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We study the effect of one-loop vacuum polarization on photon propagation in Siklos spacetimes in the
geometric optics limit. We show that for photons with a general polarization in the transverse plane, the
quantum correction vanishes in spacetimes with H,, = 0. For photons polarized along a transverse axis,
subluminal and superluminal solutions are admitted for certain subclasses of Siklos spacetimes. We
investigate the results in the Kaigorodov and Defrise spacetimes and obtain explicit expressions for the
phase velocities. In Kaigorodov spacetime with H ~ x*, photons polarized along the x axis are subluminal
in regions where H is positive and superluminal in regions where H is negative, while photons polarized
along the y axis are superluminal in H > 0 regions and subluminal in H < O regions. In the Defrise

spacetime, H ~ x~2, x-polarized and y-polarized photons are superluminal for H < 0, and subluminal for
H > 0. We comment on motion in other Siklos spacetimes.
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I. INTRODUCTION

The interplay between gravitational and quantum effects
has been a topic of huge interest in recent decades, but in spite
of massive efforts, there is no theory fully reconciling these
effects yet. Still, one can study quantum effects in gravita-
tional systems in certain contexts. Within this framework, [1]
have investigated the QED contribution to the photon
effective action from one-loop vacuum polarization in curved
backgrounds. The calculation showed that the photon propa-
gation gets altered due to the quantum corrections, and
superluminal or subluminal motion could be possible, at least
in principle. They also applied the formulation to gravita-
tional wave spacetime (in the weak-field approximation) and
also to the Schwarzschild spacetime, and the superluminal-
subluminal motion and also the birefringences were shown
explicitly. Their theory has then been examined in several
spacetimes; namely in Reissner-Nordstrum spacetime in [2],
in Kerr spacetime in [3], in dilaton black hole spacetimes in
[4], in the static and rotating topological back hole back-
grounds in [5], and more recently, in [6], in which by
considering the Kerr-de Sitter and static de Sitter cosmic
string spacetimes, the effect of a positive cosmological
constant was studied. Other aspects of this theory have been
discussed in the literature, including the generalization to a
high frequency limit and the discussion of various kinds of
velocity in [ 7], the issue of causality violationin [8,9], and the
problem of superluminality in [10]. A review of the subject
may be found in [11]. Also, it has been shown in [12] that
including the quantum terms (but with arbitrary coefficients)
in the electromagnetic Lagrangian breaks the conformal
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invariance of the action, and this could be responsible in
producing sizable magnetic fields during inflation.

In the present work, we investigate photon propagation
in Siklos spacetimes. These spacetimes, first introduced
in [13], may be considered as exact gravitational waves
propagating in an anti—de Sitter universe [14,15]. A
particular Siklos spacetime, the Kaigorodov spacetime
[16], has been of interest particularly in the context of
AdS/CFT correspondence [17,18]. Some other aspects
of the Kaigorodov spacetime have been investigated in
the literature, see, e.g. [19] and the references therein.
Although the current observations favor a positive cos-
mological constant, models with negative cosmological
constant are still of interest and appear in different
contexts including BTZ black holes [20], and string
theory and supersymmetry [21]. Plane gravitational and
electromagnetic fields in spaces with a cosmological
constant have also been studied in [22].

The paper is organized in the following order. We begin
with a brief review of the electromagnetic field equations
in a general curved spacetime in the limit of geometric
optics and also collect the relevant equations for the one-
loop vacuum polarization. Then, in Sec. III, we solve the
equations of vacuum polarization for photons propagating
in a general Siklos spacetime. We obtain expressions for k>
and show that solutions with positive, zero, or negative
values are admitted. We also compute the phase velocities.
In Sec. IV, we consider the particular case of propagation in a
background Kaigorodov spacetime and show that depending
on the photon polarization and the spacetime region on which
photons are moving, both subluminal or superluminal photon
propagation are possible. In Sec. V, we take the contribution
of photons to the background spacetime into account, which
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is achieved by considering the Defrise spacetime. In Sec. VI,
we consider propagation in other Siklos spacetimes. We
conclude the paper with a summary of the results. We use the
natural units with the Lorentz-Heaviside units for electro-
magnetic fields, the metric signature (— + ++), and the
following convention for the Riemann tensor R¥,,, =
0,006 + TS, — {p < o}

II. THE VACUUM POLARIZATION

The electromagnetic action

-1
Sozj/d“x\/—gFmF’“’ (1)
gives the Maxwell equations for free fields
D,F*" =0, (2)

or, in terms of the field A# (subject to the Lorentz condition
D,A* = 0),

D,D'A* = RIAY, (3)

R, being the Ricci tensor. In the limit of geometric optics,
the solution to Eq. (3) is given by

A= (a + ieb + ) exp <%> (4)

Here, it is assumed that the wavelength A is small compared
with the length scale of the spacetime curvature, L. In fact,
one may take ¢ = O(Lio) See, e.g. [23], for more details and

a pedagogical review of the geometric optics limit in curved
spacetime.

To the leading order, Egs. (3) and (4) result in k,k* = 0,
where k, = (9M(p. Thus, the integral curve of &* is null.
Also, the Lorentz condition implies that the polarizations
are transverse

k,a* = 0. (5)
The next-to-leading order terms give
k*Dja" = —%a”D,,k”, (6)
and the Lorentz condition leads to
D,a" = k,b". (7)

The one-loop corrected action is given by S = Sy + S,
where

1
S, = —2/d4x1/—g(aRFﬂ,,F”” + bR, F* F™
me
+ CRWMF”UFM + dD”F””DKFKD) (8)
inwhicha:ﬁ,b = —;g’—OfT,C :ﬁ,d:#&z,abeing

the fine structure constant, and m, is the electron mass.
It should be noted that the above action is in fact a truncated
form of the QED effective field theory action. The full
action contains other terms including some curvature-
independent and some UV divergent ones. Omitting such
terms from the action restricts the range of energies over
which it is valid. A discussion of this may be found in [10].

Including S, (with the last term being neglected) into the
action results in the following field equation [24]:

2
D,F*" = m_gD”Qﬂ , (9)

where Q* = 2aRF" + b(R,F"™ — RYF*) + 2cR**F .
In the special case of a maximally symmetric spacetime,
where R, = P(Guc9u: — 9u19uc) this reduces to

TPa
1 D, F* =0, 10
< +9071'm§> : (10)

and the vacuum polarization does not affect the propaga-
tion. For Ricci-flat spacetimes, we have from Eq. (9)

D F* = oo s R D, P = 0. (11)
e

Equation (9) can be expanded into the following form:

4aR 2b
(1 - ,;’2 )D,,Fﬂv ~ 5 (RD,F™ = R,D,F™")
e e

4c 2b + 8¢
— —m% RM D, F°" + 7’”% Fo*D,Ry,
da+ b
— s—F*"D,R =0, (12)

e

which by using Egs. (4) and (5), to 0(6%) gives

4aR 2b 2b
(- <1 - ) ki + Rﬁik,,kf’) @ =5 Rhkatke

2b 8c
— k,k*a’RY, — — R"  k,k"a® = 0. 13
+mg i a’Rg mg ot a ( )

The general equation, in which higher order terms in the
expansion are also included, involve derivative of a* and
k*. To the leading order which Eq. (13) is based on, such
terms are absent.
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III. THE SIKLOS SPACETIMES

In the chart (u,x,y,v) with u, v being the light cone
coordinates, the Siklos spacetimes metric is described by

ds* = 2 (H(u,x,y)du* — dudv + dx* + dy*)  (14)
X

in which A < 0 is the cosmological constant. Inserting this

into the Einstein equation with a cosmological constant,

G, + Ag,, = 0, results in

2
Hxx—f—Hyy:;HX, (15)

where subscripts represent differentiation.

For photons propagating along the z axis with
k" = (A,0,0,B), we take a* = (0,C, F,0) in which C,
F are constants. This is consistent with the condition

k,a* = 0. (16)

Inserting the above data into Eq. (13) results in (for y = x,
y, respectively) the following two equations:

A

e

A

where

K =4c(x*H,, —xH,) + E,
L =4c(x*H,, — xH,) + E,
N = (48a + 12b + 8¢)A — 3m2,

2
E = bx? (Hm +H,, - ;Hx) :

For H satisfying Eq. (15), we have E = 0. The above
equations admit the trivial solution A = 0, which corre-
sponds to k*> = 0.

Now if H,, =0, C #0, and F # 0, Egs. (17) and (18)
are inconsistent unless we take A = 0 (except for the
particular case where K = L for which A can be nonzero.
This particular condition is satisfied for Siklos spacetimes
with H,, = H,,). However, if we further take either F = 0,
C #0or C =0, F # 0, then the above system of equations
can be satisfied with A # 0.

If we take H,, =0, with F =0, C#0, Eq. (18) is
automatically satisfied and from Eq. (17), we get

3A’K 3A
— " (AH - B), 19
N2 L ) (19)

where K = ¢(x*H,, — xH,) + E. From Eq. (19), one can
easily read off the value of k> = =34 (AH — B). Thus,

342K
= 20
N (20)

The phase velocity of photons can be obtained from

v, = ﬁ To compute this, we first perform the coordinates
transformation
d ! (hdt — dz) (21)
U=—F— —dz),
h(h+ H)
d ! (dt + hdz) (22)
V= —— 7),
h(h+ H)

in which h = VH? + 1 — H. This brings the metric to the
following form:

-3 1
ds? = — <—hdt2 + Edzz +dx® + dy2>. (23)
X

Thus, we obtain

-3
4Ax*(h + H)

= 3 |A|h+H+AK
N 4a(h+ H) N |

-3
AN (h + H)

|hA + B

(24)

and

k] = A = Bh

-3 AK
= /——5———A|lh + H-—|. 25
4Ax2(h+H)| |' N N (25)

We therefore obtain

(26)

‘N(}H—H) +AK‘
’l)p = .

|N(h+H)-AK

Similarly, if we take C =0, F #0, then Eq. (17) is
automatically satisfied, and from Eq. (18), we get the
same expressions as above but with K replaced by L =
c(x*H,, —xH,) + E.

In the case, where H,, #0, Egs. (17) and (18) are
satisfied with A # 0 by choosing particular g ratios. Here,
the solutions are given by the roots of
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AAK + N(AH — B)
det(

AANcx’H xy >
A/\cszxy

AAL + N(AH — B)
(27)

These are given by B —AH :%Wi, where W, =

(1+3%)E+ cx2\/4(HXX - H,,)* + H3, from which we

obtain

3A?
k2 - —Nx2 + (28)
. F __ Wi_K .
corresponding to ¢ = —5;—, respectively.

IV. MOTION IN KAIGORODOV SPACETIME

A particular solution of Eq. (15), which in addition
satisfies H,, =0, is given by H = ox’ in which ¢ is a
constant. With this choice, the metric (14) reduces to

-3
(ox*du® — dudv + dx* + dy?).  (29)

ds* = —
s Ax?

This describes the Kaigorodov space-time [16] in Siklos
horospherical-type coordinates (or more formally,
Fefferman-Graham coordinates, see, e.g. [25]). This metric
can be obtained from the following one:

ds* = +e7"dX? + " (—dXdT + dY?) + dr*  (30)

by imposing the coordinate transformation x = 4-e~'",
u=IX,v=IT,y=1Y, where [ = /=2 [19]. The minus

and plus signs correspond to x > 0 and x < O regions,
respectively, and o is regarded as unity for simplicity.
The positive and negative x regions are disjointed, and
x = 0 represents the null infinity.

Now, noting that for this metric we have E = 0, Eq. (20)
gives

., 9pA%

= —mx, (31)

in which g = 9822%. Also, Eq. (26) results in

(Box3 = TVe*x0 + 1) — 21V e%x + 1 (32)
v =
P Box® + VoA + 1)+ 21Vex8 + 1

or, for f <« 1,

60x3

21V + 1

Similarly, for C = 0, F # 0, we obtain

v,=1+p

,  9pA%

TING ) (34)

and

, (Box> +TV6*x® + 1)B + 21Ve*x° + 1 (35)
" Box® —TVeAS + 1) - 21V + 1

or

3
—l-p—" 36
b ﬂ21\/62x6+1 (36)

respectively. In both cases, we have v, — 1 as x — 0.

Now, noting that m, = 5.1 x 10° eV and |A| = 4.6 x
107% eV? (corresponding to the experimental value
+1.19 x 1072 m™2), we have f = —3.2x 1078!. Thus,
for the case F = 0, Eq. (31) gives sign(k?) = sign(—ox)
which, if we assume o > 0, corresponds to subluminal
photons in x > 0 region and superluminal photons in x < 0
region. Similarly, for the case C =0, Eq. (34) gives
sign(k?) = sign(ox), which shows superluminal photons
in the x > 0 region and subluminal photons in the x < 0
region. These are also confirmed explicitly by Egs. (33) and
(36). One can obtain the reverse situation by choosing
o <0.

For the spacetime described by the metric (29), the
curvature length scale is of the order of Ly~
(=A)"1/2 ~10% eV~!, which is very large compared to
the Compton wavelength A.~ 107 eV~!. Thus, the
requirement Ly > A. ([1]) for the validity of the one-loop
calculations is well satisfied. On the other hand, we should
also have —k> < 4m? (see, e.g. [26]). Thus, from Egs. (31)

or (34), we obtain A < ,/|28A

3ﬁgx|me or equivalently,

A < /1292 This puts an upper bound on the value of A.

alox|

V. MOTION IN DEFRISE SPACETIME

In the previous section, we investigated the photon
propagation in a particular Siklos spacetime, the
Kaigorodov spacetime, in which the source of spacetime
curvature is only the cosmological constant. This implies
that the contribution of photons to the energy-momentum
tensor is neglected. There are other subclasses of Siklos
solutions in which such contributions can be accounted for.
In particular, the Defrise spacetime [27] is obtained when
in addition to the cosmological constant, there is a pure
radiation field with the energy-momentum tensor
T,, = pk,k,, with p being a constant [28]. The Defrise
metric is described by Eq. (14) by setting H = —6x~2 in
which & is constant. It can be obtained by taking p = 32
and k* = (0,0,0, 1), corresponding to massless photons
propagating in the z direction.
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In this spacetime, we have E # 0, and with the choice
F =0, C #0, we have from Eq. (20)

, 54pA%

I A .

and Eq. (26) results in

(185 + TVx* + &) + 21Vx* + & (38)
v, =
Pl (186 =TV + ) —21VxP + &

or

126
TVx* + 62

showing subluminal motion for § < 0 and superluminal
motion for § > 0. Similarly, with the choice C = 0, F # 0,
we obtain

v, =1-p (39)

36pA%S
e= J0PA0 (40)
7(3 + B)Ax
and
(126 + 7Vx* + 8)B + 21Vx* + 82 (41)
v, =
P12 =TV F ) -21Vx + 8
or
85
v, =1— 42
g N “2)

which shows again subluminal motion for 6 <0 and
superluminal motion for 6 > 0. In both cases, we have

vp—>1asx—>oo.

VI. MOTION IN OTHER SIKLOS SPACETIMES

It has been shown in [13] that Eq. (15) admits a general
solution of the following form:

H(u,x,y) — XZ% <f(€’ M) _:f(éz M)>’ (43)

where f is an arbitrary function and { = x + iy. Thus,
for example, choosing f({,u) =3¢ reproduces the
Kaigorodov metric. It is possible to apply the formulation
given in Sec. III to various subsets of the above general
wave profile. The procedure is straightforward, but the
results depend on the explicit form of the wave profile.
As an interesting example, for a generalized Kaigorodov
metric with H(u, x,y) = w(u)x? in which w(u) is arbitrary,
Eq. (20) reduces to

942

2 __
 TIAB+P)

xw(u), (44)

and the behavior depends on w(u). On the other hand, there
are other solutions to Eq. (15), such as H(u,x,y) =
w(u)x® + s(u)y in which s(u) is arbitrary, which give
the same results as Eq. (44). Another profile of this kind is
H(u,x,y) = q(u)(x* + y*), where g(u) is also arbitrary.
Interestingly, the later (up to a conformal transformation)
is also the wave profile of an exact gravitational wave
produced by a light wave in an otherwise empty spacetime
[29], (see also [30]). It is also possible to generalize the
Defrise metric by H(u,x,u) = j(u)x2, j(u) being arbi-
trary, which would result in different behavior compared to
the ones discussed in Sec. V.

An example of Siklos spacetimes with H,, #0 is
H(u,x,y) = x* +1y* 4+ x%y. For this spacetime, Eq. (28)
gives

3V/37pA?
2 = FIVITAT (45)
14A(B +3)
representing both superluminal or subluminal propagation.

VII. CONCLUSIONS

We studied the effect of one-loop correction of photon
vacuum polarization on photon propagation in Siklos
spacetimes in the geometric optics limit. In Siklos space-
times with H,, = 0, for photons with nonzero polarization
in both the x, y directions, the quantum correction vanishes.
In Kaigorodov spacetime, H ~ x3, we showed that in
addition to usual massless photons, there exists a solution
for which photons polarized along the x axis are super-
luminal in the H < 0 regions and subluminal in the H > 0
regions, while photons polarized along the y axis are
subluminal in the H < 0 regions and superluminal in the
H > 0 regions. Thus, the phenomenon of birefringence is
shown to exhibit in Kaigorodov and some other subclasses
of Siklos spacetimes. The deviation from the standard
speed of light are tiny, of the order of % In Defrise

spacetime, H ~ x~2, photons polarized either along the x
axis or the y axis are superluminal in H < 0 regions and
subluminal in H > 0 regions. For the class of Siklos
spacetimes with off diagonal terms in the wave profile,
H,, # 0, superluminal/subluminal propagation is possible
with an arbitrary polarization in the transverse plane.

ACKNOWLEDGMENTS

I would like to thank an anonymous referee of PRD for
several comments.

024006-5



MORTEZA MOHSENI

PHYS. REV. D 97, 024006 (2018)

[1] I. T. Drummond and S.J. Hathrell, Phys. Rev. D 22, 343
(1980).

[2] R.D. Daniels and G. M. Shore, Nucl. Phys. B425, 634
(1994).

[3] R.D. Daniels and G.M. Shore, Phys. Lett. B 367, 75
(1996).

[4] H.T. Cho, Phys. Rev. D 56, 6416 (1997).

[5] R.-G. Cai, Nucl. Phys. B524, 639 (1998).

[6] S. Bhattacharya, Eur. Phys. J. C 75, 247 (2015).

[7]1 G. M. Shore, Nucl. Phys. B633, 271 (2002).

[8] G. M. Shore, Nucl. Phys. B460, 379 (1996).

[9] T.J. Hollowood and G. M. Shore, J. High Energy Phys. 3
(2016) 129.

[10] G. Goon and K. Hinterbichler, J. High Energy Phys. 2
(2017) 134.

[11] G.M. Shore, Contemp. Phys. 44, 503 (2003).

[12] M.S. Turner and L. M. Widrow, Phys. Rev. D 37, 2743
(1988).

[13] S.T.C. Siklos, in Galaxies, Axisymmetric Systems and
Relativity, edited by M.A.H. MacCallum (Cambridge
University Press, Cambridge, England, 1985), p. 247.

[14] G.W. Gibbons and P.J. Ruback, Phys. Lett. B 171, 390
(1986).

[15] J. Podolsky,
(1998).

[16] V.R. Kaigorodov, Sov. Phys. Dokl. 7, 893 (1963).

Classical Quantum Gravity 15, 719

[17] M. Cveti¢, H. Lii, and C. N. Pope, Nucl. Phys. B545, 309
(1999).

[18] D. Brecher, A. Chamblin, and H.S. Reall, Nucl. Phys.
B607, 155 (2001).

[19] C. Patricot, Classical Quantum Gravity 20, 2087 (2003).

[20] M. Banados, C. Teitelboim, and J. Zanelli, Phys. Rev. Lett.
69, 1849 (1992).

[21] T. Banks, Int. J. Mod. Phys A 29, 1430010 (2014).

[22] I. Ozsvath, 1. Robinson, and K. Rozga, J. Math. Phys. (N.Y.)
26, 1755 (1985).

[23] T. Padmanabhan, Gravitation: Foundations and Frontiers
(Cambridge University Press, New York, 2010), p. 221.

[24] As elaborated in [10], there is some confusion in the
literature regarding the conventions and signs. This causes
some references; e.g. to use (mistakenly) an extra minus
sign before 2 in Eq. (9).

[25] N. Tetradis, Phys. Rev. D 85, 046007 (2012).

[26] S. Weinberg, The Quantum Theory of Fields (Cambridge
University Press, Cambridge, England, 1995), Vol. 1,
p. 473.

[27] L. Defrise, These de doctorat, Université libre de Bruxelles,
Faculté des sciences, Bruxelles, 1969.

[28] J. Podolsky, Gen. Relativ. Gravit. 33, 1093 (2001).

[29] R. G. McLenaghan, N. Tariq, and B. O.J. Tupper, J. Math.
Phys. (N.Y.) 16, 829 (1975).

[30] J. W. van Holten, Fortschr. Phys. 59, 284 (2011).

024006-6


https://doi.org/10.1103/PhysRevD.22.343
https://doi.org/10.1103/PhysRevD.22.343
https://doi.org/10.1016/0550-3213(94)90291-7
https://doi.org/10.1016/0550-3213(94)90291-7
https://doi.org/10.1016/0370-2693(95)01468-3
https://doi.org/10.1016/0370-2693(95)01468-3
https://doi.org/10.1103/PhysRevD.56.6416
https://doi.org/10.1016/S0550-3213(98)00274-0
https://doi.org/10.1140/epjc/s10052-015-3477-7
https://doi.org/10.1016/S0550-3213(02)00240-7
https://doi.org/10.1016/0550-3213(95)00646-X
https://doi.org/10.1007/JHEP03(2016)129
https://doi.org/10.1007/JHEP03(2016)129
https://doi.org/10.1007/JHEP02(2017)134
https://doi.org/10.1007/JHEP02(2017)134
https://doi.org/10.1080/00107510310001617106
https://doi.org/10.1103/PhysRevD.37.2743
https://doi.org/10.1103/PhysRevD.37.2743
https://doi.org/10.1016/0370-2693(86)91426-7
https://doi.org/10.1016/0370-2693(86)91426-7
https://doi.org/10.1088/0264-9381/15/3/019
https://doi.org/10.1088/0264-9381/15/3/019
https://doi.org/10.1016/S0550-3213(99)00002-4
https://doi.org/10.1016/S0550-3213(99)00002-4
https://doi.org/10.1016/S0550-3213(01)00170-5
https://doi.org/10.1016/S0550-3213(01)00170-5
https://doi.org/10.1088/0264-9381/20/11/310
https://doi.org/10.1103/PhysRevLett.69.1849
https://doi.org/10.1103/PhysRevLett.69.1849
https://doi.org/10.1142/S0217751X14300105
https://doi.org/10.1063/1.526887
https://doi.org/10.1063/1.526887
https://doi.org/10.1103/PhysRevD.85.046007
https://doi.org/10.1023/A:1010284400184
https://doi.org/10.1063/1.522612
https://doi.org/10.1063/1.522612
https://doi.org/10.1002/prop.201000088

