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We propose a modified theory of gravitation constructed by the addition of the term fðTμνTμνÞ to the
Einstein-Hilbert action, and elaborate a particular case fðTμνTμνÞ ¼ αðTμνTμνÞη, where α and η are real
constants, dubbed energy-momentum powered gravity (EMPG). We search for viable cosmologies arising
from EMPG, especially in the context of the late-time accelerated expansion of the Universe. We investigate
the ranges of the EMPG parameters ðα; ηÞ on theoretical as well as observational grounds leading to the late-
time acceleration of the Universe with pressureless matter only, while keeping the successes of standard
general relativity at early times. We find that η ¼ 0 corresponds to the ΛCDM model, whereas η ≠ 0 leads to
a wCDM-type model. However, the underlying physics of the EMPG model is entirely different in the sense
that the energy in the EMPG Universe is sourced by pressureless matter only. Moreover, the energy of the
pressureless matter is not conserved, namely, in general it does not dilute as ρ ∝ a−3 with the expansion of the
Universe. Finally, we constrain the parameters of an EMPG-based cosmology with a recent compilation of 28
Hubble parameter measurements, and find that this model describes an evolution of the Universe similar to
that in the ΛCDM model. We briefly discuss that EMPG can be unified with Starobinsky gravity to describe
the complete history of the Universe including the inflationary era.
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I. INTRODUCTION

Inflation is a theory of exponential expansion of space
in the early Universe corresponding to energy scales
∼1016 GeV [1–7]. Besides, today it is confirmed by means
of several independent observations that the Universe again
started to expand at an accelerated rate approximately 5 Gyr
ago, and it has happened at low energy scales ∼10−4 eV
[8–10]. The totally different energy scales show that the
physics behind these two phenomena should be different.
Inflation requires a modification of gravitation that plays a
role at high energy densities such as the Starobinsky model
[1], while the late-time acceleration of the Universe would
be related with a similar mechanism but working at very
low energy scales or a modification to the general theory of
relativity (GR) that plays a role at sufficiently low energies.
The approaches accommodating the current accelerated
expansion of the Universe are classified into two main
categories, subject to imminent observational discrimina-
tion. First is the introduction of a source in GR with a large
negative pressure, which is called “dark energy” (DE) and
is described most frequently by a scalar field or conven-
tional vacuum energy which is mathematically equivalent

to the cosmological constant Λ [11–14]. The most suc-
cessful cosmological model capable of predicting the
observed pattern of the expansion of the Universe so far
is the six-parameter base ΛCDM model that is simple and
in reasonably good agreement with the currently available
high-precision data [8–10]. On the other hand, this model
suffers from profound theoretical difficulties, such as the
cosmological constant and coincidence problems [11,12,
15–18]. There are also observations suggesting small
deviations from ΛCDM in order to describe the current
Universe [9,10,19]. On the other hand, we do not have a
promising and concrete fundamental theory giving rise to
dark energy models more general than the ΛCDM model
that would account for small deviations from ΛCDM. The
second approach is the modification of gravity at large
distances, rather than imposing an unknown kind of source,
such as in fðRÞ, scalar-tensor theories, Brans-Dicke the-
ories of gravity, etc. [20–23]. The essence of this approach
is to modify the form of the coupling between the source
described by the energy-momentum tensor (EMT) Tμν

and the spacetime geometry described by the metric tensor
gμν. Depending on the modifications in the action, this
approach can lead to modifications on either the left- or
right-hand side of Einstein’s field equations (EFE),
Rμν − 1

2
gμνR ¼ κTμν, where the terms have the usual mean-

ing. In this approach where one avoids introducing a new
kind of source, it may be possible to define the corrections
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that appear on the left-hand side of the EFE, as in the fðRÞ
theories [24], as a separate effective source by moving them
to the right-hand side of the EFE. However, this might not
always be trivial or possible, as in, for example, the
generalization of fðRÞ theories via an explicit coupling of
an arbitrary function of the Ricci scalar R with the matter
Lagrangian density Lm given in Ref. [25]. Tests of the
modified gravity models including nonminimal coupling
between matter and geometry, using direct astronomical and
astrophysical observations at the galactic or extragalactic
scale, are also possible [26]. The modifications in the action
that lead to the modifications on the left-hand side of the EFE
are much more commonly studied in the literature compared
to the ones that lead to the modification on the right-hand
side of the EFE, namely, in the form of how Tμν appears in
the field equations. Of course, it could be possible to find a
corresponding modification on the left-hand side of the EFE
for a modification appearing on the right-hand side of the
EFE, though this also might not be trivial or possible. Hence,
confining ourselves to the modifications in the action leading
to modifications on the left-hand side of the EFE may result
in missing a large class of successful modified gravity laws
that can be obtained from the EMT-type modifications.
In the following, we briefly describe the EMT type of

modifications considered/studied in the literature. In most
of the works, each side—both R and T (the trace of the
EMT)—were modified and the resulting cosmological
implications were studied with the motivation to explain
problems or shortcomings of the standard big bang model
and Einstein’s standard GR, such as inflation, late-time
acceleration, etc. ΛðTÞ gravity relates cosmic acceleration
via the most general form of the EMT, and yields a
relativistically covariant model of interacting DE, based
on the principle of least action [27], where Λ in the
gravitational Lagrangian is a function of the trace of the
EMT. The fðR; TÞ model was proposed and studied in
Ref. [28] with some specific choices of the function
fðR; TÞ. The authors of Ref. [29] discussed a complete
cosmological scenario from fðR; TϕÞ gravity theory pro-
posed in Ref. [28]. In Refs. [30–32], more generalized
modified theories of gravity with fðR; T; RμνTμνÞ gravity
were studied. One of us has proposed a Lorentz invariant
and covariant generalization of GR in Ref. [33] consid-
ering fðR; TμνTμνÞ. The last two studies are different in the
sense that TμνTμν- or RμνTμν-like terms still survive for the
T ¼ 0 case, and do not simply reduce to fðRÞ theories. For
instance, for the electromagnetic field, fðR; T; RμνTμνÞ
and fðR; TμνTμνÞ theories differ, whereas the predictions
of fðR; TÞ and fðRÞ theories may be the same. Rather than
GR, fðT Þ gravity—called the teleparallel equivalent of
GR—was extended via a nonminimal torsion-matter
coupling in the action in Ref. [34]. Going one step further,
the coupling of the torsion scalar with the trace of the
EMT was studied in fðT ; TÞ gravity [35].

As stated above, the self-contraction of the EMT was
first proposed in Ref. [33]. Here we extend it to a more
general form fðR; TμνTμνÞ ¼ αðTμνTμνÞη, whereas in
Ref. [33] particular values of its power η were studied.
For instance, it was found that the relation between the
Hubble parameter and energy density is of a form
familiar from the Cardassian expansion studied in the
context of late-time cosmic acceleration, or that η ¼ 1

2

leads to a slight deviation from the standard pressureless
matter and radiation behavior, violating energy conser-
vation. The higher-order matter terms are reminiscent of
the terms (corrections) that arise naturally in loop
quantum gravity [36,37], and those in the brane world
models [38]. In Ref. [39], the model was analyzed with
the η ¼ 1 case, which corresponds to the EMT squared
contribution, dubbed energy-momentum squared gravity
(EMSG). For this power of the EMT, the correction
terms are important only at sufficiently early times, and
therefore this model does not give accelerated expansion
without any contribution from other extra fields such as
scalar fields which can enter the matter Lagrangian.
Since the difference appears in the high energy density
regime, the charged black hole solution in energy-
momentum squared gravity is different from the stan-
dard Reissner-Nordström spacetime [39]. Here, we
present a detailed theoretical and observational analysis
of energy-momentum powered gravity (EMPG) pro-
vided by the general case fðR; TμνTμνÞ ¼ αðTμνTμνÞη
in the context of the late-time accelerated expansion
of the Universe. We investigate the ranges of the EMPG
model parameters ðα; ηÞ for viable cosmologies leading
to the late-time acceleration of the Universe with
pressureless matter only, while keeping the successes
of standard general relativity at early times. We dem-
onstrate that only the dust content is sufficient to explain
the observed cosmic acceleration. Moreover, the
sequence of the matter-dominated phase, deceleration-
acceleration transition, and acceleration is obtained
similar to the ΛCDM model in the presence of dust
alone. After the first appearance of our study on the
arXiv, the ðTμνTμνÞη-type modification to GR was also
studied in Ref. [40], where the authors presented a range
of exact solutions for isotropic universes, and discussed
their behaviors with reference to the early- and late-time
evolution, accelerated expansion, and the occurrence or
avoidance of singularities.
The paper is structured as follows. In the following

section, we present the detailed framework of EMPG.
In Sec. III, we demonstrate the viable cosmologies arising
from EMPG that lead to the late-time acceleration of the
Universe. In Sec. IV, we constrain the EMPG model
parameters with a recent compilation of 28 Hubble
parameter measurements, and discuss the evolution of
the EMPG model in contrast with the ΛCDM model.
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In Sec. V, we give our concluding remarks and discuss
some future perspectives of the study.

II. ENERGY-MOMENTUM
POWERED GRAVITY

We start with the action constructed by the addition of
the term fðTμνTμνÞ [33] to the Einstein-Hilbert (EH)
action1 as follows:

S ¼
Z �

1

2κ
Rþ fðTμνTμνÞ

� ffiffiffiffiffiffi
−g

p
d4xþ

Z
Lm

ffiffiffiffiffiffi
−g

p
d4x;

ð1Þ
where κ is Newton’s constant, R is the Ricci scalar, g is the
determinant of the metric, and Lm is the Lagrangian density
corresponding to the source that would be described by the
energy-momentum tensor Tμν. We vary the action with
respect to the inverse metric as

δS ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2κ
δRþ ∂f

∂ðTμνTμνÞ
δðTσϵTσϵÞ

δgμν
δgμν

−
1

2
gμνðRþ fðTσϵTσϵÞÞδgμν þ 1ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp

LmÞ
δgμν

�
;

ð2Þ

and, as usual, we define the EMT as

Tμν ¼ −
2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp

LmÞ
δgμν

¼ gμνLm − 2
∂Lm

∂gμν ; ð3Þ

which depends only on the metric tensor components, and
not on its derivatives. Consequently, the field equations
read as follows:

Gμν ¼ κTμν þ κ

�
fgμν − 2

∂f
∂ðTμνTμνÞ θμν

�
; ð4Þ

where Gμν ¼ Rμν − 1
2
Rgμν is the Einstein tensor and θμν is

the new tensor defined as

θμν ¼ Tσϵ δTσϵ

δgμν
þ Tσϵ

δTσϵ

δgμν

¼ −2Lm

�
Tμν −

1

2
gμνT

�
− TTμν

þ 2Tγ
μTνγ − 4Tσϵ ∂2Lm

∂gμν∂gσϵ : ð5Þ

We note that the EMT given in Eq. (3) does not include the
second variation of Lm, and hence the last term of Eq. (5) is

null. As the definition of the matter Lagrangian that gives
the perfect-fluid EMT is not unique, one could choose
either Lm ¼ p or Lm ¼ −ρ, which provide the same EMT
(see [41,42] for a detailed discussion). In the present study,
we consider Lm ¼ p.
We proceed with a particular form of the model as

fðTμνTμνÞ ¼ αðTμνTμνÞη; ð6Þ

which we shall refer to as the EMPG model. The action
now reads as

S ¼
Z �

1

2κ
Rþ αðTμνTμνÞη þ Lm

� ffiffiffiffiffiffi
−g

p
d4x; ð7Þ

where η is the power of the self-contraction of the EMT, and α
is a constant that would take part in determining the coupling
strength of the EMT-powered modification to gravity. The
Einstein field equations (4) for this action become

Gμν ¼ κTμν þ καðTσϵTσϵÞη
�
gμν − 2η

θμν
TσϵTσϵ

�
: ð8Þ

Using Eq. (8), the covariant divergence of the EMT reads as

∇μTμν ¼ −αgμν∇μðTσϵTσϵÞη

þ 2αη∇μ

�
θμν

ðTσϵTσϵÞ1−η
�
: ð9Þ

We notice that, in our model, the EMT is not conserved in
general since the right-hand side of this equationvanishes only
for some particular values of the constants.
In this paper, we shall study the gravity model under

consideration in the context of cosmology. Therefore, we
proceed by considering the spatially maximally symmetric
spacetime metric, i.e., the Robertson-Walker metric, with
flat space-like sections

ds2 ¼ −dt2 þ a2ðdx2 þ dy2 þ dz2Þ; ð10Þ

where the scale factor a ¼ aðtÞ is a function of cosmic time
t only, and the perfect fluid form of the EMT is given by

Tμν ¼ ðρþ pÞuμuν þ pgμν; ð11Þ

where ρ is the energy density, p is the thermodynamic
pressure, and uμ is the four-velocity satisfying the con-
ditions uμuμ ¼ −1 and ∇νuμuμ ¼ 0. We assume a baro-
tropic equation of state (EoS),

p
ρ
¼ w ¼ const; ð12Þ

to describe the physical ingredient of the Universe. Using
Eqs. (11) and (12), we find θμν given in Eq. (5) and the
self-contraction of the EMT as

1According to Lovelock’s theorem, the cosmological constant
Λ arises as a constant of nature, which we have set to zero in
Eq. (1) for the reasons discussed in detail in Sec. III A.
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θμν ¼ −ρ2ð3wþ 1Þðwþ 1Þuμuν; ð13Þ

TμνTμν ¼ ρ2ð3w2 þ 1Þ; ð14Þ

respectively. Then, using Eqs. (13) and (14) as well as the
metric (10) in the field equations (8), we obtain the
following set of two linearly independent differential
equations in two unknown functions H and ρ:

3H2 ¼ κρþ κ0ρ0

�
ρ

ρ0

�
2η

; ð15Þ

−2 _H − 3H2 ¼ κwρþ κ0ρ0
2η − 1þ 8wη

3w2þ1

�
ρ

ρ0

�
2η

; ð16Þ

whereH ¼ _a=a is the Hubble parameter and the subscript 0
refers to the present-day values of the parameters.
The constant κ0 is the gravitational coupling of the
EMT-powered modification, and is given by

κ0 ¼ α0κ ¼ ακρ2η−10 ð3w2 þ 1Þη
�
2η − 1þ 8wη

3w2 þ 1

�
: ð17Þ

We note that the source (i.e., Tμν) that we considered in
the EMT-powered term is the same as the one obtained
from Lm, but the terms that appear in the field equations
due to the EMT-powered term in the action couple to
gravity with a different strength as κ0 ¼ α0κ, where α0 is the
ratio of this coupling with respect to the conventional
Newtonian coupling κ. We further note that α0 ¼
α0ðα; η; ρ0; wÞ, namely, α0 depends not only on α but also
on the current energy density ρ0, and the type of source
described by the EoS parameter w provided that η ≠ 0. This
implies that the EMT-powered term would lead to a
violation of the equivalence principle, which is intimately
connected with some of the basic aspects of the unification
of gravity with particle physics such as string theories (see
Ref. [43] and references therein). We will not elaborate the
implications of this property of our model in this paper,
since here we shall discuss the dynamics of the Universe in
the presence of only a pressureless fluid, i.e., a monofluid
Universe, with the purpose of describing the late-time
acceleration of the Universe (where the radiation is neg-
ligible) without invoking a cosmological constant or any
dark energy source.
Next, we note that the first Friedmann equation (15) is in

the form of the well-known Cardassian expansion
(H2 ¼ Aρþ Bρn, with A, B, and n being constants)
[44], which was motivated by the fact that the term of
the form ρn can generically appear as a consequence of
embedding the observable Universe as a brane in extra
dimensions [44,45]. On the other hand, in the second
Friedmann equation (16), we see that the additional
pressure term (the latter term that appears due to the
EMPG) is in the form of the pressure of the generalized

Chaplygin gas (p ¼ −A=ρα, where A is a positive constant)
[46,47]. Also, for the special case η ¼ 1, the total pressure
[the whole right-hand side of Eq. (16)] is similar to the
quadratic equation of state (p ¼ p0 þ αρþ βρ2, where p0,
α, and β are constants) of dark energy [48]. However, one
may check that our model in fact does not correspond to
any of them, namely, the modified Friedmann equations of
our model (15) and (16) do not simultaneously match the
Friedmann equations of each of these models. The main
reason behind this is the violation of the local/covariant
energy-momentum conservation in our model. The corre-
sponding energy conservation equation (9) is

_ρþ 3Hð1þ wÞρ

¼ −2α0η
�
_ρþ 3Hρ

�
1þ 4w

3w2þ1

2η − 1þ 8wη
3w2þ1

���
ρ

ρ0

�
2η−1

: ð18Þ

Here we can see that the local/covariant energy-momentum
conservation∇μTμν ¼ 0, which would lead to ρ ∝ a−3ð1þwÞ,
is not satisfied for α0 ≠ 0 in general. Some particular cases in
which the right-hand side of the equation vanishes are as
follows: (i) the case η ¼ 0, which is trivial; (ii) the case
w ¼ −1, i.e., the conventional vacuum energy; and (iii) the
case η ¼ 3w2þ3wþ2

2ð3wþ1Þðwþ1Þ, which gives η ¼ 1 for w ¼ 0 (dust)

and η ¼ 5
8
for w ¼ 1

3
(radiation). One may also check that the

standard energy conservation is not satisfied for the range
24−9

ffiffi
6

p
48−20

ffiffi
6

p < η < 1
2
. In the context of late-time acceleration, the

violation of energy conservation is not uncommon in the
literature [49,50].

III. LATE-TIME ACCELERATION IN
A DUST-ONLY UNIVERSE

The late-time acceleration of the Universe takes place at
relatively low energies, and hence it would be wise to
search for suitable ranges of the model parameters α0 and η
in which our modification is effective at sufficiently low
energy densities, but negligible at high energy densities,
namely, at energies higher than that of recombination. In
this way, the successes of the standard cosmology would be
untouched, and we would be able to derive accelerated
expansion. Knowing that the energy density of the matter
source ρ should be positive, wewould like to ensure that the
EMT-powered contribution to the Hubble parameter [the
latter term in Eq. (15)] is positive as well. So we set κ0 > 0,
implying that α0 > 0. In the α0 ¼ 0 case, the EMT-powered
modification vanishes, and our model reduces to the
standard Friedmann model as the standard EH action is
recovered. In this case, we get a matter (e.g., dust)
dominated Universe in GR, and to get accelerated expan-
sion of the Universe we need a cosmological constant or
DE source. Therefore, in what follows, we consider α0 > 0,
and focus our attention on the free parameter η.
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A. ΛCDM-type behavior (η= 0) without Λ
Let us start with the special case η ¼ 0. In this case, in the

presence of pressureless matter ρm with w ¼ wm ¼ 0, from
Eqs. (15) and (18) we obtain 3H2 ¼ κρm;0ð aa0Þ−3 þ κ0ρm;0.
Hence, the model yields the same mathematical structure
as the ΛCDM model 3H2 ¼ κρm;0ð aa0Þ−3 þ κρΛ, where
ρΛ ¼ const. But we stress that the underlying physics of
these two models are completely different. Namely, the
only source in our model is pressureless matter, which is
not the case in theΛCDMmodel. For instance, ifwe consider
an empty Universe (ρm;0 ¼ 0), we find H ¼ 0 (a static
Universe) in our model, whereas we find H ¼ ffiffiffiffiρΛ

3

p ¼
const (the de Sitter solution) in the ΛCDM model. On the
other hand, we can make use of this correspondence to
estimate the value of α0. Setting a ¼ a0 in both models, we
obtain 3H2

0 ¼ ðκ þ κ0Þρm;0 for our model, and 3H2
0 ¼

κðρm;0 þ ρΛÞ for the ΛCDM model. Then, using these we
obtain the following correspondence between the parameters
of these two models: α0 ¼ ρΛ=ρm;0. Hence, from the recent
Planck results [10] giving ΩΛ;0 ¼ ρΛ

ρm;0þρΛ
∼ 0.69 for the

current Universe, we estimate that α0 ∼ 2.2 . Knowing that
ΛCDM is very successful in describing the observed
Universe, it would not be wrong to conclude from this
simple investigation that our model with η ∼ 0 and α0 ∼ 2
would successfully describe the background dynamics of the
observed Universe.We note that the role of the cosmological
constant inΛCDMhas been taken over by the energy density
of the pressureless matter itself due to its new form of
coupling to gravity, which is about 2 times stronger than that
of the conventional coupling. On the other hand, we could
also obtain accelerated expansion by including a cosmologi-
cal constant in our model from the beginning (which is
obvious), or by considering vacuum energy for the EMT.
In the latter case—namely, when we consider the conven-
tional vacuum energy described by the EoS parameter
w ¼ wvac ¼ −1—irrespective of the value of η, our model
gives de Sitter expansion, as in standard GR, but with an

enhanced Hubble parameterH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
3
ρvac;0ðκ þ κ0Þ

q
¼ const

due to the coupling κ0 of the EMT-powered modification.
However, obtaining accelerated expansion without invoking
a cosmological constant or vacuum energy—in contrast to
ΛCDM—would render our model immune to the well-
known cosmological constant problem, namely, the extreme
fine-tuningof thevalueofΛ.Althoughweknowofno special
symmetry that could enforce a vanishing vacuum energy
while remaining consistentwith theknown laws of physics, it
is usually thought to be easier to imagine an unknown
mechanism that would set Λ precisely to zero than one that

would suppress it by just the right amount ρðobservationÞΛ =

ρðtheoryÞΛ ∼ 10−120 to yield an observationally accessible
cosmological constant (see Refs. [11,12,15–18] and refer-
ences therein). In our model, on the other hand, in the

presence of only a pressureless fluid the observations would
favor κ0 ∼ 2κ, which means that the coupling strength of the
corresponding energy density of the EMT-powered modifi-
cation to gravity has the same order of magnitude as the
conventional coupling of the energy density to gravity.
It may be noted that we have avoided the introduction of

a nonzero cosmological constant in the action (1), though
according to Lovelock’s theorem2 the cosmological con-
stant Λ arises as a constant of nature like Newton’s
gravitational constant G ¼ κ

8π. Indeed, if we stick to the
usual interpretation of Λ as the term representing the
vacuum energy ρvac, one then gets R ¼ 4Λ ¼ 4κρvac in
GR. However, then the fine-tuning problem arises, as we
discussed above, as well as some other problems as
well inherited from the standard ΛCDM model due to
the presence of Λ (see Ref. [18] for a recent review).
Similarly, in our model, as mentioned above, in the
presence of only pure vacuum wvac ¼ −1, we obtain
R ¼ 4ðκ þ κ0Þρvac. Therefore, considering a dust-only
(w ¼ 0) Universe implies that a constant of nature, which
would correspond to Λ ¼ ðκ þ κ0Þρvac, is set to zero in the
construction of our model. On the other hand, as discussed
in the previous paragraph, setting Λ to zero (i.e., consid-
ering only dust without vacuum energy) alleviates the fine-
tuning problem in our model. However, there are several
other reasons for such a setting within the scope of the
current study. If we consider a nonzero Λ, then we can see
from the field equations (15) and (16) that, for the case
η ¼ 0, the constant contribution from dust itself, i.e., κ0ρ0,
and Λ would be degenerate at least at the background level.
In addition, it is conceivable that such a degeneracy would
also appear for the case η ∼ 0. Besides, for the case η > 1

2
,

the new terms that arise due to EMPG with respect to GR
would be suppressed at relatively low energy densities, and
then one can recover the ΛCDMmodel in the late Universe
and let EMPG alter the early Universe. For instance, in [39]
the Universe filled with dust approached the ΛCDM model
at late times in EMSG, i.e., the special case EMPGη¼1 of
our model. Indeed, in Ref. [54], the parameter α was well
constrained from neutron stars and it was found that EMPG
can lead to a significant modification in the dynamics of the
Universe only when the age of the Universe is t≲ 10−4s,
long before the physical processes relevant to big bang
nucleosynthesis that take place when t ∼ 10−2–102 s, and
leaves the standard cosmology unaltered [54]. It is clear
from these studies that our model in the presence of Λ
would create a degeneracy between the cases η ∼ 0 and

2Lovelock’s theorem [51,52] states that the only possible
second-order Euler-Lagrange expression obtainable in a four-
dimensional space from a scalar density of the form L ¼ LðgμνÞ
is Eμν ¼ ffiffiffiffiffiffi−gp ðλ1Gμν þ λ2gμνÞ, where λ1 and λ2 are constants,
leading to Newton’s gravitational constant G and cosmological
constant Λ in Einstein’s field equations Gμν þ Λgμν ¼ κTμν (see
Refs. [18,20,53] for further reading).

COSMIC ACCELERATION IN A DUST ONLY UNIVERSE … PHYS. REV. D 97, 024011 (2018)

024011-5



η > 1
2
when subjected to the data from cosmological

observations. Moreover, when we carry out our observa-
tional analysis, the case with η ∼ 0, α0 ∼ 2.2, and Λ ∼ 0

would be degenerate with the case η > 1
2
, ρm;0

ρΛþρm;0
∼ 0.7 for a

range of α0 depending on the value of η. However, it is
possible to overcome some of the above-mentioned degen-
eracies, e.g., by considering compact astrophysical objects
such as neutron stars for the case η > 1

2
(e.g., in Ref. [54]

EMSG, i.e., EMPGη¼1, was studied), although such an
analysis is beyond the scope of the current study. Finally,
we would like to mention that the inclusion of Λ in the
action (1) may provide a much richer theory, and we
postpone this idea to future work.

B. Viable cosmologies more general than
ΛCDM without Λ

In the above, we have demonstrated that our model for
the case η ¼ 0 provides not only the same background
dynamics as the ΛCDM model, but also some additional
promising features. Let us now elaborate our discussion by
considering the η ≠ 0 cases. We first explore the range for
the value of η to get accelerated expansion in the relatively
late Universe. We note from Eq. (15) that the parameter η
determines whether the EMPG modification would come
into play at large or small values of ρ. In the case η ¼ 1

2
, the

terms from the standard EH and the EMT-powered modi-
fication in Eq. (15) have the same power, and they track
each other, i.e., their relative contributions to H do not
depend on the value of the energy density, but only on α0. In
the case of η > 1

2
, the EMT-powered term manifests itself at

larger values of ρ, namely, in the relatively early Universe,
say, at a time before big bang nucleosynthesis (BBN)
processes took place; in this case, one could discuss
alternative scenarios for the beginning of Universe. For
instance, in the model introduced in Ref. [39], which
corresponds to the case η ¼ 1 of our model in the presence
of Λ, the Universe may not reach an initial singularity and
bounce when ρ increases to a certain value in the early
Universe, and at sufficiently low values of ρ the model
becomes indistinguishable from GR and hence it is Λ that
leads to a late-time accelerated expansion. In the case η < 1

2
,

the EMT-powered term manifests itself at lower values of ρ
(say, in the present Universe ρm

ρm;0
∼ 1), where it may play a

role in the accelerated expansion of the Universe, thereby
providing an alternative to Λ or dark energy sources while
keeping the successes of the standard cosmology based on
GR at earlier times of the Universe. For instance, the
particular case η ¼ 1

4
of our model may lead to a late-time

accelerated expansion, as discussed in Ref. [33].

1. Accelerated expansion at low energies

In light of the above discussion, we see that we should
consider the case α0 > 0 with η < 1

2
for the EMT-powered

term to be effective at lower values of the energy density.
As a further step, we write the deceleration parameter
q ¼ −1 − _H

H2 to check whether the EMT-powered modifi-
cation would give rise to the accelerated expansion,

q ¼
1þ 3wþ α0ð ρρ0Þ2η−1

h
1þ 3

2η−1þ 8wη

3w2þ1

i
2þ 2α0ð ρρ0Þ2η−1

: ð19Þ

As we discussed above, the EMPG modification becomes
negligible at larger values of ρ for η < 1

2
. It is possible to set

the values of α0 and η such that at energy scales larger than
that of recombination, our model would be indistinguishable
fromGR, i.e., the termswithα0 inEqs. (19) and (18)wouldbe
negligible and lead to q ¼ 1þ3w

2
and _ρþ 3Hð1þ wÞρ ¼ 0,

respectively. Hence, the standard cosmology would be left
unaltered for times before recombination that took place at
z ≈ 1100. Because the Universe should always be matter
dominated (hence w ¼ 0, implying q ¼ 1

2
) at recombination

[55], and we introduce no sources (such as Λ or DE) that
would dominate over pressureless matter after recombina-
tion, we can assume that the Universe is only filled with
pressureless matter ρm. Hence, we use the deceleration
parameter

q ¼
1þ 2α0ð ηþ1

2η−1Þð ρm
ρm;0

Þ2η−1
2þ 2α0ð ρm

ρm;0
Þ2η−1 ; ð20Þ

obtained by substitutingw ¼ 0 in Eq. (19), to investigate the
evolution the Universe at z≲ 1100 as well as the late-time
accelerated expansion, which starts at z ∼ 0.6. Because the
condition α0 > 0 makes the denominator always positive, q
can take negative values if

−1 < η <
1

2
; ð21Þ

due to the term ηþ1
2η−1 in the numerator. We note that the upper

limit coincides with the one we obtained in order for the
EMPG modification to be effective at lower energy density
values. Thus, the condition (21) guarantees standard GR at
earlier times, and cosmic acceleration at later times bymeans
of the EMPG modification. Finally, we get accelerated
expansion in the present Universe at z ¼ 0, implying
ρm ¼ ρm;0, provided that

−1þ 3

2α0 þ 2
< η <

1

2
; ð22Þ

which is a stronger condition than the one given in Eq. (21)
for all positive values of α0. We next see from Eq. (20) that

q ≈
ηþ 1

2η − 1
for ρm ≪ ρm;0; ð23Þ
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provided that ρm can decrease to sufficiently small values
under the condition (21). (We shall discuss the minimum ρm
values that can be achieved at the end of this section.)
According to this, the Universe evolves toward −1 < q < 0
for−1 < η < 0, toward q¼−1 for η¼0, and toward q < −1
for 0 < η < 1

2
. These are in line with the effective energy

density and pressure ρ0 ¼ ρm;0ð ρm
ρm;0

Þ2η and p0 ¼ ρm;0

2η−1 ð ρm
ρm;0

Þ2η
from the EMPG modification in the modified Friedmann
equations (15)–(16), respectively. In the presence of only
pressureless matter, we find that the effective EoS parameter
of the EMPG modification is w0 ¼ p0

ρ0 ¼ 1
2η−1, which gives

a quintessence-like EoS parameter −1 < w0 < − 1
3

for
−1 < η < 0, a vacuum-like EoS parameter w0 ¼ −1 for
η ¼ 0, and a phantom-like EoS parameter w0 < −1
for 0 < η < 1

2
. These signal that our model would lead to

a Universe that exhibits a similar (but not the same, since
covariant energy-momentum conservation is not always
satisfied in our model) evolution as that of the well-known
wCDM model, which is the simplest (phenomenological)
and most widely considered extension of the ΛCDM model
in observational cosmology. Based on GR, in the wCDM
model (where w represents the EoS of the DE source as
wDE ¼ const) the energy densities of pressureless matter and
DE evolve as ρm ∝ a−3 and ρDE ∝ a−3ð1þwDEÞ, respectively,
due to the covariant conservation of the EMT tensors of these

sources. These imply that ρDE ∝ ρð1þwDEÞ
m , which leads to

the following deceleration parameter for the spatially flat
wCDM model:

qwCDM ¼
1þ ð3wDE þ 1Þ 1−Ωm;0

Ωm;0
ð ρm
ρm;0

ÞwDE

2þ 2
1−Ωm;0

Ωm;0
ð ρm
ρm;0

ÞwDE
: ð24Þ

Its mathematical form is very similar to our model’s
deceleration parameter (20). Indeed, under the transforma-
tions wDE → 2η − 1 and 1−Ωm;0

Ωm;0
→ α0, this can be recast as

follows:

qwCDM ¼
1þ 2α0ð3η − 1Þð ρm

ρm;0
Þ2η−1

2þ 2α0ð ρm
ρm;0

Þ2η−1 : ð25Þ

However, we note that the coefficients in front of the latter
terms in thenumerators inEqs. (20) and (25) are not the same,
except for the cases η ¼ 0 corresponding tow0 ¼ wDE ¼ −1
(Λ/conventional vacuum) and η ¼ 1 corresponding to
w0 ¼ wDE ¼ 1, i.e., a stiff fluid that does not lead to
accelerated expansion and hence cannot be a DE candidate.
In Fig. 1, we show that the EMPG [Eq. (20)] and wCDM
[Eq. (24)] models differ only slightly by depicting the
deceleration parameter versus the energy density of the
pressurelessmatter, usingΩm;0 ¼ 0.305� 0.010 andwDE ¼
−0.97� 0.05, corresponding to α0 ¼ 2.28� 0.11 and
η ¼ 0.015� 0.025 according to the above transformations,

from the constraints for the wCDM model from Planckþ
BAOþ SN data presented in Ref. [9].We see that our model
would lead to exactly the same behavior as inΛCDMmodel
when η ¼ 0, though the physics is different, and would also
lead to a behavior similar to that in the wCDM model when
η ≠ 0. The DE source of the wCDM model is phenomeno-
logical rather than derived from a fundamental theory, and
may be described by a scalar field yielding a suitable
potential, e.g., as it was reconstructed analytically to give
ρDE ∝ a−3ð1þwDEÞ in two-fluid cosmological models in
Ref. [56]. The case wDE < −1 for the wCDM model
corresponds to phantom DE, which would be described
by a noncanonical scalar field with a negative kinetic term,
which would eventually lead to q < −1, i.e., the Universe
would end in a big rip [57,58]. On the other hand, the
behavior wewould get in the range 0 < η < 1

2
in the presence

of ordinary matter only does the job of the scalar field with a
negative kinetic term, namely, the phantom field. We know
that models with a negative kinetic term suffer from the
problem of quantum instability due to an unbounded vacuum
state from below in the matter sector, and hence they are
problematic [59,60]. It is interesting that we obtained a
wCDM-like behavior without invoking a scalar field with a
particular kind of potential that is not from a fundamental
theory, but rather reconstructed and requires a negative
kinetic term for the case wDE < −1.

2. Evolution of the energy density

The energy conservation equation (18) for ρ ¼ ρm with
w ¼ 0 reads as

_ρm þ 3Hρm ¼ −2α0η
�
_ρm þ 3Hρm

2η − 1

��
ρm
ρm;0

�
2η−1

; ð26Þ

FIG. 1. q versus ρm
ρm;0

curve of the wCDM and EMPG models.
The figure is plotted by using Ωm;0 ¼ 0.305� 0.010 and
wDE ¼ −0.97� 0.05, corresponding to α0 ¼ 2.28� 0.11 and
η ¼ 0.015� 0.025 according to the transformations between
the two models, from the constraints for the wCDM model from
Planckþ BAO þ SN data presented in Ref. [9].
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and it gives the time rate of change of the matter energy
density as

_ρm
ρm

¼ −3H
1þ 2α0η

2η−1 ð ρm
ρm;0

Þ2η−1
1þ 2α0ηð ρm

ρm;0
Þ2η−1 : ð27Þ

Taking the derivative of Eq. (15) with respect to time t, and
then using the result together with Eq. (27), we find

_H ¼ −
κ

2
ρm

�
1þ 2α0η

2η − 1

�
ρm
ρm;0

�
2η−1

�
: ð28Þ

Among many other features that are required for a
successful cosmological model, a viable cosmological
model would be expected to satisfy the conditions
H > 0, _H < 0, ρm > 0, and _ρm < 0 when ρm > ρm;0, at
least since after the matter-radiation equality that took place
about z ∼ 3600 until the present time z ∼ 0 (ρm ∼ ρm;0), in
line with the standard cosmological model. Accordingly,
using Eqs. (15), (27), and (28), we find that these
conditions imply the following relations between α0 and η:

α0 < −
1

2η
for − 1 < η < 0;

α0 < −1þ 1

η
for 0 < η <

1

2
: ð29Þ

These are in addition to the condition (21) that guarantees
that EMPG gravity approaches GR at high energy densities,
and leads to accelerated expansion at sufficiently low
energy densities in the presence of only pressureless matter.
We next show that under the above conditions (29), the

matter energy density ρm cannot decrease to zero as the
Universe expands, but it can decrease to a nonzero
minimum value which in turn also determines the minimum
value of the deceleration parameter that the Universe could
achieve from Eq. (20). We see from Eq. (15) that H would
never become null in the case −1 < η < 0 and α0 > 0, and
we also see from Eq. (27) that in an expanding Universe,
i.e., H > 0, the matter energy density decreases with time,

_ρm < 0, for ρm > ρm;0ð−2α0ηÞ
1

1−2η and increases with time,

_ρm > 0, for ρm < ρm;0ð−2α0ηÞ
1

1−2η. It follows that

ρm;min ¼ ρm;0

�
1

−2α0η

� 1
2η−1

for − 1 < η < 0: ð30Þ

Substituting this into Eq. (20), we find the minimum value
of the deceleration parameter as

qmin ¼
2η2 − 2η − 1

ð2η − 1Þ2 for − 1 < η < 0: ð31Þ

Next, we see from Eq. (15) that H would become null for
0 < η < 1

2
and α0 > 0 if ρm could be null. However, we see

from Eqs. (27) and (28) that as the Universe expands
(H > 0), in the case 0 < η < 1

2
and α0 > 0 the matter energy

density decreases with time as long as ρm < ρm;0ð1−2η2α0η Þ
1

2η−1,

and eventually _ρm → 0 and _H → 0 as ρm → ρm;0ð1−2η2α0η Þ
1

2η−1.
These signal that the matter energy density asymptotically
approaches its minimum value

ρm;min ¼ ρm;0

�
1 − 2η

2α0η

� 1
2η−1

for 0 < η <
1

2
; ð32Þ

which gives [when substituted into Eq. (20)] the minimum
value of the deceleration parameter that the Universe
asymptotically approaches, as

qmin ¼ −1 for 0 < η <
1

2
: ð33Þ

According to this, although the EMPG modification would
effectively behave like a phantom field w0 < −1 for
0 < η < 1

2
, it would not lead to a big rip since the matter

energy density does not diverge during the evolution of the
Universe but asymptotically approaches a positive constant,
which implies that the Hubble parameter also asymptoti-
cally approaches a positive constant, namely, the Universe
would asymptotically approach exponential expansion with
qmin ¼ −1 as given in the above equation. Finally, the fact

that a → ∞ as ρm → ρm;0ð1−2η2α0η Þ
1

2η−1 in Eq. (34) [which is the
solution we give below for aðρmÞ] confirms our conclu-
sions on the asymptotic behavior of our model for the
case 0 < η < 1

2
.

In this paper, we do not intend to investigate all possible
solutions of the model, but rather those that satisfy the
conditions we have discussed in this section for obtaining a
viable cosmology. One may note that each different value
of the parameter η—which determines the power of the
self-contraction of the energy-momentum tensor—would
correspond to different theories of gravity, and hence a full
mathematical analysis of the model for arbitrary values of η
or even for some particular values (such as that done, e.g.,
in Ref. [39] that corresponds to the case η ¼ 1 of our model
in the presence of Λ) is beyond the scope of this paper.
Here, our main purpose is to study whether viable cosmol-
ogies can be obtained from our model for certain ranges of
the parameters α0 (as well as α) and η estimated from
observational data. Therefore, we continue here with the
following solution for aðρmÞ, satisfying the conditions
given in Eqs. (29) and (21) and valid for ρm > ρm;min

given in Eqs. (30) and (32):

ρm
ρm;0

"
1þ 2ηα0

2η−1 ð ρm
ρm;0

Þ2η−1
1þ 2ηα0

2η−1

#2η−2
2η−1

¼ a−3: ð34Þ

It should be noted here that we are not able to give an
explicit solution for ρmðaÞ since it is not possible to isolate
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ρm except for a couple of particular cases of η in this
equation, which stands as one of the difficulties in the
investigation of the model for arbitrary values of η.
However, it might be immediately seen from this equation
that pressureless matter in our model does not evolve as a−3

except for η ¼ 0, 1, and that a → ∞ as ρm → ρm;0ð1−2η2α0η Þ
1

2η−1

for 0 < η < 1
2
, in line with our expectation that the model

would asymptotically approach exponential expansion in
this case, in accordance with our discussion regard-
ing Eq. (33).

IV. OBSERVATIONAL CONSTRAINTS

In the previous section, we discussed in detail under
what conditions our model could give viable cosmologies;
we showed that, in the presence of only a matter source, our
model can not only mimic the evolution of the Universe
precisely as in the ΛCDM model at η ¼ 0, but it can also
lead to an evolution similar to wCDM-like cosmology for
η ∼ 0. However, in both cases the underlying physics of the
EMPG model is entirely different than what we have in the
ΛCDM and wCDM models. In this section, we investigate
the observational constraints on the parameters α0 (as well
as α) and η by writing an approximated function for aðρmÞ
[given in Eq. (34)] for a≲ 1 (or z≳ 0) that would allow us
to isolate ρm, which we can then substitute into HðρmÞ
[given in Eq. (15)] to obtain HðzÞ for the purpose of
observational data analysis. In order to investigate the
observational constraints on the parameters of the EMPG
model, first we need to determine the matter energy density
ρm of the model explicitly in terms of the cosmological
redshift z ¼ −1þ 1

a. However, ρm cannot be isolated
explicitly in terms of z from Eq. (34) except for a limited
number of particular values of η. On the other hand, we find
that the following explicit expression for the matter energy
density ρm in terms of z is a very good approximation to
Eq. (34) for ρm=ρm;0 ≳ 1 and η ∼ 0 (see Appendix A for
details):

ρm ¼ ρm;0½βð1þ zÞ3 þ 1 − β�; ð35Þ

where β ¼ ð1þ 2ηα0
2η−1Þ

2η−2
2η−1. Finally, substituting Eq. (35) and

the Hubble constant H2
0 ¼ κ

3
ð1þ α0Þρm;0 into Eq. (15), the

approximated modified Friedmann equation in terms of
redshift z is

H2

H2
0

¼ 1

1þ α0
½βð1þ zÞ3 þ 1 − β�

þ α0

1þ α0
½βð1þ zÞ3 þ 1 − β�2η; ð36Þ

subject to the conditions ρm ≳ ρm;0 > ρm;min (or z≳ 0) and
the ones given in Eqs. (21) and (29).

Having determined the evolution of the Hubble param-
eter in terms of z in Eq. (36), now we can constrain the
EMPG model parameters η, α0 and H0 with the observa-
tional data. For this purpose, we use the compilation of
28 Hubble parameter measurements spanning the redshift
range 0.07 ≤ z ≤ 2.3, as displayed in Table I. The 28 HðzÞ
data points were compiled in Ref. [61] to determine
constraints on the parameters of various dark energy
models. In a very recent paper [62], the compilation of
the 28 HðzÞ points was utilized to determine the Hubble
constant H0 in four different cosmological models, includ-
ing the ΛCDM and wCDM models. Following the same
methodology, here we constrain the parameters ðH0; α0; ηÞ
of the EMPG model by minimizing

χ2HðH0; α0; ηÞ ¼
X28
i¼1

½Hthðzi;H0; α0; ηÞ −HobsðziÞ�2
σ2H;i

ð37Þ

for 28 measured HobsðziÞ’s with variance σ2H;i at redshift zi
(as displayed in Table I), whereasHth is the predicted value
of HðzÞ in the EMPG model. The parameter space
ðH0; α0; ηÞ of the model is explored by using the Markov
chain Monte Carlo method coded in the publicly available
package COSMOMC [63].

TABLE I. Hubble parameter versus redshift data.

z HðzÞ (km s−1 Mpc−1) σH (km s−1 Mpc−1) Reference

0.070 69 19.6 [64]
0.090 69 12 [65]
0.120 68.6 26.2 [64]
0.170 83 8 [65]
0.179 75 4 [66]
0.199 75 5 [66]
0.200 72.9 29.6 [64]
0.270 77 14 [65]
0.280 88.8 36.6 [64]
0.350 76.3 5.6 [67]
0.352 83 14 [66]
0.400 95 17 [65]
0.440 82.6 7.8 [68]
0.480 97 62 [69]
0.593 104 13 [66]
0.600 87.9 6.1 [68]
0.680 92 8 [66]
0.730 97.3 7.0 [68]
0.781 105 12 [66]
0.875 125 17 [66]
0.880 90 40 [69]
0.900 117 23 [65]
1.037 154 20 [66]
1.300 168 17 [65]
1.430 177 18 [65]
1.530 140 14 [65]
1.750 202 40 [65]
2.300 224 8 [70]
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Our results are presented in Table II and Fig. 2. We find
that the values of the EMPG model parameters are
H0 ¼ 68.7þ2.2þ4.5

−2.2−4.5 km s−1Mpc−1, α0 ¼ 2.80þ0.25þ0.37
−0.26−0.38 , and

η ¼ −0.003þ0.012þ0.023
−0.011−0.023 , where the error limits are at 1σ and

2σ confidence levels with χ2min ¼ 17. We first note that the
values of α0 and η satisfy all of the conditions (21), (22),
and (29) as described in the previous section for a viable
cosmology. We note that the mean value of η is almost
equal to zero, signaling that our model—in light of
observational data—predicts a ΛCDM-type background
evolution at least up to the present time. The constraints
on the ΛCDM model parameters read as H0 ¼
68.3þ2.7þ5.2

−2.6−5.1 km s−1Mpc−1 and Ωm;0 ¼ 0.276þ0.032þ0.072
−0.039−0.068 ,

with error limits at the 1σ and 2σ confidence levels
and χ2min ¼ 17 (see Table 1 of Ref. [62]). Recalling that
the case η ¼ 0 corresponds to ΛCDM-type expansion
with the transformation α0 ¼ ρΛ=ρm;0 in our model, it is
easy to deduce H0 ¼ 68.3þ2.7þ5.2

−2.6−5.1 km s−1 Mpc−1, α0 ¼
2.623þ0.596þ1.185

−0.376−0.750 for η ¼ 0 (fixed). It is noteworthy that

the errors of α0 become larger when η is fixed to zero,
which may be interpreted as the data suggesting that
fixing η to zero is not preferable. On the other hand, we
see that the observational data of the Hubble parameter
measurements fit equally well to the approximated EMPG
model, in contrast with the ΛCDM model, and predict a
similar value of H0 in both models.
In Fig. 3, we show the mean value HðzÞ=ð1þ zÞ curves

with the 1σ error region of the EMPG and ΛCDMmodels
in the redshift range 0 ≤ z ≤ 2.5 along with the data
points from Table I. We see that the HðzÞ=ð1þ zÞ curves
of the two models overlap, indicating a similar evolution
of the Universe in the two models. The mean value
evolution trajectories of the deceleration parameter q ¼
−1þ ð1þ zÞ H0

H and jerk parameter j ¼ 1–2ð1þ zÞ H0
H þ

ð1þ zÞ2ðH02
H2 þ H00

H Þ with 1σ error regions of the EMPG
model and ΛCDM model (yielding a constant jerk
parameter equal to unity, jΛCDM ¼ 1) in the redshift
range 0 ≤ z ≤ 1100 (log scale on the z axis), are shown
in Figs. 4 and 5, respectively. Again, we observe a similar
evolution of the Universe in the two models in the
whole redshift range 0 ≤ z ≤ 1100. Thus, the EMPG
and ΛCDM models provide similar descriptions of
the dynamics and kinematics of the Universe up to the
present time, in light of observational data from Hubble
parameter measurements, despite the fact that the under-
lying physics of the EMPG model is completely different
from that of the ΛCDM model. Thus, the observed
Hubble data supports the new physics employed in this
work to develop the EMPG model, which would deviate
in various ways from the ΛCDM model depending on the
sign of η (as the data allow both negative and positive
values of η). However, we do not discuss the future
dynamics of the Universe in the EMPG model in
this paper.
Finally, to find the constraints on the parameter α—

which, like η, is a true constant of the model that appears in

FIG. 2. 1σ and 2σ confidence contours of the EMPG model
parameters. Marginalized probability distributions of the indi-
vidual parameters are also displayed.

TABLE II. Mean values of EMPG model parameters are
displayed with 68% and 95% confidence levels (C.L.). We find
χ2min ¼ 17.

Parameter Mean 68% C.L. 95% C.L.

H0 68.7 [66.5, 70.9] [64.2, 73.2]
α0 2.80 [2.54, 3.05] [2.42, 3.17]
η −0.003 ½−0.014; 0.009� ½−0.026; 0.020�

FIG. 3. HðzÞ=ð1þ zÞ curves of the EMPG and ΛCDM models
are plotted with the mean values and 1σ error regions of the model
parameters. The 28HðzÞ data points of Table I are also displayed.
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the action of the EMPG model—we first obtain the
equation

α ¼ α0

2η − 1

�
3H2

0

κðα0 þ 1Þ
�
1−2η

ð38Þ

in the presence of only a matter source upon using Eq. (16)
with Eq. (17) by substituting w ¼ 0. Hence, using the
constraints on the parameters given in Table II in Eq. (38),
we obtain the constraint on the parameter α as

α ¼ −0.60þ0.50−0.69 × 10−8ðerg=cm3Þ1−2η ð95% C:L:Þ: ð39Þ

One may note that the units of α depend on η, which
indicates that each different value of η should be considered
as another gravity theory. In Fig. 6 we present the three-
dimensional constraints in the η − α plane from HðzÞ data,
where the samples are colored by the parameter α. It may be

noted that we did not take the parameter α into account in
the cosmological model that we studied in the presence
of only pressureless matter, but rather the more useful
parameter α0 [defined in Eq. (17)], particularly for a
monofluid cosmological solution of the model. However,
the true constants of the EMPG model are the parameters α
and η that appear in the action of the EMPGmodel. In other
words, the constraints we give on H0, η, and α0 above
constitute the constraints on the cosmological model in the
presence of only a pressureless source, while the con-
straints on η and α constitute the constraints on the
parameters of the EMPG model by means of the cosmo-
logical model under consideration. One may try to obtain
constraints on η and α from noncosmological physics, e.g.,
neutron stars, parametrized post-Newtonian parameters,
etc. In this case it might not be possible to properly define
a parameter α0 corresponding to the one we defined in this
paper. On the other hand, one may try to obtain constraints
on η and α from, for instance, big bang nucleosynthesis,
during which the Universe would be considered to be filled
with only radiation (w ¼ 1=3). In this case one can properly
use the α0 given in Eq. (17) by substituting w ¼ 1=3.
However, even in this case, one cannot compare the
constraint that would be found for α0 for radiation with
the one we give here for pressureless fluid in Table II;
rather, one should deduce the constraint on α and then
compare that with the one we give in Eq. (39). A good
demonstration of this point can be given by the following
example. We know from Eq. (17) that it is not necessary for
α0 to be the same for different fluids since it depends on the
EoS parameter w of the considered fluid. We found here

FIG. 5. The mean value jerk parameter curves with 1σ error
regions of the EMPG and ΛCDM models are plotted in the
redshift range (0, 1100) (log scale on the z axis) with the mean
values of the model parameters.

FIG. 6. Constraints in the η-α plane with 1σ and 2σ confidence
level contours from HðzÞ data in the EMPG model where the
samples are coloured by the parameter α0.

FIG. 4. The mean value deceleration parameter curves with 1σ
error regions of the EMPG and ΛCDM models are plotted in the
redshift range (0, 1100) (log scale on the z axis) with the mean
values of the model parameters.
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that α0 > 0 for pressureless matter (w ¼ 0) and then
deduced that α < 0. However, if we use the above con-
straints we obtained for η and α, we see from Eq. (17) that
α0 < 0 for radiation (w ¼ 1=3). Hence, the constraints we
obtained on η and α using data obtained from the late
Universe predict that the EMPG modification would
lower the value of the Hubble parameter in the radia-
tion-dominated Universe—for instance, when BBN took
place—though the EMPG modification would be com-
pletely negligible at the energy scales of BBN.

V. CONCLUDING REMARKS AND
FUTURE PERSPECTIVES

In this study, we have proposed a modified theory of
gravitation constructed by the addition of the term
fðTμνTμνÞ to the EH action of GR, and elaborated a
particular case fðTμνTμνÞ ¼ αðTμνTμνÞη (where α and η
are real constants) dubbed EMPG. We have further inves-
tigated the EMPG model on theoretical and observational
grounds by considering the cosmological evolution that it
predicts. We have discussed the conditions under which it
leads to viable cosmologies, and showed that there are
ranges of the parameters of the EMPG model in which it
approaches standard GR at high energy densities and
accelerated expansion at sufficiently low energy densities
(namely, in the present Universe), without invoking a
cosmological constant or any other dark energy source.
We have shown that, in the presence of only a matter
source, EMPG can give rise to not only precisely the same
background evolution as the ΛCDM model when η ¼ 0,
but also an evolution similar to that of the wCDM model
when η ∼ 0. However, in both cases the underlying physics
of the EMPG-driven cosmologies are entirely different than
what we have in the ΛCDM and wCDM models. For
instance, we introduced neither Λ nor a dark energy source
to drive the late-time acceleration of the Universe. Our
model alleviates the cosmological constant problem that
arises when a cosmological constant is introduced as in the
ΛCDMmodel, and the issue of introducing an ad hoc scalar
field that can lead to quintessence and/or phantom (leading
to additional severe problems) dark energy source with a
constant or slightly varying equation-of-state parameter as
in the wCDM-like models. The constraints on the EMPG
model parameters from the recent compilation of 28
Hubble parameter measurements reveal that the EMPG
model describes an evolution of the Universe similar to that
in the ΛCDM model.
We have shown that our modification of the EH action

that leads to the EMPG action becomes negligible at
sufficiently high energy densities, leaving the standard
cosmology based on GR untouched for times earlier than
the time of onset of the late-time acceleration of the
Universe. This means that if we had added the term
fðTμνTμνÞ ¼ αðTμνTμνÞη to the Starobinsky action [1]
rather than the EH action, then this term would be even

more negligible at inflationary energy scales and hence the
Starobinsky inflation model [1] (which is the leading infla-
tionary model supported by the most recent cosmological
observations [7]) would also be left untouched. Hence, a
modified gravity model such as the Starobinsky actionþ
αðTμνTμνÞη with η ∼ 0 and α ∼ 2.5 would be able to
successfully describe the complete history of the Universe
(see Appendix B for more details).
Our findings in this paper are promising enough to

justify further study of EMPG, as it is apparently a very rich
topic. In our detailed discussions here we have mainly
considered a pressureless matter source and its evolution
throughout the history of Universe, and discussed the late-
time acceleration of the Universe. Hence, one direction may
be to extend our analysis by considering effects of other
known cosmological fluids on the evolution of the
Universe. For instance, radiation could be studied in order
to obtain constraints on the parameters of the EMPG from
BBN processes that took place when the Universe was
radiation dominated. Of course, the inclusion of a positive
Λ in our model is also of further interest to us since in this
case the model would provide much richer dynamics (e.g.,
Ref. [40]). In particular, if we consider the case η > 1

2
, then

EMPG would alter the dynamics of the early Universe, but
lead to an evolution of the Universe like that in the ΛCDM
model after a certain amount of time (see Refs. [39,54] for
EMSG, i.e., EMPGη¼1). In this case, one may need to study
not only the cosmological dynamics but also the physical
processes/astrophysical objects relevant to high energy
densities such as BBN/neutron stars, which in turn can
be used jointly to constrain the parameters of the model
without suffering from degeneracy issues. Another direc-
tion may be to consider functions other than fðTμνTμνÞ ¼
αðTμνTμνÞη that lead to the EMPG we studied here; for
instance, fðTμνTμνÞ ¼ α logðTμνTμνÞ would give logðρ2Þ-
type modifications to Einstein’s field equations, as in
Ref. [71]. The essence of constructing modified gravity
models is to redefine the coupling of the energy-momentum
tensor to the spacetime geometry. However, this is usually
done by modifying the action that leads to modifications on
the left-hand side of Einstein’s field equations, in contrast
to what we have done here. Manipulating the introduction
of the energy-momentum tensor into the action would lead
to modified Einstein’s field equations that might not be
possible to obtain or to easily find from the Einstein’s field
equations with a modification on the left-hand side, while
the energy density and pressure of a fluid appear on the
right-hand side of the equations as usual. Hence, it would
be interesting to investigate the fðRÞ correspondence of
TμνTμν-type modifications in the metric and Palatini
formalisms similarly to, for instance, how the Ricci-
tensor-powered gravity was studied in the Palatini varia-
tional approach regarding the powered form of the Ricci
tensor contraction in Ref. [72]. Finally, the geometrical
counterpart of TμνTμν-type modifications can also be
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studied, such as the powered GμνGμν term, and even the
geometry and source can be mixed by considering terms
like GμνTμν. For instance, if the scalar field EMT is
considered as the source, the model should correspond
to a very popular subclass of Horndeski scalar-tensor
theories [73], where the scalar field is nonminimally
coupled with gravity through the Einstein tensor such that
Gμν∂μϕ∂νϕ.
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APPENDIX A: APPROXIMATION PROCEDURE

The matter energy density ρm appears implicitly in
Eq. (34),

ρm
ρm;0

"
1þ 2ηα0

2η−1 ð ρm
ρm;0

Þ2η−1
1þ 2ηα0

2η−1

#2η−2
2η−1

¼ ð1þ zÞ3; ðA1Þ

and it cannot be isolated in terms of redshift z. Therefore, it
is not possible to explicitly write the exact function for the
Hubble parameter HðzÞ by substituting ρmðzÞ in Eq. (15),
but a good approximation can be found. To do so, we first
note that Eq. (A1) can be written as

�
1þ 2α0η

2η − 1

�
−2η−2
2η−1

ρm ≈ ρm;0ð1þ zÞ3 for ρm ≫ ρm;0;

ðA2Þ

provided that η < 1
2
in accordance with the conditions given

in Eq. (29). Of course, this approximation is not good in the
vicinity of z ¼ 0, and we need to improve it. To do so, we
first note that the approximation error (the deviation from

the true value) at z ¼ 0 is ð1þ 2α0η
2η−1Þ−

2η−2
2η−1ρm;0 − ρm;0. Notice

that, in this case, we do not get ρm ¼ ρm;0 at z ¼ 0, but

ρm ¼ ð1þ 2α0η
2η−1Þ−

2η−2
2η−1ρm;0. Therefore, subtracting this

approximation error from the left-hand side of Eq. (A2)
would not only give the actual value of ρm when z ¼ 0, but
also decrease the approximation error when ρm ∼ ρm;0, viz.,
when z ∼ 0. Accordingly, compensating the approximation
error at z ¼ 0 in Eq. (A2), we reach the following improved
approximation:

�
1þ 2α0η

2η − 1

�
−2η−2
2η−1

ρm

−
��

1þ 2α0η
2η − 1

�
−2η−2
2η−1

ρm;0 − ρm;0

�
≈ ρm;0ð1þ zÞ3;

ðA3Þ
which is an approximation both for ρm ≫ ρm;0 and
ρm ∼ ρm;0. In addition, it allows us to isolate ρm in terms
of z as

ρm ≈ ρm;approx ¼ ρm;0

�
1 −

�
1þ 2α0η

2η − 1

�2η−2
2η−1

�

þ ρm;0

�
1þ 2α0η

2η − 1

�2η−2
2η−1ð1þ zÞ3: ðA4Þ

In Fig. 7,wedepict the relative error between the truevalue of
the matter energy density ρm from Eq. (34) [or Eq. (A2)] and
the approximated value of thematter energy density ρm;approx

from Eq. (A4)—namely, δρm
ρm

¼ ρm;approx−ρm
ρm

versus ρm=ρm;0

from ρm=ρm;0 ¼ 1ðz ¼ 0Þ to ρm=ρm;0 ¼ 109ðz ∼ 1100Þ—
while using the mean values α0 ¼ 2.8, η ¼ −0.003 from
Table II. We see that the relative error is indeed negligible,
as the maximum relative error is only 0.01 percent while it
is much smaller for ρm ∼ ρm;0 and ρ ≫ ρm;0.

APPENDIX B: THE COMPLETE HISTORY OF
THE UNIVERSE VIA THE STAROBINSKY

ACTION EXTENSION

EMPG is studied on theoretical as well as observational
grounds, leading to the late-time acceleration of the
Universe with only pressureless matter while keeping the
successes of standard general relativity at earlier times;
however, inflation is not considered. For completeness, we
may consider the modification that gives EMPG in the
Starobinsky gravity action [1] instead of that in the
Einstein-Hilbert action (1) as follows:

FIG. 7. The relative error δρm=ρm versus ρm=ρm;0 from
ρm=ρm;0 ¼ 1 (z ¼ 0) to ρm=ρm;0 ¼ 109 ðz ∼ 1100Þ for the mean
values α0 ¼ 2.8, η ¼ −0.003 given in Table II.
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S ¼
Z �

1

2κ

�
Rþ R2

6M2
p

�
þ αðTμνTμνÞη þ Lm

� ffiffiffiffiffiffi
−g

p
d4x:

ðB1Þ

The field equations become�
1þ R

3M2
p

�
Gμν þ ðgμν□ −∇μ∇νÞ

�
1þ R

3M2
p

�

¼ κTμν þ καðTσϵTσϵÞη
�
gμν − 2η

θμν
TσϵTσϵ

�
: ðB2Þ

Then, using Eqs. (13) and (14) as well as the metric (10) in
the field equations (B2), we get the following set of two
independent differential equations:

3

�
1þ R

3M2
p

�
H2 þH _R

M2
p
−

R2

12M2
p
¼ κρþ κ0ρ0

�
ρ

ρ0

�
2η

;

ðB3Þ

ð−2 _H − 3H2Þ
�
1þ R

3M2
p

�
−
H _Rþ R̈
3M2

p
þ R2

12M2
p

¼ κwρþ κ0ρ0
2η − 1þ 8wη

3w2þ1

�
ρ

ρ0

�
2η

: ðB4Þ

We note that the terms that appear in the field equations
given in Eqs. (B3) and (B4) due to the R2 term in the action
(B1) become effective for large values of H, namely, in

the very early Universe at very high energy densities where
the terms that appear in the field equations due to the
modification αðTμνTμνÞη in the action are completely
negligible for η < 1

2
. It is easy to see in this case that,

for η ∼ 0 and α ∼ −10−8ðerg=cm3Þ1−2η (or κ0 ∼ 2.5κ in the
presence of only dust) as found in this study, at inflationary
energy scales the terms that appear in the field equations
due to R2 and the usual matter Lagrangian Lm in the action
would be effective, while the terms due to R and the EMPG
modification would be negligible, so that R2 inflation—
which is the preferred model in light of the latest obser-
vational data by the Planck Collaboration [7]—would take
place during the early Universe in our model. Then, at
intermediate energy scales (at the time of BBN, recombi-
nation, etc.), the terms that appear in the field equations due
to the terms R and Lm in the action would be effective, but
the terms due to the terms R2 and αðTμνTμνÞη would be
negligible so that the standard cosmology would work.
Finally, at sufficiently low energy density scales the terms
that appear in the field equations due to R and αðTμνTμνÞη
in addition to Lm in the action would be effective, while the
terms in the field equations due to R2 in the action would be
negligible so that the Universe would start to accelerate at
later times. Thus, the unification of EMPG with
Starobinsky gravity would provide us with a complete
history of the Universe. For instance, the Starobinsky
model within the fðR; TÞ formalism was studied in
Ref. [74], where the radiation-, matter-, and dark energy-
dominated eras as well as the transition between these
phases was studied.
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