black hole excision methods. The black hole excision
methods, boundary conditions, and initial data I make use
of are presented in the next subsection. In subsequent
subsections, I present results for stability and critical behav-
ior and comment on the no-hair conjecture for this model.

A. Black hole excision, boundary conditions,
and initial data

The matter fields to solve for are φðt; rÞ for the scalar
field and wðt; rÞ for the gauge field. They obey the

(a) (b) (c) (d)

FIG. 2. Horizon radius r̄h as a function of mass M̄ for static solutions. In (a) the solid lines from top to bottom are for v̄ ¼ 0.2 (purple),
0.3 (blue), and 0.4 (black). The dashed line is the outer horizon of the Reissner-Nordström (RN) black hole which only exists for M̄ ≥ 1
and r̄h ≥ 1. (b–d) are magnifications of the regions where three static solutions exist with the same mass. In each, A marks the cusp
where the two monopole solution branches meet and B indicates the bifurcation where the two branches first appear and specifically
marks the edge of the bottom branch. The values of ðM̄A; M̄BÞ for v ¼ 0.2 are (1.802, 1.593), for v ¼ 0.3 are (1.338, 1.224), and for
v ¼ 0.4 are (1.144, 1.082).
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(time-dependent) evolution equations in (28). The metric
functions to solve for in radial-maximal gauge are aðt; rÞ,
αðt; rÞ, and Kr

rðt; rÞ, where I use Kr
r instead of β through

(5). They obey the (time-dependent) constraint equations in
(4). To find numerical solutions I put the equations in first
order form and scale the quantities. First order form requires
only the introduction of the equation α0 ¼ δ and all other
occurrences ofα0 to be replacedwith δ. For scaling I again use
(34) along with t̄≡ ðgmGÞt and K̄r

r ≡ Kr
r=gmG.

The constraint equations in (4) determine the metric
functions on a single time-slice as long as boundary con-
ditions are available. In the absence of a black hole, the origin
has not been excised and the boundary conditions are as
given in Sec. II C. I determine if a black hole has formed by
searching for an apparent horizon. In spherical symmetry,
this is straightforward and I simply check on each time-slice
if (7) is satisfied. If an apparent horizon is found, from that
time forward I excise all grid points that satisfy (7). I continue
to use the equations in (4) to determine the metric functions,
but now since the origin has been excised I can no longer
use the inner boundary conditions in Sec. II C. Following
[18] I find the inner boundary values by “freezing”α andα0 at
the time-step directly before excision at what will become
the new inner boundary and using the evolution equations
for a and Kr

r in (8).
Finally, I need outer boundary conditions for the matter

functions. Since the computational domain does not extend
to r ¼ ∞ I must allow the matter fields to be able to exit the
computational domain. I use standard outgoing wave and
radiation conditions. At the outer boundary I approximate
the spacetime as flat and in the large r limit so that
α ¼ a ¼ 1 and β ¼ Kr

r ¼ ∂φV ¼ 0, reducing the matter
evolution equations in (28) to

ð−∂2
t þ ∂2

rÞðrφÞ ¼ 0; ð−∂2
t þ ∂2

rÞw ¼ 0; ð42Þ
which is to say φ is a spherical wave and w is a one-
dimensional wave. The standard technique is to assume that
both φ and w can only be outgoing waves at the outer
boundary and, thus, I am ignoring backscattering caused by
the curvature of spacetime there. If I make the computational
grid large enough this should be a reasonable approximation.
I, thus, assumeφ ¼ �vþ fφðr − tÞ=r for some function fφ,
i.e. that it has the form of an outgoing spherical wave, and
w ¼ fwðr − tÞ for some function fw. Note that Π, Q, and P
must also have outgoing wave forms butΦ cannot. It follows
that the outer boundary conditions are

_φ ¼ −ðφ ∓ vÞ=r −Φ
_Π ¼ −Π=r − Π0

Φ ¼ −ðφ ∓ vÞ=r − Π

_w ¼ −Q
_P ¼ Q0

Q ¼ −P: ð43Þ

For initial data I adapt that used in [18,19] to the
monopole system:

φð0; rÞ ¼ v tanh

�
r
sφ

�

wð0; rÞ ¼ 1

2

�
1þ

�
1þ aw

�
1þ bwr

sw

�
e−2ðr=swÞ2

�

× tanh

�
xw − r
sw

��
ð44Þ

and _φð0; rÞ ¼ _wð0; rÞ ¼ 0, making it time-symmetric. The
parameters xw and sw give the center and spread of the
w-pulse and the parameters aw and bw are chosen such
that the gauge field boundary conditions are satisfied at the
origin and are given by

aw ¼ cothðxw=swÞ − 1; bw ¼ cothðxw=swÞ þ 1: ð45Þ

I composed second order accurate code to dynamically
evolve the spacetime, which was inspired by the description
Choptuik, Hirschmann, and Marsa gave of their code in
[18] (see also [19]). I use a staggered grid that does not
include the origin with virtual grid points at each boundary
so that in the absence of a black hole all spatial derivatives
in the computational domain can be finite-differenced with
centered stencils. Inner virtual grid points also serve to
impose the parity properties of the fields. In the presence of
a black hole, one-sided stencils are used near the apparent
horizon/inner boundary. I solve all constraint equations
using second order Runge-Kutta and all evolution equa-
tions using the method of lines and third order Runge-
Kutta. All results are made with r̄max ¼ 100.005, Δr̄ ¼
0.01 (unless stated otherwise), Δt̄=Δr̄ ¼ 0.5, and for
determining the apparent horizon μH ¼ 1.1.
The evolution equations for a and Kr

r in (8) are only
used at a single grid point, and only if a black hole forms,
and, thus, are available for consistency checks on the code.
Defining ca ≡ _a − ð� � �Þ and cK ≡ _Kr

r − ð� � �Þ, where the
dots represent the respective right hand sides of (8), I’ve
plotted the L2 norm of ca and cK across the computational
domain in Fig. 3 for three spatial resolutions: Δr̄ ¼ 0.02,
0.01, and 0.005. The results shown are for the same initial
data used below in Fig. 5, but I’ve found them to be typical,
including for when a black hole forms. That the results are
small indicates that the constraints ca ¼ 0 and cK ¼ 0 are
obeyed and that the results drop by a factor of 4 (for spatial
resolutions that drop by a factor of 2) indicates second order
convergence.

B. End states and stability

I study stability of the static solutions reviewed in Sec. III
by evolving initial data until a final stable configuration is
reached. The initial data require specification of λ̄; v̄; x̄w; s̄w,
and s̄φ. I mentioned in the previous section that I’ll set
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λ̄ ¼ 0 and focus on v̄ ¼ 0.2, 0.3, and 0.4. I’ve tried various
values of s̄φ and will fix s̄φ ¼ 10 [19] which gives typical
results. This leaves x̄w and s̄w which will be free parameters
I search through.
For an initial sense of the system let’s begin with the

“phase” or “end state” diagrams in Fig. 4. The diagrams
indicate the stable end state of an evolution beginning with
initial data (44). Each column is for a different value of v̄.
Consider first Fig. 4(a) for v̄ ¼ 0.2. Every evolution I tried
always ended in one of three end states: the regular
monopole, a monopole black hole, or the RN black hole.
This is not surprising as these are the only three static
solutions found in Sec. III. The circles mark the threshold
of collapse and the squares mark the transition between
monopole and RN black holes and both were found by
fixing x̄w and searching through s̄w. In the next subsection,
I focus on the monopole and RN black hole transition and
for this reason I zoom in on the squares in Fig. 4(b) to show
their variation. Further, the mass M̄ of the stable end state
will be important for that analysis and in Fig. 4(c) I again
plot the squares but in terms of M̄ (with s̄w suppressed). The
other two columns are the same but for v̄ ¼ 0.3 and 0.4.
The choice of which x̄w values to show is explained by the
bottom row, in that these values of x̄w lead to black holes
(at the threshold between monopole and RN black holes)

(a) (d) (g)

(e) (h)

(i)(f)

(b)

(c)

FIG. 4. “Phase” or “end state” diagrams indicating the stable end state (regular monopole, monopole black hole, or RN black hole) of
an evolution starting from initial data (44) with λ̄ ¼ 0 and s̄φ ¼ 10. Each column is for the value of v̄ indicated. Circles mark the
threshold of collapse and squares mark the transition between monopole and RN black holes. The middle row zooms in on the squares
and the bottom row plots the squares as a function of mass M̄ (with s̄w suppressed).

(a)

(b)

FIG. 3. The L2 norm across the computational grid for ca ¼
_a − ð� � �Þ and cK ¼ _Kr

r − ð…Þ, where the dots represent the
respective right hand sides of (8). The results are shown for three
spatial resolutions: (from top to bottom) Δr ¼ 0.02 (purple), 0.01
(blue), and 0.005 (black). That the results are small indicates that
the constraints ca ¼ 0 and cK ¼ 0 are obeyed and that the results
drop by a factor of 4 (for spatial resolutions that drop by a factor
of 2) indicates second order convergence.
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with masses that nicely span the masses at which all three
black holes in Figs. 2(b–c) coexist.
The top row of Fig. 4 indicates that for large s̄w there is

no collapse and the final state of the system is the regular
monopole. This is reasonable since as s̄w increases energy
in the initial w-pulse spreads out and collapse becomes less
likely. For the initial data used, I find that v̄ and x̄w do not
have much effect on the onset of collapse (for different
initial data, of course, this is not necessarily the case). For
middle values of s̄w collapse occurs and the final states are
black hole monopoles while for sufficiently small s̄w the
final states are RN black holes. The RN black hole requires
small s̄w because the black hole that forms must be large
enough to, in a sense, “swallow the monopole” [9].
Now let’s take a closer look at the three possible end

states. Figures 5, 6, and 7 show typical evolutions in which
the end states are, respectively, a regular monopole, a
monopole black hole, and an RN black hole. In Fig. 5, the
dashed lines show the static regular monopole solution

from Sec. III, which the dynamic solution is seen to evolve
to. Similarly, in Fig. 6, the dashed lines are a static black
hole monopole solution. In Fig. 7, the dynamic solution is
seen to evolve to the RN solution (40).
For v̄ ¼ 0.2, 0.3, or 0.4 there is a unique regular

monopole solution and comparing it with the end state
of the dynamic evolution is trivial. To make the analogous
comparison when the end state is a monopole black hole
I match masses at the outer boundary of the computational
domain, that is I take the value of m̄ðt̄; r̄maxÞ ¼ r̄maxð1 −
1=a2ðt̄; r̄maxÞÞ=2 of the end state, use results similar to those
used to make Fig. 2 to find the value of wh for a static
solution with the same m̄ðr̄maxÞ, construct the static
solution, and compare. (In Sec. III, I noted that at large
r the general solution is the RN solution and, thus, from
m̄ðt̄; r̄maxÞ I can infer M̄, which differs by only a small
amount and is what I plotted in the bottom row of Fig. 4).
Another way to view the evolution of the system toward

the static solution is shown in Fig. 8, which displays

10

150 600 1100 10 10

16 100

FIG. 5. Typical time evolution of the scalar field φ̄ (blue) and gauge field w (purple) for initial data (44) in which the end state is
the static regular solution (dashed lines). The initial data use ðv̄; λ̄; xw; sw; sφÞ ¼ ð0.4; 0; 1.6; 0.4; 10Þ. All frames have the same axes.
The coordinate time t̄ for each frame is given in the corner.

8

100 700 1250 10 10

10 20

FIG. 6. The same as Fig. 5 except with the end state being a black hole monopole. The initial data use ðv̄; λ̄; xw; sw; sφÞ ¼
ð0.4; 0; 1.6; 0.25; 10Þ and the end state has mass M̄ ¼ 0.7856.
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wðt̄; r̄�Þ − wstðr̄�Þ and φ̄ðt̄; r̄�Þ − φ̄stðr̄�Þ, where w and φ̄ are
the same dynamic solutions shown in Fig. 6 and wst and φ̄st
are the corresponding static solutions (dashed curves in
Fig. 6). Figure 8 is for r̄� ¼ 9.005, but other values of r̄�
and other evolutions (for example those in Figs. 6 and 7)
give very similar looking results.
For all initial data I tried, if a black hole does not

form (specifically if an apparent horizon is never found),
I always found the end state to be the regular monopole.
This is strong support that these regular monopole solutions
are stable. If a black hole forms and the mass of the end
state satisfies M̄ < M̄B, where B is the bifurcation point in
Figs. 2(b–d), I have only been able to find monopole black
holes and have never found an RN black hole, suggesting in
this region the monopole black hole is stable and the RN
black hole is unstable. For end states with M̄ > M̄A, where
A marks the cusp in Figs. 2(b–d), I have only found RN
black holes, suggesting that in this region RN black holes
are stable and monopole black holes cannot form. All of

this corroborates the stability discussion in Sec. III.
Of course the most interesting region is M̄B < M̄ < M̄A
where three static black hole solutions coexist. I study this
region in the next subsection.

C. Critical behavior and stability

Critical behavior in gravitational collapse was first
discovered by Choptuik [15]. In gravitational systems with
one-parameter families of initial data from which collapse
can occur, there exists a critical value of the parameter such
that, say, above the critical value, p > p�, collapse does not
occur and below the critical value, p < p�, collapse occurs.
The resulting spacetime for p ¼ p� is the critical solution.
Critical solutions are attractors, but contain a single

decay mode and are unstable. This means for p sufficiently
close to p� the spacetime will evolve to be very close to the
critical solution before moving away to either a spacetime
with a black hole or one without. The closer p is to p� the
longer the spacetime stays near the critical solution before
decaying. Choptuik discovered type II critical behavior in
[15] and subsequently Choptuik, Chmaj, and Bizoń dis-
covered type I critical behavior in [30]. In type I, the critical
solution is a stationary (or periodic) spacetime and black
holes form with finite mass, i.e. there is a mass gap. In
type II, the critical solution is self-similar or scale-invariant
and black holes can form with infinitesimally small masses,
i.e. there is no mass gap. For reviews see [16,17]. Type I
and type II critical behavior has been extensively studied
in spherical symmetry and found in numerous systems
[16,17]. They were investigated in the related model of pure
SUð2Þ (no scalar field) in [30,31]. A non-dynamical study
of the monopole system related to type II behavior is
given in [32–34]. All indications are that the circles in
Figs. 4 (a), (d), and (g) represent type II collapse, but a
proper identification of this requires more sophisticated
numerical techniques than I am using here (such as adaptive
mesh techniques).
Less studied is another type of critical behavior found

by Choptuik et al. in [18] in which the critical solution
sits between two types of black holes (as opposed to
between collapse and non-collapse). Analogously to
types I and II, given one-parameter families of initial
data from which two different spacetimes containing
black holes are possible, for p > p� the end state of

20 1000
10

10

FIG. 7. The same as Figs. 5 and 6 except with the end state being the RN black hole [see (40)]. The initial data use ðv̄; λ̄; xw; sw; sφÞ ¼
ð0.4; 0; 1.6; 0.07; 10Þ and the end state has mass M̄ ¼ 1.181. Solutions at three different times are plotted in the final frame.

(a)

(b)

FIG. 8. wðt̄; r̄�Þ and φ̄ðt̄; r̄�Þ are the same dynamic solutions
shown in Fig. 6, with wst and φ̄st the corresponding static
solutions. These plots are for r̄� ¼ 9.005 where wstðr̄�Þ ¼
0.1289 and φ̄stðr̄�Þ ¼ 0.3117. Analogous plots for different
values of r̄� and different evolutions look very similar.
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the evolution is one of the black hole spacetimes, while for
p < p� the end state is the other black hole spacetime, and
the critical solution at p ¼ p� is an unstable attractor with
a single decay mode. Choptuik, Hirschmann, and Marsa
[18] and Rinne [20] studied this phenomenon in pure
SUð2Þ. The two black hole spacetimes both contained
Schwarzschild black holes but with different configura-
tions for the gauge field. In some parts of the initial data
parameter space, the critical solutions are the (fundamen-
tal) static black hole solutions found in [35–37], which
have been shown to have a single decay mode with respect
to radial perturbations [38]. In other parts of parameter
space, the RN solution approximates a critical solution (it
is approximate because the RN solution has an infinite
number of decay modes but one of the modes can be tuned
to dominate over the others). Millward and Hirschmann
[19] studied SUð2Þ with a scalar field in the fundamental
representation, i.e. as a complex doublet. One of the black
hole spacetimes was the Schwarzschild solution and the
other was a sphaleron configuration with a black hole
inside. They too found critical solutions but did not
compare them to known static solutions.
The monopole system is SUð2Þ with a scalar field in the

adjoint representation, i.e. as a real triplet. One black hole
spacetime is the RN solution and the other is a monopole
configuration with a black hole inside, analogous to [19].
Analogous to [18,20], there exist well-known and well-
studied static solutions for comparison with any critical
solution. Given the lack of study of this type of critical
behavior (compared to the extensive study of type I and
type II critical phenomena) I focus on the critical behavior
between RN and monopole black holes.

In Fig. 9, I show a time evolution for two near-critical
solutions. Focusing for a moment on the t̄ ¼ 0 frame the
s̄w > s̄�w solutions are plotted as the dashed blue curves
and the s̄w < s̄�w solutions are plotted as the dotted black
curves. These solutions are seen to be directly on top of
each other because they are both near-critical with
js̄w − s̄�wj=s̄�w ≈ 10−15. As the evolution progresses they
evolve together. Starting in the t̄ ¼ 16 frame I include as
the solid green lines a static solution from the lower
branch in Fig. 2(c). The dynamic solutions are seen to
evolve to it. In frame t̄ ¼ 1450, the dynamic solutions
begin to move away from the static solution and from
each other. Starting in the t̄ ¼ 1600 frame I include as
the solid yellow lines a static solution from the upper
branch in Fig. 2(c). The dashed blue curves are seen
to evolve to the solid yellow lines as their stable black
hole monopole end state. The dotted black curves are
seen to evolve to the RN solution (40) as their stable
end state.
The bottom monopole branches in Figs. 2(b–d) always

act as attractors, with near critical solutions with s̄w > s̄�w
decaying to monopole black holes on the upper branch and
near critical solutions with s̄w < s̄�w decaying to RN black
holes. The values of s̄�w are indicated by the squares in
Fig. 4 and the evolution diagrams for all near-critical
solutions are similar to Fig. 9. This corroborates the
stability discussion in Sec. III that the bottom branches
in Figs. 2(b–d) are unstable, the top branches are stable, and
the RN solutions for M̄ > M̄B, where B is the bifurcation
point, are stable. This is also strong evidence that the
lower branch monopole solutions are critical solutions.
(Identifying them as true critical solutions requires showing

FIG. 9. Time evolution similar to Fig. 5, but for two near-critical dynamic solutions with initial data using
ðv̄; λ̄; x̄w; s̄φÞ ¼ ð0.3; 0; 2.0; 10Þ. The s̄w > s̄�w solutions are the dashed blue curves and the s̄w < s̄�w are the dotted black curves,
which begin on top of each other since for both js̄w − s̄�wj=s̄�w ≈ 10−15. The solid green lines introduced in the t̄ ¼ 16 frame are a static
monopole black hole solution from the lower branch in Fig. 2(c) with ðM̄; r̄hÞ ¼ ð1.280; 2.077Þ and is an intermediate attractor since
both dynamic solutions evolve toward it. Eventually the dynamic solutions leave the green lines and separate as seen starting in the
t̄ ¼ 1450 frame. The yellow lines introduced in the t̄ ¼ 1600 frame are a static monopole black hole solution from the upper branch in
Fig. 2(c) with ðM̄; r̄hÞ ¼ ð1.285; 2.098Þ, which one of the dynamic solutions evolves to as its stable end state. The other dynamic
solution evolves to the RN black hole (40) as its stable end state. Dynamic solutions for three different times are shown in the final frame.
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they have a single (radial) decay mode, which as far I am
aware has not been done.)
When this type of critical behavior was discovered in

[18], it was shown that it exhibits time scaling qualitatively
similar to type I in that the closer the initial data are to that
for the critical solution, i.e. the closer p is to p�, the longer
the near-critical solution stays next to the critical solution as
measured, say, by an observer at infinity, before decaying to
its end state. In terms of Fig. 9, this means the dynamic
solutions spend more and more time on the solid green
lines, as they do in frames t̄ ¼ 200 to 1200, as s̄w
approaches s̄�w. It was also shown in [18] that this time
scaling obeys

Δt̄ ¼ −λ ln jp − p�j ð46Þ

where λ (not to be confused with the scalar field self-
coupling) is the characteristic time scale for decay of the
unstable critical solution or the inverse of the Lyapounov
exponent for the unstable mode. This scaling relation was
also found in [19,20]. In Fig. 10, I confirm this scaling
relation for the monopole system and compute λ for a
number of critical solutions.

D. No-hair conjecture

The no-hair conjecture states that within a given model
stationary black holes are uniquely determined by global
charges that may be measured at infinity through surface
integrals [9,39,40]. The solutions reviewed in Sec. III are
static (there is no angular momentum) and have unit
magnetic charge and, thus, the only global parameter by
which they could differ at infinity is mass. That we have
two stable solutions with the same mass [the upper branch
monopole solution and the RN solution in the region

M̄B < M̄ < M̄A in Figs. 2(b–c)] is a well-known counter
example to the no-hair conjecture [5,7,11] (see also [41]).
It is sometimes thought that the no-hair conjecture may

still hold for black holes formed from collapse [9]. As we
have seen in this section initial data can evolve to a stable
end state that is either a black hole monopole or an RN
black hole suggesting a dynamic counter-example to the
no-hair conjecture.

V. CONCLUSION

I dynamically evolved spherically symmetric spacetimes
containing gravitational ’t Hooft–Polyakov monopoles.
Using black hole excision methods I determined the stable
end states of the evolutions. To reduce the large amount of
parameter space that could be studied I focused on λ̄ ¼ 0
and v̄ ¼ 0.2, 0.3, and 0.4. I also worked almost exclusively
within the magnetic ansatz. In this final section, I comment
on expectations for other ranges of parameters.
The results for nonzero values of λ̄ that are not too large

I expect to be qualitatively similar, as the stability structure
of the static solutions is the same [11,13]. For larger λ the
unstable branch of the static black hole monopole solutions
disappears and the RN solution, when it has the same mass
as a monopole solution, is unstable. This suggests that the
critical behavior studied in Sec. IV C disappears, and the
end state of an evolution in which a black hole forms will
be a monopole black hole for masses in which it exists;
otherwise, it will be an RN black hole.
As v̄ increases eventually monopole and RN black holes

no longer coexist (for example, when v̄ >
ffiffiffi
3

p
=2 when

λ̄ ¼ 0 [7]). There also exists a maximum value of v̄ above
which static monopole solutions do not exist [5,7]. In these
regions, we should not expect critical behavior as studied
in Sec. IV C and the stable end state should be whichever

(a) (b) (c) (d) (e) (f)
0.2 0.2

2.00 2.15 1.45 1.603.15

FIG. 10. Critical solutions sitting between stable black hole monopole and stable RN black hole end states obey the time scaling
Δt̄ ¼ −λ ln js̄w − s̄�wjwhere Δt̄ is the elapsed time measured by an observer at infinity and λ (not to be confused with the scalar field self-
coupling) is the characteristic time scale for decay of the unstable critical solution or the inverse of the Lyapounov exponent for the
unstable mode. This time scaling expresses that the closer you get to the critical solution, i.e. the closer s̄w gets to s̄�w, the longer the
dynamic solutions spend near the critical solution before evolving away. I defineΔt̄ for the figures here to be the time from the beginning
of the evolution until jφ̄ðr̄Þ − v̄j < 10−3 for all unexcised values of r̄ (I have found that once this inequality is satisfied an RN black hole
end state is assured to occur). Each figure is for the indicated values of v̄ and x̄w. Also shown in the figure is λ as obtained from a least-
squares fit.
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unique static black hole is possible. In the opposite
direction, for v̄ → 0 the scalar field decouples and we
have a pure SUð2Þ system as studied in [18,20,30,31].
Excited static monopole black holes (i.e. solutions with a
nonzero number of nodes or zero-crossings of the gauge
field, and which exist, for example, for v̄ <

ffiffiffi
3

p
=2 when

λ̄ ¼ 0 [7]) are all expected to be unstable and it is unlikely
they can be produced in a dynamic evolution.

Finally, everything done here is within the magnetic
ansatz, as was the case in [18–20]. At least for pure SUð2Þ
(no scalar field) this is known to be unstable to small
(sphaleron) perturbations [42–44], but since all data
evolved here remain within the magnetic ansatz any
instabilities in the sphaleron sector are unexcited. It would
be interesting to study this system without making the
magnetic ansatz, as was done for pure SUð2Þ in [45].
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