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We present a simple model for stellar collapse and evaluate the quantum mechanical stress-energy tensor
to argue that quantum effects do not play an important role for the collapse of astrophysical objects.
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I. INTRODUCTION

Over the course of the past few years, there has been
proposed a number of models to prevent information loss in
a black hole. Most popular versions propose small mod-
ifications to either general relativity or quantum mechanics.
But it has been argued [1–5] that black holes could simply
not form as a result of the backreaction of its Hawking
emission. While it is well known that all outgoing null rays
that carry low energy at infinity pile up at the horizon, we
show that this fact does not mean that one can find an
infinitely large amount of energy on the horizon itself as a
result of the nonconservation of the expectation value of the
outgoing energy flux along these lines.
In Sec. II we create a two-dimensional model for a

collapsing star based on the Oppenheimer-Snyder model
(rather than the collapsing null shell in [6]) resulting in a
black hole, in Sec. III we compute the expectation values of
the regularized stress-energy tensor of a massless scalar
field in that spacetime, and in Sec. IV we conclude.

II. MODEL FOR STELLAR COLLAPSE

We model our four-dimensional collapsing star as dust
(zero pressure) as a Friedman-Robertson-Walker (FRW)
solution1 in the interior and Schwarzschild in the exterior of
the star,

ds2 ¼
�
a2ðηÞð−dη2 þ dχ2 þ sin2χdΩ2Þ interior

−ð1 − 2m
r Þdt2 þ ð1 − 2m

r Þ−1dr2 þ r2dΩ2 exterior;

ð1Þ
where aðηÞ ¼ a0

2
ð1þ cos ηÞ; 0 ≤ η ≤ π.

The surface of the star is described in the inner region by
χ ¼ χ0 and in the exterior is described by a radial timelike

geodesic RðtÞ passing through the point r¼a0sinχ0≡R0.
The exterior region’s geodesic equations for a stellar
surface leads to

dt
dR

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2m=R0

2m=R − 2m=R0

s �
1 −

2m
R

�
−1
: ð2Þ

Israel junction conditions for a nonsingular energy-
momentum tensor on the interface (that is, continuity of
the induced metric and the extrinsic curvature across the
junction interface) force [7,8]

m ¼ a0
2
sin3 χ0 ð3Þ

and

η ¼ arccos

�
2RðtÞ

a0 sin χ0
− 1

�
ð4Þ

on the interface of the two regions.
The event horizon is located by finding the outgoing null

geodesic that coincides with r ¼ 2m in the exterior region
to give

η ¼ χ − χ0 þ arccos

�
4m
R0

− 1

�
: ð5Þ

III. EXPECTATION VALUE OF REGULARIZED
STRESS-ENERGY TENSOR

A. Two-dimensional case

Now we consider the section dΩ ¼ 0 of the
spacetime manifold so we can cast the inner metric in a
conformally flat form ds2 ¼ −a2ðU;VÞdUdV, aðU;VÞ ¼
a0
2
ð1þ cos UþV

2
Þ. For later convenience we choose the

origin of our advanced and retarded coordinates so that
U ¼ η − χ þ χ0 and V ¼ ηþ χ − χ0 so that the surface of
the collapsing body is simply U ¼ V. The curvature scalar
can readily be computed from the two-dimensional (2D)
resulting metric to give
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1The form of the FRW solution below, referred to as k ¼ 1, is

necessary so Einstein’s equations are compatible with the initial
condition of the dust being at rest in the comoving frame.
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ℛ ¼
8<
:

2
a4 ðaa00 − a02Þ ¼ 8

a2
0
ð1þcos ηÞ3 interior

4m
r3 ¼ 2a0sin3χ0

r3 ; exterior;
ð6Þ

where the prime denotes differentiation with respect to η.
One can employ the prescription of [6] to compute the

expectation value of the energy momentum tensor after
covariant point splitting regularization with respect to the
vacuum state defined by coordinates ū and v̄, using the
same notation of that reference.

B. Choice of vacuum state

Our modes ū and v̄ are defined with respect to
ℐ− to mimic the so-called Unruh vacuum so v̄ ¼
tþ rþ 2m logðr − 2mÞ is the usual Schwarzschild
advanced coordinate. An ingoing null geodesic coming
from ℐ− passes through the surface of the collapsing
object and a mode proportional to eiωv̄ at ℐ− will be

reflected at χ¼0⇔V¼U−2χ0¼U−2arcsin
ffiffiffiffiffi
2m
R0

q
[using

(3) and (4) in the last step] and come out to ℐþ like eiωū

with

ū ¼ v

 
UðuÞ − 2 arcsin

ffiffiffiffiffiffiffi
2m
R0

s !
ð7Þ

at the interface, where the compositionUðVÞ is evaluated at
the surface of the collapsing object using (4) to relate these
coordinates on the interface,

UðuÞ ¼ arccos

�
2R
R0

− 1

�

⇒ U0ðuÞ ¼ R − 2m

2R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RðR0 − RÞp ð8Þ

and

vðVÞ ¼ t

�
R0

2
ð1þ cosVÞ

�
þR�

�
R0

2
ð1þ cosVÞ

�
−R�

0 ⇒

v0ðVÞ ¼ R2
0 sinV cos2 V

2

2½R0ð1þ cosVÞ−4m�

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðR0−2mÞcot2 V

2

m

s
−2

!
;

ð9Þ

where (2) was used for taking a derivative of the first
term in (9) and R�ðrÞ≡ rþ 2m logðr − 2mÞ, and R�

0 is an
abbreviation for R�ðR0Þ.
There are no contributions to the expectation value of the

energy-momentum tensor coming from the matching con-
ditions of the field modes across the collapsing surface.

Because the surface where the matching conditions are
applied is a geodesic and satisfies Israel junction conditions
with no δ terms in its energy-momentum tensor, it is
required that the field modes and their derivatives across the
surface are continuous [9]. These conditions are satisfied,
since the solutions to the field equations are merely the
composition between the solution in one chart and the
matching conditions (8) and (9), both C1 functions in their
variables.

C. Results

After covariant point-splitting regularization, the com-
ponents of the expectation value of the stress-energy tensor
for the 2D spacetime is given by [6]

hTμνi ¼
ℛ
48π

gμν þ θμν; ð10Þ

with θμν defined in that reference. Introducing the
abbreviation

F ðfðxÞ; xÞ≡
ffiffiffi
f

p
12π

d2

dx2
1ffiffiffi
f

p ¼ 1

24πf

�
3ðdf=dxÞ2

2f
−
d2f
dx2

�
;

F ðfg; xÞ ¼ gF ðf; xÞ þ fF ðg; xÞ − f0g0

24πfg
;

the components of the expectation value of the renormal-
ized stress-energy tensor are given by [6]

h0jTvvj0i ¼
mð3m − 2rÞ

48πr4
; ð11Þ

h0jTuvj0i ¼
mð2m − rÞ
24πr4

; ð12Þ

h0jTuuj0i ¼
�
dū
du

�
2

F
��

du
dū

��
1 −

2m
r

�
; ū

�
ð13Þ

outside the collapsing body and [10,11]

h0jTUUj0i ¼ F ðv0ðU − 2χ0Þ;UÞ − F ðaðUÞ;UÞ; ð14Þ

h0jTVV j0i ¼ F ðv0ðVÞ;VÞ − F ðaðVÞ;VÞ ð15Þ

inside it.

1. Inside matter

Explicit evaluation gives
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F ðaðUÞ;UÞ ¼ csc2 U
2
ð3þ cosUÞ
96π

;

F ðv0ðVÞ;VÞ ¼ 1

192πmðR0 þ R0 cosV − 4mÞ2ðξ − 2Þ2
× fm3ð256ð1 − 4 cos 2VÞ − ξð1792 − 512 cos 2VÞ þ 256 cosV csc2 Vð9ξ − 10ÞÞ
þm2R0ð1088þ ξð224þ 96 cos 3VÞ − 4 cos 2Vð48þ 56ξÞ − 32 cosV csc2 Vð3ξ − 34ÞÞ
þmR2

0ð56 cos 3V − 412þ 2 cos 4Vð2 − ξÞ − 6ξ − 16 cos 2Vð1 − ξÞ − 472 cosV csc2 VÞ
þ R3

0ð45 − cos 4V − 20 cos 2V þ 64 cosV csc2 VÞg;

where ξ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðR0−2mÞcot2V

2

m

q
. The missing term F ðv0ðU−2χ0Þ;

UÞ is obtained from above by replacing V by U − 2χ0
in F ðv0ðVÞ;VÞ and F ðaðVÞ;VÞ by replacing U by V in
F ðaðUÞ;UÞ.
The outgoing energy flux as measured by a stationary

observer within the star h0jTUUj0i on the event horizon
U ¼ arccosð4m=R0 − 1Þ is finite for all χ0 ≠ 0, including
in its formation, and all the way until the horizon intersects
the surface of the star, in explicit disagreement with [2].

2. Outside matter

The formulas for h0jTvvj0i and h0jTuvj0i are the same as
in [6], while the explicit formula for h0jTuuj0i is several
pages long and it is more elucidative to show a plot (Fig. 1)
than writing it. There are some properties that are worth-
while to elaborate. First, we note that at the onset of the
collapse from (7) ū ¼ u, so that h0jTuuj0i ¼ h0jTvvj0i,
while at very late times (R → 2mþ 0) it restores
Hawking’s result κ2=48π ¼ 1=ð768m2Þ as r → ∞ for
any initial radius, as one would expect. More generally,
for very late times, h0jTuuj0i as a function of r turns out to
be the same as in [6], suggesting that the nature of the

collapse does not affect the final energy-momentum tensor
of the radiation emitted by the black hole. The only
divergence present in this expression is for the true
singularity at the end of the stellar collapse at r ¼ 0.
To study possible effects of backreaction, it is interesting

to analyze observables measured by an observer following
the surface of the collapsing star extracted from the results
above, namely hTabilalb, hTabilamb, and hTabimamb

where ðla; maÞ is a diad adapted to this observer, so la

is the tangent vector to the ingoing timelike geodesic
describing the stellar surface, and ma is a spacelike unit
vector orthogonal to la. Using the Eddington-Finkelstein
coordinate system2 to write these vectors,

la ¼
�
1 −

2m
r

�
−1
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −
2m
R0

s
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m
r

−
2m
R0

s !� ∂
∂v
�

a

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m
r

−
2m
R0

s � ∂
∂r
�

a
ð16Þ

and

−ma ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðR0rþ 2mR0 − 4mr − 2rR0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2m=r − 2m=R0Þð1 − 2m=R0Þ
p Þ

R0ðr − 2mÞ2

s � ∂
∂v
�

a

þ R0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2m=r − 2m=R0Þð1 − 2m=R0Þ
p þ R0 − 2m

R0

mv

� ∂
∂r
�

a
: ð17Þ

All three contractions above are regular everywhere
except at the singularity, as shown in Fig. 2.
For an observer in the interior of the matter, all

these observables are also finite, as one can see from the
results from Sec. III C1 and by realizing that the vector
components of the vector tangent to timelike geodesics in

coordinates (1) are regular, and so are the components of
the spacelike vector orthogonal to it, since the metric
components in these coordinates are regular and invertible.
For observers outside the star, e.g. for a geodesic

observer starting from infinity, observables can be found
by the same method. If the observer starts at rest at infinity,
the tangent vector and the spacelike vector orthogonal to it
can be found from (16) and (17), respectively, by making
R0 → ∞.

2These coordinates are more adapted to study the neighbor-
hood of the future horizon.
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IV. DISCUSSION

From (10), (6), and (13)–(14) we see that, in contrast to
[2], the regularized energy-momentum tensor is perfectly
regular at the classical event horizon and small for
astrophysical black holes (∼1=768πm2 for r ¼ 2m); the
only divergence occurs at the singularity when the star
collapses entirely at η ¼ π, where the classical stress-
energy tensor is also divergent as the scale parameter goes
to zero. The same is true for observables like the expect-
ation values of energy density hTabilalb or energy flux
−hTabilamb which are only divergent near the true
singularity.
Also, from the coincidence of the behavior from

h0jTuuj0i for very late times for our star and for a
collapsing null shell of [6], our results strengthen the
notion that the final regularized expectation value of the
energy-momentum tensor of Hawking radiation ignores all
the details of the collapse.
One could argue that, despite the dynamical similarities

between 2D and four-dimensional (4D) models with
respect to the piling of outgoing rays on the horizon, the
situation could be very different in four dimensions, but it
must be noted that near ℐþ, the usual conservation law
∂νTμν ¼ 0 implies [12] that the expectation value for the
4D stress-energy tensor is proportional to r−2 times the one
in 2D for spherical waves. Assuming this to be true,
conservation of energy arguments imply that the 4D values
cannot explode in any nonzero measure set contained in a
domain of integration, such as the event horizon.
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FIG. 1. m2h0jTuuj0i as a function of r coincides with h0jTvvj0i
on the onset of the collapse, here represented by large values of R
and with [6] for very late times, for R → 2m. The horizontal plane
on top of the graph represents the constant κ2=48π.

FIG. 2. All appropriate observables as measured by someone
following the collapse obtained from the regularized energy-
momentum tensor are finite everywhere except at the singularity.
The graph shows exclusively the region around r ¼ 2m.
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