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We study the effect of one-loop vacuum polarization on photon propagation in Siklos spacetimes in the
geometric optics limit. We show that for photons with a general polarization in the transverse plane, the
quantum correction vanishes in spacetimes with Hxy ¼ 0. For photons polarized along a transverse axis,
subluminal and superluminal solutions are admitted for certain subclasses of Siklos spacetimes. We
investigate the results in the Kaigorodov and Defrise spacetimes and obtain explicit expressions for the
phase velocities. In Kaigorodov spacetime with H ∼ x3, photons polarized along the x axis are subluminal
in regions where H is positive and superluminal in regions where H is negative, while photons polarized
along the y axis are superluminal in H > 0 regions and subluminal in H < 0 regions. In the Defrise
spacetime, H ∼ x−2, x-polarized and y-polarized photons are superluminal for H < 0, and subluminal for
H > 0. We comment on motion in other Siklos spacetimes.
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I. INTRODUCTION

The interplay between gravitational and quantum effects
has been a topic of huge interest in recent decades, but in spite
of massive efforts, there is no theory fully reconciling these
effects yet. Still, one can study quantum effects in gravita-
tional systems in certain contexts.Within this framework, [1]
have investigated the QED contribution to the photon
effective action fromone-loop vacuumpolarization in curved
backgrounds. The calculation showed that the photon propa-
gation gets altered due to the quantum corrections, and
superluminal or subluminalmotion could be possible, at least
in principle. They also applied the formulation to gravita-
tional wave spacetime (in theweak-field approximation) and
also to the Schwarzschild spacetime, and the superluminal-
subluminal motion and also the birefringences were shown
explicitly. Their theory has then been examined in several
spacetimes; namely in Reissner-Nordstrum spacetime in [2],
in Kerr spacetime in [3], in dilaton black hole spacetimes in
[4], in the static and rotating topological back hole back-
grounds in [5], and more recently, in [6], in which by
considering the Kerr-de Sitter and static de Sitter cosmic
string spacetimes, the effect of a positive cosmological
constant was studied. Other aspects of this theory have been
discussed in the literature, including the generalization to a
high frequency limit and the discussion of various kinds of
velocity in [7], the issue of causality violation in [8,9], and the
problem of superluminality in [10]. A review of the subject
may be found in [11]. Also, it has been shown in [12] that
including the quantum terms (but with arbitrary coefficients)
in the electromagnetic Lagrangian breaks the conformal

invariance of the action, and this could be responsible in
producing sizable magnetic fields during inflation.
In the present work, we investigate photon propagation

in Siklos spacetimes. These spacetimes, first introduced
in [13], may be considered as exact gravitational waves
propagating in an anti–de Sitter universe [14,15]. A
particular Siklos spacetime, the Kaigorodov spacetime
[16], has been of interest particularly in the context of
AdS=CFT correspondence [17,18]. Some other aspects
of the Kaigorodov spacetime have been investigated in
the literature, see, e.g. [19] and the references therein.
Although the current observations favor a positive cos-
mological constant, models with negative cosmological
constant are still of interest and appear in different
contexts including BTZ black holes [20], and string
theory and supersymmetry [21]. Plane gravitational and
electromagnetic fields in spaces with a cosmological
constant have also been studied in [22].
The paper is organized in the following order. We begin

with a brief review of the electromagnetic field equations
in a general curved spacetime in the limit of geometric
optics and also collect the relevant equations for the one-
loop vacuum polarization. Then, in Sec. III, we solve the
equations of vacuum polarization for photons propagating
in a general Siklos spacetime. We obtain expressions for k2

and show that solutions with positive, zero, or negative
values are admitted. We also compute the phase velocities.
In Sec. IV, we consider the particular case of propagation in a
backgroundKaigorodov spacetime and show that depending
on the photon polarization and the spacetime regiononwhich
photons aremoving, both subluminal or superluminal photon
propagation are possible. In Sec. V, we take the contribution
of photons to the background spacetime into account, which*m-mohseni@pnu.ac.ir
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is achieved by considering the Defrise spacetime. In Sec. VI,
we consider propagation in other Siklos spacetimes. We
conclude the paper with a summary of the results.We use the
natural units with the Lorentz-Heaviside units for electro-
magnetic fields, the metric signature ð−þþþÞ, and the
following convention for the Riemann tensor Rμ

νρσ ¼
∂ρΓ

μ
νσ þ Γμ

ρκΓκ
νσ − fρ ↔ σg.

II. THE VACUUM POLARIZATION

The electromagnetic action

S0 ¼
−1
4

Z
d4x

ffiffiffiffiffiffi
−g

p
FμνFμν ð1Þ

gives the Maxwell equations for free fields

DμFμν ¼ 0; ð2Þ

or, in terms of the field Aμ (subject to the Lorentz condition
DμAμ ¼ 0),

DνDνAμ ¼ Rμ
νAν; ð3Þ

Rμν being the Ricci tensor. In the limit of geometric optics,
the solution to Eq. (3) is given by

Aμ ¼ ðaμ þ iεbμ þ � � �Þ exp
�
iφ
ε

�
: ð4Þ

Here, it is assumed that the wavelength λ is small compared
with the length scale of the spacetime curvature, L0. In fact,
one may take ε ¼ Oð λ

L0
Þ. See, e.g. [23], for more details and

a pedagogical review of the geometric optics limit in curved
spacetime.
To the leading order, Eqs. (3) and (4) result in kμkμ ¼ 0,

where kμ ¼ ∂μφ. Thus, the integral curve of kμ is null.
Also, the Lorentz condition implies that the polarizations
are transverse

kμaμ ¼ 0: ð5Þ

The next-to-leading order terms give

kνDνaμ ¼ −
1

2
aμDνkν; ð6Þ

and the Lorentz condition leads to

Dμaμ ¼ kμbμ: ð7Þ

The one-loop corrected action is given by S ¼ S0 þ S1,
where

S1 ¼
1

m2
e

Z
d4x

ffiffiffiffiffiffi
−g

p ðaRFμνFμν þ bRμνFμ
κFνκ

þ cRμνκλFμνFκλ þ dDμFμνDκFκ
νÞ ð8Þ

in which a ¼ α
144π ; b ¼ − 13α

360π ; c ¼ α
360π ; d ¼ e2

120π2
, α being

the fine structure constant, and me is the electron mass.
It should be noted that the above action is in fact a truncated
form of the QED effective field theory action. The full
action contains other terms including some curvature-
independent and some UV divergent ones. Omitting such
terms from the action restricts the range of energies over
which it is valid. A discussion of this may be found in [10].
Including S1 (with the last term being neglected) into the

action results in the following field equation [24]:

DμFμν ¼ 2

m2
e
DμQμν; ð9Þ

where Qμν ¼ 2aRFμν þ bðRμ
ρFρν − Rν

ρFρμÞ þ 2cRμνκλFκλ.
In the special case of a maximally symmetric spacetime,

where Rμνκλ ¼ Pðgμκgνλ − gμλgνκÞ, this reduces to
�
1þ 7Pα

90πm2
e

�
DμFμν ¼ 0; ð10Þ

and the vacuum polarization does not affect the propaga-
tion. For Ricci-flat spacetimes, we have from Eq. (9)

DμFμν −
α

90πm2
e
Rμν

κλDμFκλ ¼ 0: ð11Þ

Equation (9) can be expanded into the following form:

�
1 −

4aR
m2

e

�
DμFμν −

2b
m2

e
ðRμ

σDμFσν − Rν
σDμFσμÞ

−
4c
m2

e
Rμν

στDμFστ þ 2bþ 8c
m2

e
FσμDμRν

σ

−
4aþ b
m2

e
FμνDμR ¼ 0; ð12Þ

which by using Eqs. (4) and (5), to Oð 1
ε2
Þ gives

�
−
�
1 −

4aR
m2

e

�
kμkμ þ

2b
m2

e
Rμ
σkμkσ

�
aν −

2b
m2

e
Rμ
σkμaσkν

þ 2b
m2

e
kμkμaσRν

σ −
8c
m2

e
Rμν

στkμkτaσ ¼ 0: ð13Þ

The general equation, in which higher order terms in the
expansion are also included, involve derivative of aμ and
kμ. To the leading order which Eq. (13) is based on, such
terms are absent.
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III. THE SIKLOS SPACETIMES

In the chart ðu; x; y; vÞ with u, v being the light cone
coordinates, the Siklos spacetimes metric is described by

ds2 ¼ −3
Λx2

ðHðu; x; yÞdu2 − dudvþ dx2 þ dy2Þ ð14Þ

in which Λ < 0 is the cosmological constant. Inserting this
into the Einstein equation with a cosmological constant,
Gμν þ Λgμν ¼ 0, results in

Hxx þHyy ¼
2

x
Hx; ð15Þ

where subscripts represent differentiation.
For photons propagating along the z axis with

kμ ¼ ðA; 0; 0; BÞ, we take aμ ¼ ð0; C; F; 0Þ in which C,
F are constants. This is consistent with the condition

kμaμ ¼ 0: ð16Þ

Inserting the above data into Eq. (13) results in (for μ ¼ x,
y, respectively) the following two equations:

A
m2

eΛx2
½AΛðCK þ Fcx2HxyÞ þ CðAH − BÞN� ¼ 0 ð17Þ

A
m2

eΛx2
½AΛðFLþ Ccx2HxyÞ þ FðAH − BÞN� ¼ 0; ð18Þ

where

K ≡ 4cðx2Hxx − xHxÞ þ E;

L≡ 4cðx2Hyy − xHxÞ þ E;

N ≡ ð48aþ 12bþ 8cÞΛ − 3m2
e;

E≡ bx2
�
Hxx þHyy −

2

x
Hx

�
:

For H satisfying Eq. (15), we have E ¼ 0. The above
equations admit the trivial solution A ¼ 0, which corre-
sponds to k2 ¼ 0.
Now if Hxy ¼ 0, C ≠ 0, and F ≠ 0, Eqs. (17) and (18)

are inconsistent unless we take A ¼ 0 (except for the
particular case where K ¼ L for which A can be nonzero.
This particular condition is satisfied for Siklos spacetimes
withHxx ¼ Hyy). However, if we further take either F ¼ 0,
C ≠ 0 or C ¼ 0, F ≠ 0, then the above system of equations
can be satisfied with A ≠ 0.
If we take Hxy ¼ 0, with F ¼ 0, C ≠ 0, Eq. (18) is

automatically satisfied and from Eq. (17), we get

3A2K
Nx2

¼ −
3A
Λx2

ðAH − BÞ; ð19Þ

where K ¼ cðx2Hxx − xHxÞ þ E. From Eq. (19), one can
easily read off the value of k2 ¼ −3A

Λx2 ðAH − BÞ. Thus,

k2 ¼ 3A2K
Nx2

: ð20Þ

The phase velocity of photons can be obtained from
vp ¼ ω

jk⃗j. To compute this, we first perform the coordinates

transformation

du ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðhþHÞp ðhdt − dzÞ; ð21Þ

dv ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðhþHÞp ðdtþ hdzÞ; ð22Þ

in which h≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 þ 1

p
−H. This brings the metric to the

following form:

ds2 ¼ −3
Λx2

�
−hdt2 þ 1

h
dz2 þ dx2 þ dy2

�
: ð23Þ

Thus, we obtain

ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−3
4Λx2ðhþHÞ

s
jhAþ Bj

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−3
4Λx2ðhþHÞ

s
jAj

����hþH þ ΛK
N

����; ð24Þ

and

jk⃗j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−3
4Λx2h2ðhþHÞ

s
jA − Bhj

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−3
4Λx2ðhþHÞ

s
jAj

����hþH −
ΛK
N

����: ð25Þ

We therefore obtain

vp ¼
����NðhþHÞ þ ΛK
NðhþHÞ − ΛK

����: ð26Þ

Similarly, if we take C ¼ 0, F ≠ 0, then Eq. (17) is
automatically satisfied, and from Eq. (18), we get the
same expressions as above but with K replaced by L ¼
cðx2Hyy − xHxÞ þ E.
In the case, where Hxy ≠ 0, Eqs. (17) and (18) are

satisfied with A ≠ 0 by choosing particular F
C ratios. Here,

the solutions are given by the roots of
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det

�
AΛK þ NðAH − BÞ AΛcx2Hxy

AΛcx2Hxy AΛLþ NðAH − BÞ

�
¼ 0:

ð27Þ

These are given by B − AH ¼ ΛA
N W�, where W� ¼

ð1þ 2c
b ÞE� cx2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðHxx −HyyÞ2 þH2

xy

q
from which we

obtain

k2 ¼ 3A2

Nx2
W� ð28Þ

corresponding to F
C ¼ W�−K

cx2Hxy
, respectively.

IV. MOTION IN KAIGORODOV SPACETIME

A particular solution of Eq. (15), which in addition
satisfies Hxy ¼ 0, is given by H ¼ σx3 in which σ is a
constant. With this choice, the metric (14) reduces to

ds2 ¼ −3
Λx2

ðσx3du2 − dudvþ dx2 þ dy2Þ: ð29Þ

This describes the Kaigorodov space-time [16] in Siklos
horospherical-type coordinates (or more formally,
Fefferman-Graham coordinates, see, e.g. [25]). This metric
can be obtained from the following one:

ds2 ¼ �e−lrdX2 þ e2lrð−dXdT þ dY2Þ þ dr2 ð30Þ

by imposing the coordinate transformation x ¼ �e−lr;

u ¼ lX; v ¼ lT; y ¼ lY, where l ¼
ffiffiffiffiffi
−Λ
3

q
[19]. The minus

and plus signs correspond to x > 0 and x < 0 regions,
respectively, and σ is regarded as unity for simplicity.
The positive and negative x regions are disjointed, and
x ¼ 0 represents the null infinity.
Now, noting that for this metric we have E ¼ 0, Eq. (20)

gives

k2 ¼ −
9βA2σ

7Λð3þ βÞ x; ð31Þ

in which β ¼ 7αΛ
90πm2

e
. Also, Eq. (26) results in

vp ¼
���� ð3σx3 − 7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2x6 þ 1

p
Þβ − 21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2x6 þ 1

p

ð3σx3 þ 7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2x6 þ 1

p
Þβ þ 21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2x6 þ 1

p
���� ð32Þ

or, for β ≪ 1,

vp ¼ 1þ β
6σx3

21
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2x6 þ 1

p : ð33Þ

Similarly, for C ¼ 0, F ≠ 0, we obtain

k2 ¼ 9βA2σ

7Λð3þ βÞ x; ð34Þ

and

vp ¼
���� ð3σx3 þ 7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2x6 þ 1

p
Þβ þ 21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2x6 þ 1

p

ð3σx3 − 7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2x6 þ 1

p
Þβ − 21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2x6 þ 1

p
���� ð35Þ

or

vp ¼ 1 − β
6σx3

21
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2x6 þ 1

p ; ð36Þ

respectively. In both cases, we have vp → 1 as x → 0.
Now, noting that me ¼ 5.1 × 105 eV and jΛj ¼ 4.6 ×

10−66 eV2 (corresponding to the experimental value
þ1.19 × 10−52 m−2), we have β ¼ −3.2 × 10−81. Thus,
for the case F ¼ 0, Eq. (31) gives signðk2Þ ¼ signð−σxÞ
which, if we assume σ > 0, corresponds to subluminal
photons in x > 0 region and superluminal photons in x < 0
region. Similarly, for the case C ¼ 0, Eq. (34) gives
signðk2Þ ¼ signðσxÞ, which shows superluminal photons
in the x > 0 region and subluminal photons in the x < 0
region. These are also confirmed explicitly by Eqs. (33) and
(36). One can obtain the reverse situation by choosing
σ < 0.
For the spacetime described by the metric (29), the

curvature length scale is of the order of L0∼
ð−ΛÞ−1=2 ∼ 1033 eV−1, which is very large compared to
the Compton wavelength λc ∼ 10−5 eV−1. Thus, the
requirement L0 ≫ λc ([1]) for the validity of the one-loop
calculations is well satisfied. On the other hand, we should
also have −k2 < 4m2

e (see, e.g. [26]). Thus, from Eqs. (31)

or (34), we obtain A <
ffiffiffiffiffiffiffiffiffiffiffiffi
j 28Λ
3βσx j

q
me or equivalently,

A <
ffiffiffiffiffiffiffiffi
120π
αjσxj

q
m2

e. This puts an upper bound on the value of A.

V. MOTION IN DEFRISE SPACETIME

In the previous section, we investigated the photon
propagation in a particular Siklos spacetime, the
Kaigorodov spacetime, in which the source of spacetime
curvature is only the cosmological constant. This implies
that the contribution of photons to the energy-momentum
tensor is neglected. There are other subclasses of Siklos
solutions in which such contributions can be accounted for.
In particular, the Defrise spacetime [27] is obtained when
in addition to the cosmological constant, there is a pure
radiation field with the energy-momentum tensor
Tμν ¼ ρkμkν, with ρ being a constant [28]. The Defrise
metric is described by Eq. (14) by setting H ¼ −δx−2 in
which δ is constant. It can be obtained by taking ρ ¼ 5Λ2δ

18πG
and kμ ¼ ð0; 0; 0; 1Þ, corresponding to massless photons
propagating in the z direction.
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In this spacetime, we have E ≠ 0, and with the choice
F ¼ 0, C ≠ 0, we have from Eq. (20)

k2 ¼ 54βA2δ

7ð3þ βÞΛx4 ; ð37Þ

and Eq. (26) results in

vp ¼
���� ð18δþ 7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x4 þ δ2

p
Þβ þ 21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x4 þ δ2

p

ð18δ − 7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x4 þ δ2

p
Þβ − 21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x4 þ δ2

p
���� ð38Þ

or

vp ¼ 1 − β
12δ

7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x4 þ δ2

p ð39Þ

showing subluminal motion for δ < 0 and superluminal
motion for δ > 0. Similarly, with the choice C ¼ 0, F ≠ 0,
we obtain

k2 ¼ 36βA2δ

7ð3þ βÞΛx4 ; ð40Þ

and

vp ¼
���� ð12δþ 7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x4 þ δ2

p
Þβ þ 21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x4 þ δ2

p

ð12δ − 7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x4 þ δ2

p
Þβ − 21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x4 þ δ2

p
���� ð41Þ

or

vp ¼ 1 − β
8δ

7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x4 þ δ2

p ; ð42Þ

which shows again subluminal motion for δ < 0 and
superluminal motion for δ > 0. In both cases, we have
vp → 1 as x → ∞.

VI. MOTION IN OTHER SIKLOS SPACETIMES

It has been shown in [13] that Eq. (15) admits a general
solution of the following form:

Hðu; x; yÞ ¼ x2
∂
∂x

�
fðζ; uÞ þ f̄ðζ̄; uÞ

x

�
; ð43Þ

where f is an arbitrary function and ζ ¼ xþ iy. Thus,
for example, choosing fðζ; uÞ ¼ 1

4
ζ3 reproduces the

Kaigorodov metric. It is possible to apply the formulation
given in Sec. III to various subsets of the above general
wave profile. The procedure is straightforward, but the
results depend on the explicit form of the wave profile.
As an interesting example, for a generalized Kaigorodov
metric withHðu; x; yÞ ¼ wðuÞx3 in which wðuÞ is arbitrary,
Eq. (20) reduces to

k2 ¼ � 9A2β

7Λð3þ βÞ xwðuÞ; ð44Þ

and the behavior depends on wðuÞ. On the other hand, there
are other solutions to Eq. (15), such as Hðu; x; yÞ ¼
wðuÞx3 þ sðuÞy in which sðuÞ is arbitrary, which give
the same results as Eq. (44). Another profile of this kind is
Hðu; x; yÞ ¼ qðuÞðx2 þ y2Þ, where qðuÞ is also arbitrary.
Interestingly, the later (up to a conformal transformation)
is also the wave profile of an exact gravitational wave
produced by a light wave in an otherwise empty spacetime
[29], (see also [30]). It is also possible to generalize the
Defrise metric by Hðu; x; uÞ ¼ jðuÞx−2, jðuÞ being arbi-
trary, which would result in different behavior compared to
the ones discussed in Sec. V.
An example of Siklos spacetimes with Hxy ≠ 0 is

Hðu; x; yÞ ¼ x3 þ 1
3
y3 þ x2y. For this spacetime, Eq. (28)

gives

k2 ¼ ∓ 3
ffiffiffiffiffi
37

p
βA2

14Λðβ þ 3Þ x ð45Þ

representing both superluminal or subluminal propagation.

VII. CONCLUSIONS

We studied the effect of one-loop correction of photon
vacuum polarization on photon propagation in Siklos
spacetimes in the geometric optics limit. In Siklos space-
times with Hxy ¼ 0, for photons with nonzero polarization
in both the x, y directions, the quantum correction vanishes.
In Kaigorodov spacetime, H ∼ x3, we showed that in
addition to usual massless photons, there exists a solution
for which photons polarized along the x axis are super-
luminal in the H < 0 regions and subluminal in the H > 0

regions, while photons polarized along the y axis are
subluminal in the H < 0 regions and superluminal in the
H > 0 regions. Thus, the phenomenon of birefringence is
shown to exhibit in Kaigorodov and some other subclasses
of Siklos spacetimes. The deviation from the standard
speed of light are tiny, of the order of αΛ

m2
e
. In Defrise

spacetime, H ∼ x−2, photons polarized either along the x
axis or the y axis are superluminal in H < 0 regions and
subluminal in H > 0 regions. For the class of Siklos
spacetimes with off diagonal terms in the wave profile,
Hxy ≠ 0, superluminal/subluminal propagation is possible
with an arbitrary polarization in the transverse plane.
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