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Future surveys will access large volumes of space and hence very long wavelength fluctuations of the
matter density and gravitational field. It has been argued that the set of secondary effects that affect the
galaxy distribution, relativistic in nature, will bring new, complementary cosmological constraints. We
study this claim in detail by focusing on a subset of wide-area future surveys: Stage-4 cosmic microwave
background experiments and photometric redshift surveys. In particular, we look at the magnification
lensing contribution to galaxy clustering and general-relativistic corrections to all observables. We quantify
the amount of information encoded in these effects in terms of the tightening of the final cosmological
constraints as well as the potential bias in inferred parameters associated with neglecting them. We do so for
a wide range of cosmological parameters, covering neutrino masses, standard dark-energy parametrizations
and scalar-tensor gravity theories. Our results show that, while the effect of lensing magnification to
number counts does not contain a significant amount of information when galaxy clustering is combined
with cosmic shear measurements, this contribution does play a significant role in biasing estimates on a
host of parameter families if unaccounted for. Since the amplitude of the magnification term is controlled
by the slope of the source number counts with apparent magnitude, sðzÞ, we also estimate the accuracy to
which this quantity must be known to avoid systematic parameter biases, finding that future surveys will
need to determine sðzÞ to the ∼5%–10% level. On the contrary, large-scale general-relativistic corrections
are irrelevant both in terms of information content and parameter bias for most cosmological parameters but
significant for the level of primordial non-Gaussianity.
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I. INTRODUCTION

In the next decade, we expect to map out the large-scale
structure of the Universe with exquisite precision. In doing
so, it will be possible, for the first time, to access
information on the largest possible scales—the scale of
the cosmological horizon. It has been shown that, on those
scales, a number of general-relativistic effects come into
play [1–4]. Such effects might, conceivably, lead to addi-
tional and complementary information to that obtained on
the usual scales probed by current surveys (≲100h−1 Mpc).
General-relativistic effects are more significant on large

scales; unfortunately, there are fewer modes to sample, and
cosmic variance severely limits our ability to detect these
effects in the standard way. Indeed, it has been shown that
from autocorrelations alone (i.e., from the power spectra of
individual tracers) it is impossible to detect these effects
with any statistical significance [5], and the only way to
measure them is via cross-correlations of data sets, through
what has been dubbed the multitracer technique [6]. It has
been shown that a judicious choice of future surveys can be
combined to obtain a moderate to high significance
detection of general-relativistic effects [7,8].

Common sense would dictate that the various, novel,
effects that have been identified need to be taken into
account if we are to constrain cosmological parameters
from future surveys. Indeed, it has been shown that some of
these effects can play a significant role and bias the
outcomes of cosmological parameter estimation. We high-
light two cases: constraints on primordial non-Gaussianity
and the impact of lensing magnification on galaxy number
counts.
If primordial fluctuations are non-Gaussian, it has been

shown that one should expect corrections in the small k
(large wavelength) part of the galaxy power spectrum
through scale-dependent biasing [9,10]. This effect, in
which the bias parameter gets a correction Δb ∝ 1=k2,
can be confused with some of the general-relativistic effects
[11]. Thus, a correct accounting of both scale-dependent
biasing and general-relativistic effects must be adopted in
any analysis of long wavelength modes.
Alternatively, it has been well established that lensing will

affect measurements of the galaxy distribution through, for
example, magnification bias [12]. Lensing may have a
significant effect on all scales, and it has been shown that
if it is not correctly included it may lead to significant biases
in estimates of cosmological parameters such as the neutrino
mass scale [13] or the dark-energy equation of state [14].*christiane.lorenz@physics.ox.ac.uk
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In this paper, we will systematically explore the role that
general-relativistic effects (and large-scale modes) play on
cosmological parameter constraints. Our focus will be on
the importance of lensing correction (following up on the
work of Refs. [13,14]) and on the combined general-
relativistic corrections to galaxy number counts. We will
use a Fisher matrix analysis to quantify the importance of
these effects on the forecast errors and on the potential
measurement bias of cosmological parameters from a
selection of Stage IV experiments. We will be comprehen-
sive in our analysis of cosmological parameters in that we
will include the standard set of Lambda Cold Dark Matter
(ΛCDM) parameters but also encompass a time-varying
equation of state for dark energy, the mass of neutrinos,
primordial non-Gaussianity, and scalar-tensor extensions to
the theory of gravity.
We structure this paper as follows. In Sec. II, we briefly

recap the effects that we will be studying and discuss the
methodology that we will use. In Sec. III, we explain the
various parts that go into the Fisher matrix formalism for
forecasting and how it can be used to quantify potential
biases in the analysis. We then, in Sec. IV, systematically
work through the different combinations of data sets and
cosmological parameters to build up a comprehensive
analysis of the role these effects will play in future surveys.
In Sec. V, we discuss the results of our analysis.

II. OBSERVABLES AND LARGE-SCALE EFFECTS

The goal of modern cosmology is to map out the large-
scale structure of the Universe. To do so, observers try to
quantify the statistical properties of the distribution of
matter by either studying the spatial distribution of bright
objects (such as galaxies) or diffuse gas or by measuring the
effect of gravitational potentials on the propagation of light
emitted by distant sources. The key to such observations is
to accurately characterize the redshifts and directions of
photons that propagate from cosmological distances to
observing instruments. From these properties, one can infer
the density perturbations, observable volume distortions,
and perturbed photon paths.
A key quantity is the fluctuation in the number density of

galaxies at a particular solid angle and at a particular
redshift. The corresponding observable, ΔNðz; n̂Þ, consists
of a number of terms which can be schematically written
as [2,4]

ΔN ≡ ΔD þ ΔRSD þ ΔL þ ΔGR; ð1Þ

where D stands for density perturbations, RSD stands for
redshift space distortions, L stands for lensing magnifica-
tion, and GR stands for general-relativistic corrections. The
first three terms are dominant and play a role on all scales—
they are, at most, weighted by linear factors of ℋ=k where
ℋ is the conformal Hubble factor and k is the wave number
of the perturbation. The general-relativistic corrections

include large-scale velocity terms and terms involving
the gravitational potentials and their derivatives (akin to
the integrated Sachs-Wolfe [15] effect and the Shapiro time
delay [16], found in other settings). The GR terms are
typically weighted by factors of ðℋ=kÞ2. The exact
expressions for all these terms can be found in Appendix A.
Redshift space distortions, or the “Kaiser effect” (see

Ref. [17]) are currently the method par excellence for
measuring the growth rate of structure, f ¼ d ln δM=d ln a
(where δM is the matter density contrast and a is the scale
factor) [18]. These distortions arise from the peculiar
velocity sourced by the local gravitational potential which
induce shifts in the relationship between the distance and
redshift of any particular galaxy. The interplay between the
RSD term and the density contrast involves the clustering
bias, b, which relates the number density with fluctuations
in the comoving-gauge matter perturbations. As such,
measuring the growth rate will involve assumptions about
the tracer being considered and can, potentially, be ame-
nable to multitracer techniques [6].
We will pay particular attention to the magnification

term, the most significant effect after RSDs and already
well measured by multiple analyses [19–24]. This magni-
fication bias depends on the slope of the physical number
density of sources, N̄ ðη; L > L�Þ, as a function of con-
formal time η and intrinsic luminosity L�, as

s≡ 5

2

∂ ln N̄
∂ lnL�

: ð2Þ

This correction arises because of the presence of matter
overdensities along the photon path, on the one hand
stretching the observed separation between galaxies
(and therefore suppressing the observed number density)
and on the other hand boosting the observability of faint
galaxies which otherwise would have fallen below the
detection threshold [25]. As we shall see (and as was
pointed out in Refs. [13,14]), this term can play a
significant role in biasing the estimates of cosmological
parameters.
The GR effects are subdominant and only really emerge

on the largest scales (as can be seen in Appendix A). There
are a few main things to note which will become important
when discussing the methodology and results. First of all,
the fact that they are weighted by ðℋ=kÞ2 means that they
come in with a similar scale dependence as the scale-
dependent bias arising from primordial non-Gaussianity.
Second, some of the terms depend on the slope of the
background number density of sources as a function of
time, the evolution bias:

fevo ≡ ∂ lnða3N̄ Þ
∂ ln a : ð3Þ

Given this, it has been shown [7,8] that GR effects are
amenable to the use of multitracer techniques for mitigating
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cosmic variance and that, with the appropriate choice of
future data sets, it may be possible to detect them at the
∼10σ level.

III. METHODOLOGY

A. Space of parameters

In this work, we will consider a number of different
cosmological models in order to make a broad and general
statement about the impact of the lensing and general-
relativistic effects on the estimation of cosmological
parameters.
For a first model, we choose the standard extension to

ΛCDMincludingnonzeroneutrinomasses
P

mν and a time-
varying equation of state for dark energy. The latter is
parametrized by w0 and wa [26] as wðaÞ¼w0þð1−aÞwa.
This model also includes the standard cosmological param-
eters (fractional density of dark matter Ωcdmh2 and baryons
Ωbh2, the local normalized expansion rateh, the amplitude of
primordial scalar perturbations As, the scalar spectral index
ns, and the optical depth to reionization τ). For these
parameters, apart from τ, we will take the best-fit values
from the Planck 2015 analysis [27] as our fiducial cosmol-
ogy. We will also take a fiducial τ ¼ 0.06 from the latest
measurement from Planck [28]. So far, only lower and upper
limits for

P
mν are known.Whereas the currently best upper

limits on
P

mν come from cosmology [27,29,30], the mass
differences between the neutrino mass eigenstates have been
measured in neutrino oscillation experiments. Here, we will
conservatively use

P
mν ¼ 0.06 eV as a fiducial value for

the total neutrino mass, corresponding approximately to the
current lower bound on the total neutrino mass sum from
summing the mass differences [31]. Finally, our fiducial
dark-energy equation of state will correspond to a cosmo-
logical constant with w0 ¼ −1 and wa ¼ 0.
Our second model will extend the previous one with the

dimensionless parameter fNL that describes the amount of
non-Gaussianity in the primordial density field produced in
many inflation scenarios. Specifically, we will focus on the
case of local non-Gaussianity [32], in which fNL is defined
through

ΦðxÞ ¼ ΦGðxÞ þ fNLðΦ2
GðxÞ − hΦ2

GiÞ; ð4Þ

whereΦ is the primordial gravitational potential andΦG is a
Gaussian random field. Thus, the primordial gravitational
potential can be described as the sum of a linear term and a
nonlinear one. The current constraint on the local value of
fNL from the Planck satellite is 2.5� 5.7 [33]. Although
measurements of the cosmic microwave background anisot-
ropies will be most helpful in determining the value of fNL
[34], its effects on large-scale structure [9,10] are one of the
most promising ways to improve current constraints. More
specifically, primordial non-Gaussianity induces a correction
in the Gaussian bias bGX of each tracer X [9,10],

ΔbXðz; kÞ ¼ 3fNL
½bGXðzÞ − 1�ΩmH2

0δc
ðTðkÞDðzÞk2Þ ; ð5Þ

where Ωm is the fraction of the matter density of the total
energy density in the Universe, δc ≃ 1.686,DðzÞ is the linear
growth factor, H0 is the value of the Hubble constant today,
and TðkÞ is the matter transfer function. For a fiducial value
for fNL, we choose fNL ¼ 0.
In these two models, general relativity is still the under-

lying theory of gravity. For our third model, and in order to
explore the role of relativistic effects in constraining devia-
tions fromGR,wewill consider scalar-tensor theories within
the Horndeski class of models [35,36]. As proposed by
Ref. [37], thesemodels can be described through a number of
general time-dependent functions αM, αK , αB, αT , andM� in
addition to the standard ΛCDM parameters (we refer the
reader to the reference above for further details). These
functions parametrize the time variation of Newton’s con-
stant (M� and αM), the form of the scalar kinetic term αK , the
mixing between the scalar field and the scalar perturbations
αB, and the speed of propagation of tensormodesαT . In order
to curb the freedom allowed by this parametrization, we
constrained the time dependence of the α functions to be of
the form

αXðzÞ ¼ cX
ΩDEðzÞ

ΩDEðz ¼ 0Þ ; ð6Þ

where ΩDEðzÞ is the fractional energy density of the dark-
energy component. Furthermore, as in Ref. [38,39], we will
only consider cM, cB, and cT as free parameters, since cK and
M� cannot be constrained by current [38] or future data.

1 For
fiducial values, we chose cB ¼ 0.05, cM ¼ −0.05, and
cT ¼ −0.05, in order to stay close to ΛCDM as a fiducial
cosmology while avoiding the singularity at cX ≡ 0.

B. Fisher matrix forecasting formalism

We produce our forecasts using a Fisher matrix
approach. We follow the formalism of Ref. [5], which
incorporates the joint constraining power of multiple
experiments and tracers of the matter distribution.2 Each
tracer contains a set of sky maps corresponding to, e.g.,
different redshift bins or the different Stokes polarization
parameters in a cosmic microwave background (CMB)
experiment. In total, the combination of all tracers will
observe a number of Nmaps maps that can be described by
their harmonic coefficients aa;ilm, where a and i label the
tracer and map number, respectively. We group these
harmonic coefficients into a vector alm and define the
power spectrum Cl as the covariance of this vector:

1Fortunately, these parameters are not significantly degenerate
with the rest and therefore can be safely kept fixed without
affecting the forecast constraints [39].

2The software used to produce these forecasts can be found at
https://github.com/damonge/GoFish.

IMPACT OF RELATIVISTIC EFFECTS ON … PHYS. REV. D 97, 023537 (2018)

023537-3

https://github.com/damonge/GoFish
https://github.com/damonge/GoFish


halma�l0m0 i ¼ δll0δmm0Cl: ð7Þ

We assume that the aa;ilm are Gaussian distributed and thus
that their likelihood is given by

−2 lnℒ ¼
X
l

fsky
2lþ 1

2

×

� Xl
m¼−l

a†lmC
−1
l alm

2lþ 1
þ lnðdet½2πCl�Þ

�
: ð8Þ

By expanding this likelihood around the maximum, we find
that the covariance of the maximum-likelihood estimate of
a set of parameters θα can be approximated by the inverse
of the Fisher matrix Fαβ. This matrix can be computed as

Fαβ ¼
Xlmax

l¼2

fsky
2lþ 1

2
Tr½ð∂αClÞC−1

l ð∂βClÞC−1
l �; ð9Þ

where fsky is the fraction of the sky observed.
The power spectra were computed with a modified

version of CLASS [40–42], and the derivatives in Eq. (9)
were estimated via central finite differences:

∂αf ¼ fðθα þ δθαÞ − fðθα − δθαÞ
2δθα

þOðδθ3αÞ: ð10Þ

The final parameter uncertainties are computed from the
inverse of F.
Besides the parameter uncertainties for a given setup, we

also estimate the bias on those parameters arising from
neglecting to account for a given relativistic effect in the
theoretical calculation of the power spectra. To do so, we
follow a similar method based on expanding the likelihood
around the maximum. The approach is similar to that of
Refs. [43–45]. As in Ref. [13], we compute an “observed”
power spectrum Cobs

l , where all relevant effects are
included in the calculation, and a “theoretical” power
spectrum Cth

l , where a given effect (e.g., lensing magni-
fication or the contribution of large-scale GR effects) is not
incorporated. Likewise, we define θinf;α as the “inferred”
values of the cosmological parameters from the incorrect
likelihood and θtrue;α as the true underlying parameters. The
maximum-likelihood value for θα is derived by maximizing
the likelihood in Eq. (8), and therefore we obtain

h∂αχ
2ðθinfÞi ≈ h∂αχ

2ðθtrueÞi
þ h∂α∂βχ

2ðθtrueÞiðθtrue − θinfÞ ¼ 0: ð11Þ

Taking vα ¼ −h∂αχ
2ðθinfÞi and approximating3

h∂α∂βχ
2ðθinfÞi ≈ Fαβ; ð12Þ

we obtain the bias on each cosmological parameter θα,

Δθα ¼ ðF−1 · vÞα; ð13Þ

where the entries of v are given by

vα ¼
Xlmax

l¼2

fsky
2lþ 1

2
Tr½ð∂αClÞC−1

l ΔClC−1
l �; ð14Þ

and ΔCl ¼ Cobs
l − Cth

l .

C. Upcoming surveys

We will perform our forecasts for two complementary
Stage IV (S4) experiments with optimal area overlap: CMB
S4 and the Large Synoptic Survey Telescope (LSST).
Together, they will offer at least four different cosmological
tracers: CMB primary and lensing, cosmic shear, and
galaxy clustering, the latter two encompassing several
redshift bins. The assumptions used to model these experi-
ments are described here. In all cases, we correctly account
for all correlations between different tracers.

1. CMB Stage 4

In the mid 2020s, the current ground-based CMB
facilities such as Advanced ACTPol [46], SPT-3G [47],
BICEP2/Keck [48], or the Simons Array [49] will be
superseded by a CMB S4 experiment [50], combining the
efforts of multiple ground-based instruments. S4 will be
able to derive cosmological constraints from a number of
probes, including the primary CMB anisotropies in temper-
ature and polarization, the CMB lensing convergence,
Sunyaev-Zel’dovich cluster number counts, and other
secondary anisotropies. Of these, our forecasts will include
the first two, given their relative robustness to astrophysical
systematics. Following Ref. [51], we model S4 as an
experiment mapping 40% of the sky with a rms noise
sensitivity of 1 μK-arcmin in temperature and a 3 arcmin
full width at half maximum beam. Given the important
systematic uncertainties on large scales faced by ground-
based experiments (associated, for instance, to atmospheric
noise or ground pickup), we further assume that S4 will
only be able to effectively cover the multipole range 30 <
l < 3000 in temperature and 30 < l < 5000 in polariza-
tion (with the lower small-scale cut in temperature moti-
vated by the effect of astrophysical foregrounds). On
l < 30, we supplement S4 with large-scale data from
Planck [52] with the corresponding noise level.
Although we model the noise contribution to the CMB
power spectrum as white, the atmosphere generates a
nontrivial noise structure on large scales, especially in
temperature. The cosmological parameters considered here
are, however, mostly constrained from the high-l CMB3See Appendix B for details.
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power spectrum, and therefore our forecasts should not be
strongly affected by this.
It is worth noting that the validity of the Fisher matrix

approach can be particularly sensitive to the degeneracies
between different parameters (both in terms of predicted
uncertainties and biases). Of particular interest are the
existing degeneracies between As, τ,ΩM, and

P
mν, one of

the main obstacles to measuring neutrino masses given the
currently large uncertainties on τ from Planck [28,51]. To
verify that our results are not significantly affected by
numerical instabilities associated to these degeneracies, we
have recalculated our forecasts supplementing S4 on l <
30with an optimal future satellite mission with a sensitivity
of 4 μKarcmin in temperature. This setup is able to reach a
cosmic variance–limited error on τ and therefore signifi-
cantly reduce these parameter correlations. Doing this, we
verified that the results shown in Sec. IV are stable with
respect to parameter degeneracies.

2. Large Synoptic Survey Telescope

The LSST [53] will carry out a ten year deep and wide
imaging survey of the southern sky, reaching a limiting
magnitude of r ∼ 27 over ∼20; 000 deg2. The use of
photometric redshifts (photo-z) to obtain approximate
radial coordinates will allow the LSST to obtain cosmo-
logical constraints from a number of probes. These will
include tomographic galaxy clustering and cosmic shear,
galaxy cluster counts, type Ia supernovae, and strong
lensing. In particular, the complementarity between clus-
tering and lensing make the joint analysis of these two
probes the most promising source of cosmological infor-
mation for the LSST, and therefore our forecasts are based
on these. We base our modelling of both tracers on the
treatment of Ref. [5], which we describe briefly below.

a. Galaxy clustering.—In this case, the most relevant
observable is the shape of the angular power spectrum
or correlation function of the galaxy distribution. The
standard way to analyze it will be in terms of tomographic
redshift bins, including all auto- and cross-correlations
between them. We further separate the clustering sample
into two disjoint populations of “red” (early-type, ellip-
ticals, high-bias) and “blue” (late-type, disks, low-bias)
galaxies. The specific models used for the signal and noise
power spectra, redshift distributions, and nuisance param-
eters are described in detail in Ref. [5].
The relation between the galaxy and matter power

spectra is expected to be well approximated by a linear
“clustering bias,” scale-independent, factor bðzÞ on large
scales. Our forecasts therefore marginalize over the value of
this quantity defined, for each galaxy sample, at a discrete
set of nodes in redshift (with the full bðzÞ function
reconstructed by interpolating between these nodes; see
Ref. [5] for details). This approximation is, however, bound
to fail on small scales, where nonlinear, scale-dependent

corrections, as well as stochastic contributions, should be
taken into account. This makes the analysis of galaxy
clustering on small scales very unreliable and often
unusable for cosmology. To avoid these complications,
we define, for each redshift bin, angular scale cuts within
which the corresponding map is used. At the median
redshift of the ith redshift bin zi, we compute a threshold
comoving scale kimax defined as the cutoff scale for which
the variance of the linear matter density contrast on larger
scales is below a given threshold σ2thr, i.e,

σ2thr ¼
1

2π2

Z
kimax

0

dkk2Pðk; ziÞ: ð15Þ

This comoving scale is then translated into an angular
multipole li

max ¼ χðziÞkimax. For our fiducial forecasts, we
used a threshold variance of σthr ¼ 0.75.

b. Cosmic shear.—The effect of weak gravitational lensing
observed through the projected shapes of galaxies is a
direct, unbiased probe of the intervening matter distribu-
tion. As such, cosmic shear observations are a potentially
strong cosmological probe. The constraining power of this
probe is contained in the power spectrum of the traceless
part of the cosmic shear tensor for galaxies lying in a set of
photo-z bins. As described in Ref. [54], we model the
galaxy sample used for cosmic shear after the so-called
gold sample [53], corresponding to galaxies with magni-
tude i < 25.3. We refer the reader to Ref. [54] for further
details on this sample definition as well as the form of the
lensing power spectrum assumed in this analysis. We use a
constant minimum scale lmax ¼ 2000 for cosmic shear in
our forecasts.
Both galaxy clustering and cosmic shear suffer from a

number of sources of systematic uncertainties beyond those
described above, such as photo-z uncertainties, the effect
of intrinsic alignments or baryonic uncertainties in the
matter power spectrum. To simplify the analysis, we have
neglected these systematics.4 The final constraints on
cosmological parameters depend critically on these uncer-
tainties, as well as on the range of angular scales included in
the analysis. The absolute forecast constraints on cosmo-
logical parameters reported in the next section should
therefore not be taken at face value but rather interpreted
in terms of the relative information gain associated to the
magnification and relativistic effects, as well as the asso-
ciated relative biases.

IV. RESULTS

This section explores the relevance of the magnification
bias and the other subdominant relativistic corrections to

4The conservative scale cuts used here have been shown in
Ref. [39] to be robust against the impact of baryonic uncertainties.
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the number-counts power spectrum. Here, “relevance” will
be evaluated in terms of both the information content (i.e.,
constraining power on particular cosmological parameters)
and the associated systematic (i.e., possible bias on the
same parameters) of these effects. The results will be
presented for three different families of parameter spaces.
These results are summarized in Table I, which we describe
below. It is worth noting that, even though we only report
the bias associated to the parameter listed in this table,
neglecting lensing magnification and GR effects also leads
to biases in other standard ΛCDM parameters. We do not
report these here and rather concentrate on the parameter
spaces that future large-scale structure facilities will target
specifically.

A. Impact on dark energy and neutrino mass

As has been previously shown by Ref. [13], neglecting
the lensing magnification effect can significantly bias the
estimation of the total sum of neutrino masses

P
mν. Our

analysis here extends this study to the dark-energy equation
of state parameters, w0 and wa, since they have been shown
to be degenerate with

P
mν [55] (see also Ref. [14], where

w0 and wa were studied independently of
P

mν).
In addition to this, the combined analysis of galaxy

clustering and cosmic shear data is known to be of great use
in breaking degeneracies to constrain these parameters [56].
This is relevant for two reasons: on the one hand, it is worth
exploring to what extent the lensing information contained
within the magnification bias contribution to galaxy clus-
tering can also be used to break these same degeneracies in
lieu of cosmic shear [14]. On the other hand, since cosmic

shear is a direct probe of gravitational lensing, it is
interesting to study whether any biases associated with
neglecting the magnification bias term could be mitigated
by including cosmic shear information.
Finally, although the large-scale relativistic effects are

known to be barely measurable, our treatment will allow us
to explore their impact on constraints and systematic biases.
The results are shown in Fig. 1, in which the orange

ellipses show the 1σ contours using only clustering
information from LSST and the cyan ellipses correspond
to the full constraining power of LSST clustering, LSST
shear, and S4 (including primary CMB and lensing). The
thin solid and dashed ellipses correspond to the constraints
after accounting for the contribution of magnification to
clustering in the same two cases, respectively. Although
using only clustering information the magnification term
does improve constraints slightly (up to 8% in the mar-
ginalized uncertainties), the improvement is absolutely
negligible when including all other cosmological probes.
In the same plots, the filled circles and squares show the

forecast bias on the same parameters, both for clustering
alone and including all probes, respectively. Although the
inclusion of CMB and shear data reduces the size of
the bias, the faster improvement in the constraints makes
the significance of this bias worse. It is worth pointing out
that the direction of the bias changes after including new
probes, due to the change in direction of the different
degeneracies.
We have also evaluated the information content (i.e.,

improvement in constraints) of the GR terms as well as the
parameter bias they induce. The information content is

TABLE I. Summary of results: improvement on the 1σ uncertainties and the parameter bias associated to the contributions of lensing
magnification and GR effects to the number-counts power spectrum. The left set of columns corresponds to the combination of all
tracers (LSST clustering, LSST shear, and S4), while the right columns correspond to LSST clustering only. Note that all results are
shown as a relative improvement or bias, normalized by the fiducial 1σ uncertainties (which are different in these two cases). The three
sets of rows correspond to the three parameter families studied here: wCDM+mν (top), Horndeski models (middle), and primordial non-
Gaussianity (bottom). Note also that the constraints on fNL and Horndeski models are also marginalized over Σmν. The last column
shows, for all tracers jointly, the maximum systematic error on sðzÞ that can be allowed to avoid a bias on each parameter larger than its
1σ uncertainty.

All tracers LSST galaxy clustering

Parameters

Improvement
on σ from

magnification
Bias from

magnification

Improvement
on σ from
GR effects

Bias from
GR

effects

Improvement
on σ from

magnification
Bias from

magnification

Improvement
on σ from
GR effects

Bias from
GR

effects

Max.
error

on sðzÞ
wCDMP

mν < 1% 320% < 1% 3% 2% 255% < 1% 3% 9.8%
wa < 1% −203% < 1% < 1% 8% 125% < 1% −2% 5.6%
w0 < 1% 261% < 1% −3% 2% −269% < 1% 6% 4.2%
Horndeski
cM < 1% 175% < 1% −7% 3% 139% < 1% < 1% 22%
cB < 1% 573% < 1% 1% 76% 104% < 1% −5% 11%
cT < 1% −237% < 1% 8% 7% −66% < 1% < 1% 23%
Non-Gaussianity
fNL −2% 17% −3% −45% −2% 168% −6% 7% � � �
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completely negligible, with an improvement in the 1σ
uncertainties well below 1% in all cases. The bias asso-
ciated with the omission of these terms is equally negli-
gible, with a maximum fractional bias of 6% with respect to
the standard deviation in the case of w0 when only galaxy
clustering data are taken into account. These biases are
further suppressed when including other probes.

B. Impact on scalar-tensor theories

As shown in the previous section, the secondary cluster-
ing anisotropies (lensing and GR effects) do not contain
significant extra information in terms of final constraints on
cosmological pararameters for standard departures from
vanilla ΛCDM. One could, however, argue that the true
constraining power of these relativistic terms would be
realized on actual modifications of GR [57], and therefore it
is relevant to explore this possibility. To that end, we have
repeated the same Fisher analysis on the Horndeski para-
metrization of scalar-tensor gravity theories described in
Sec. III A.
The results are shown in Fig. 2 using the same color

coding as Fig. 1. Interestingly, when including only
clustering information, we observe a large improvement
in the constraint on cB and no real improvement on cT and
cM. An inspection of the correlation coefficients between
different parameters reveals that the inclusion of magnifi-
cation is able to break strong degeneracies between cB and
the nuisance galaxy bias parameters, as could have been

expected given that lensing effects trace the dark matter
perturbations directly, and therefore marginally help con-
straint bðzÞ. In all cases, the bias associated with the lensing
term is of the same order as the 1σ uncertainty when using
only clustering information, smaller than the case explored
in the previous section. These results change, however,
when all probes are included simultaneously; the relative
constraining power of the magnification term becomes
negligible in the presence of cosmic shear and CMB, while
the improvement in the final constraints brought about by
these probes makes the bias associated to the lensing term
significant at the 5σ level for cB.
Regarding the relevance of the other GR effects, we find

the same results obtained in the previous sections; these
terms do not significantly improve the final constraints on
the Horndeski parameters (< 1%) and do not induce a
significant bias (∼8% of σ at worst).

C. Impact on primordial non-Gaussianity

Except for the magnification lensing term, all other
relativistic corrections to the number-counts power spec-
trum dominate on horizon-sized scales. Therefore, although
these effects seem to be irrelevant on the standard cosmo-
logical parameters explored in the previous sections, any
parameter sensitive to the clustering pattern on large scales
may be more affected by them. This is the case for the
effects of primordial non-Gaussianity on the clustering
pattern of biased tracers, as discussed in Sec. III A. We have
therefore carried out the same Fisher analysis done in
Sec. IVA including fNL as a free parameter.
The results are shown in Fig. 3 as one-dimensional

posterior distributions for fNL marginalized over all other
parameters (including w0, wa, and Σmν). Before discussing
the relevance of the lensing and GR effects, it is worth
inspecting the improvement on σðfNLÞ from the inclusion
of different probes. Here, we have considered the cases of

FIG. 1. Forecast 1σ contours for Σmν, w0, and wa from LSST
clustering only (orange ellipses) and LSST clustering þ
LSST shear þ S4 ðcyan ellipsesÞ in the fiducial case without
lensing magnification or GR effects. The thin solid and dashed
ellipses correspond to the 1σ contours after including the lensing
contribution to the clustering power spectrum in the same two
cases, respectively. The black circle and square show the bias
associated with ignoring the presence of lensing magnification
(again, in the same two cases). In all cases, the impact of GR
effects is negligible, and therefore we have not included the
corresponding ellipses in this figure.

FIG. 2. Same as Fig. 1 for the Horndeski parameters cB, cM,
and cT .
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the blue and red clustering samples individually, the
combination of both, and the addition of external data sets
(weak lensing and CMB data). For the blue and red
samples, as well as their combination, we recover the same
result obtained in Ref. [7]: the red sample alone does not
yield competitive constraints, given its small volume
coverage (σðfNLjredÞ≃ 7), while the higher number den-
sity and volume of the blue galaxies allows for a more
interesting bound [σðfNLjblueÞ≃ 2]. The combination of
both samples yields a slightly better constraint due to the
multitracer effect, and the addition of external data sets
improves it further, σðfNLjall tracersÞ≃ 1.5, mostly due to
the improved measurement of the galaxy bias.
When switching on the lensing and GR effects, we

observe no significant improvement or degradation in
σðfNLÞ. On the other hand, we observe that GR effects
cause a bias of ∼50% for the combination of all tracers,5

corresponding to an effective value of fGRNL ≃ −0.7. This is
in agreement with Refs. [11,58–60]. Although this may not
be a concern for the experimental setup considered here,
other experiments targeting fNL explicitly, such as
SPHEREx [61], may need to account for these relativistic
corrections. Magnification lensing, on the other hand,
causes a much smaller effect, given its scale dependence.
In the absence of CMB or cosmic shear measurements, we
observe, however, a large bias on fNL (of order 1σ) induced
by magnification lensing. This is caused by the biased

estimation of the galaxy bias parameters, which affect the
amplitude of the correction due to fNL if magnification is
not taken into account (see also Ref. [62]).

D. Impact of magnification uncertainties

In the previous sections, we have seen that the magni-
fication term is important and can significantly bias
cosmological parameter estimates if unaccounted for, as
has also been previously shown by Refs. [13,14]. Since the
amplitude of the magnification term depends on the slope
of the source number counts with apparent magnitude [see
Eq. (2)], an outstanding question is how well sðzÞ needs to
be measured in order to avoid a significant bias (> 1σ) from
the magnification-related uncertainties alone. To test this,
we have recomputed our forecasts for both the wCDMþ
Σmν and Horndeski models, this time using a theoretical
power spectrum that includes magnification bias with our
fiducial model for sðzÞ and an observed power spectrum in
which we increase sðzÞ by 10%. This then allows us to
estimate the parameter bias associated with a 10% system-
atic uncertainty on sðzÞ using the formalism described in
Sec. III. We find that the parameters of key relevance for
galaxy clustering (

P
mν, w0, wa, cB, cM, and cT) can be

significantly biased by uncertainties of this order (e.g.,
179% of σ for w0).
These results can be used to quantify the level to which

sðzÞmust be known to avoid biasing individual parameters.
Under the assumption that the parameter bias Δθ scales
linearly with the relative systematic error on s, δs, we can
estimate Δθ for any δs in terms of the bias computed in the
10% case Δθ ¼ ρδs, where ρ≡ Δθ=δs for δs ¼ 0.1. Then,
assuming that we can at most afford a bias Δθ ¼ εσðθÞ,
where σðθÞ is the 68% uncertainty on θ and ε ∼Oð1Þ, the
corresponding maximum relative systematic error of s is
given by

δsjmax ¼
ε

ρ
σðθÞ: ð16Þ

For ε ¼ 1, the allowed relative uncertainties for the differ-
ent parameters are given in the last column of Table I. We
find that sðzÞ must be correctly determined to the ∼5%
level in order to avoid significant biases on the dark-energy
parameters and the sum of neutrino masses. For the case of
Horndeski parameters, this requirement is relaxed to a
∼10% systematic uncertainty, but we note that, given the
degeneracy between the cX and other standard cosmologi-
cal parameters such as h, a systematic error on sðzÞ could
propagate into these as well. Consistency studies between
different sets of probes will therefore be vital to detect these
and other types of systematics.

V. DISCUSSION

Accurate measurements of the large-scale structure of
the Universe are the next frontier of modern cosmology.
Maps of the galaxy and diffuse gas distributions, of the

FIG. 3. Forecast distribution for fNL for LSST red galaxies
(red); blue galaxies (blue); the combination of both in a multi-
tracer sense (black); and the combination of LSST galaxy
clustering, LSST cosmic shear, and CMB S4 (orange). The bias
on fNL associated with the GR effects, corresponding to
fGRNL ≃ −0.7, is shown as a vertical dashed line.

5Note that this value is found after marginalizing over all other
cosmological and nuisance parameters. However, the result holds
also under the assumption that all parameters other than fNL are
known.
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CMB, and of the gravitational potential via weak lensing
will be used to place tight constraints on a plethora of
cosmological parameters. In the past few years, we have
learned of the importance of taking into account novel
corrections to the observables of large-scale structure,
specifically through lensing magnification and GR effects.
In this paper, we have investigated how important these
secondary corrections to the power spectrum of galaxy
number counts are in terms of information content and
potential biases to cosmological parameters. We have
explored the relevance of these effects on three different
families of cosmological parameters: extensions to the
standard ΛCDM paradigm in the form of massive neutrinos
and time-varying dark-energy equation of state, Horndeski-
like parametrizations of scalar-tensor theories, and the
large-scale contribution of primordial non-Gaussianity to
the galaxy power spectrum.
It is natural to split the secondary contributions men-

tioned above into two classes: the contribution from lensing
magnification is relevant on small angular scales and is
coherent over large redshift separations. This contribution
is well known and has been used in the past in different
scientific analyses. We group all other contributions under
the umbrella term of “GR effects,” given their relevance
mostly on large scales, of the order of the horizon at the
redshift of the source.
We have established, in agreement with previous studies

[13,14], that, even though lensing magnification can be
detected with high significance, it will not in general
contribute strongly to improve the final constraints on
any cosmological parameter. Although it may be relevant to
constrain deviations from modified gravity (e.g., cB in
Sec. IV B) using only clustering data, its information
content is negligible when combined with cosmic shear
and CMB observations. Nevertheless, using a Fisher
approach, we have shown that it will be necessary to
model and account for this contribution to the galaxy power
spectrum in order to avoid strong biases on dark-energy
parameters and the sum of neutrino masses. The bias
associated with neglecting the effects of magnification is
most relevant when considering clustering alone as a
cosmological probe and gets reduced considerably after
including shear and CMB. The reduced parameter uncer-
tainties in the latter case imply that the associated biases are
still significant, however. Our approach also allows us to
quantify the level to which the number-counts slope sðzÞ
must be known in order to avoid significantly biasing the
most relevant late-time cosmological parameters. We find
that sðzÞ must be known at least the ∼5% level, in rough
agreement with Ref. [14]. An Markov chain Monte Carlo–
based approach will be able to fully test the extent of these
biases in a realistic scenario. On the other hand, and as
expected given the scale dependence of the lensing con-
tribution, this effect should not have a strong impact on the
inferred value of fNL, given expected uncertainties.

The GR effects, on the other hand, are known to have a
subdominant amplitude, and, as expected, we find that they
will have a negligible impact on both the uncertainty and
bias on most cosmological parameters. The only exception
to this is the level of primordial non-Gaussianity, given the
similar scale dependence of these effects and the ∼1=k2
contribution of fNL. We find that the GR effects could
induce a bias on this parameter of the order of fGRNL ∼ 0.7, in
agreement with previous estimate of the amplitude of these
contributions. This is comparable to the uncertainty on fNL
expected from the LSST and will therefore be relevant for
future experiments specifically targeting this science case.
We emphasize, though, that systematic effects that may
cause correlated fluctuations in the homogeneity of the
galaxy sample (e.g., depth variations, dust extinction, and
star contamination) will need to be carefully treated in order
to minimize their impact on the large-scale galaxy power
spectrum, thus preserving this sensitivity of galaxy surveys
to fNL. Since the amplitude of the GR effects depends on
the value of the magnification and evolution biases sðzÞ and
fevoðzÞ, the uncertainties on these quantities may hamper
our ability to reach optimal constraints on fNL or mitigate
the associated bias on this parameter. This underpins the
need to quantify the luminosity and time dependence of the
background number density of sources for future Stage IV
surveys, already noted in the literature (e.g., Ref. [14]) in
the context of the impact of lensing magnification on
standard cosmological parameters.
It is also worth mentioning that, even though these GR

effects are one of the few manifestly relativistic contribu-
tions to the power spectrum, and therefore may potentially
contain valuable information to constrain departures from
general relativity, we find that their constraining power on
modified gravity theories is negligible. This can be easily
understood in terms of the scales involved: even if a given
modified gravity theory could generate a significant differ-
ence in any of these GR terms, these effects are only
relevant on horizon-size scales, and therefore their infor-
mation content is heavily suppressed by cosmic variance.
This can be explicitly verified by rerunning these forecasts,
cutting out the largest scales and comparing the results with
our fiducial predictions. To do so, for each redshift bin i
with a median redshift zi, we define a minimum scale
lminðzi; λÞ as the Fourier scale corresponding to the angular
size of the horizon at that redshift divided by a factor λ:

lminðzi; λÞ ¼ λχðziÞ
HðziÞ
1þ zi

: ð17Þ

Figure 4 shows the increment in the uncertainty of different
cosmological parameters associated with the loss of these
large scales as a function of λ. The results were obtained for
the combination of LSST clustering, shear, and CMB S4.
We observe that, even removing scales that are 1% the size
of the horizon, the degradation in the final constraints is at
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most ∼20% for all cosmological parameters, with the
exception of fNL.
On a different front, one might hope that the inclusion of

the lensing magnification term in the number counts might
mitigate some systematic uncertainties—specifically, it
might help to pin down galaxy bias. And indeed, in the
analysis of Horndeski theories, we have shown that

including that term significantly changes the uncertainty
in cB by breaking some of its degeneracies with the galaxy
bias parameters. While this is the case, it is not accom-
panied by a substantial reduction in the uncertainties in
these parameters; the reduction in the uncertainty is of the
order of a few percent.
One interesting aspect that we have not explored is the

importance of the effects studied here in cross-correlations
between the integrated Sachs-Wolfe (ISW) effect and
number counts [63]. This measurement could be particu-
larly relevant to constrain modified gravity theories [64]. In
principle, the noninclusion of the GR terms could bias
estimates of cosmological parameters, although this should
strongly depend on the scales which are included in the
standard analysis. We leave a systematic analysis of the
ISW effect for future work.
Finally, it is worth stressing the fact that the results

presented here are applicable to the combination of CMB
and photometric galaxy samples assumed. Spectroscopic
surveys, on the other hand, might be able to detect some of
the GR effects studied here on intermediate scales as a local
dipole in the cross-correlation function of different galaxy
samples [65]. Although this is a challenging measurement
[66,67], it would be important to further understand its
constraining power.
With this paper, we have assessed the importance of

relativistic effects on cosmological parameter estimation
with a particular emphasis on extensions of ΛCDM. Our
understanding of the impact of these effects on the analysis
of future data will allow us to reap the rewards of the next
generation of cosmological surveys.
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APPENDIX A: COMPLETE EXPRESSIONS FOR THE CORRECTIONS
TO THE NUMBER COUNTS OF GALAXIES

The linear-order expression for the transfer function of number-count fluctuations in the ith redshift bin, characterized by
a radial selection function WiðzÞ, is given as a sum over ten different terms [40]:

ΔD;i
l ðkÞ≡

Z
dηb ~WiδMðk; ηÞjlðkχðηÞÞ; ΔRSD;i

l ðkÞ≡
Z

dηðaHÞ−1 ~WiðηÞθðk; ηÞj00lðkχðηÞÞ; ðA1Þ

FIG. 4. Relative degradation in the final constraints associated
with removing all scales larger than a factor λ times the comoving
horizon at the source redshift (the associated angular scales at
z ¼ 1 are shown in the upper twin x axis). The results are shown
for simple extensions to ΛCDM (upper panel), scalar-tensor
theories (middle panel), and primordial non-Gaussianity (lower
panel). Except in the case of fNL, the information content of the
largest scales is heavily suppressed due to cosmic variance.
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ΔL;i
l ðkÞ≡lðlþ 1Þ

Z
dη ~WL

i ðηÞðϕþψÞðk;ηÞjlðkχðηÞÞ; ΔV1;i
l ðkÞ≡

Z
dηðfevo − 3ÞaH ~WiðηÞ

θðk;ηÞ
k2

jlðkχðηÞÞ; ðA2Þ

ΔV2;i
l ðkÞ≡

Z
dη

�
1þ H0

aH2
þ 2 − 5s

χaH
þ 5s − fevo

�
~WiðηÞ

θðk; ηÞ
k

j0lðkχðηÞÞ; ðA3Þ

ΔP1;i
l ðkÞ≡

Z
dη

�
2þ H0

aH2
þ 2 − 5s

χaH
þ 5s − fevo

�
~WiðηÞψðk; ηÞjlðkχðηÞÞ; ðA4Þ

ΔP2;i
l ðkÞ≡

Z
dηð5s − 2Þ ~WiðηÞϕðk; ηÞjlðkχðηÞÞ; ΔP3;i

l ðkÞ≡
Z

dηðaHÞ−1 ~WiðηÞϕ0ðk; ηÞjlðkχðηÞÞ; ðA5Þ

ΔP4;i
l ðkÞ≡

Z
dη ~WP4

i ðηÞðϕþ ψÞðk; ηÞjlðkχðηÞÞ; ΔISW;i
l ðkÞ≡

Z
dη ~WISW

i ðηÞðϕþ ψÞ0ðk; ηÞjlðkχðηÞÞ: ðA6Þ

Here, jlðxÞ is the spherical Bessel function of order l, and we have defined the window functions

~WiðηðzÞÞ≡WiðzÞ
�
dη
dz

�
−1
; ~WL

i ðηÞ≡
Z

η

0

dη0 ~Wiðη0Þ
2 − 5sðη0Þ

2

χðηÞ − χðη0Þ
χðηÞχðη0Þ ;

~WP4
i ðηÞ≡

Z
η

0

dη0 ~Wiðη0Þ
2 − 5s

χ
; ~WISW

i ðηÞ≡
Z

η

0

dη0 ~Wiðη0Þ
�
1þ H0

aH2
þ 2 − 5s

χaH
þ 5s − fevo

�
η0
:

The quantities δM, θ, ϕ, and ψ above are transfer functions for density perturbations in the commoving synchronous gauge,
for the velocity divergence in the conformal Newtonian gauge, and for two metric potentials in the same gauge.6

Of the ten terms in Eq. (A1) above, ΔD and ΔRSD are the dominant density and redshift-space distortions terms,
respectively;ΔL is the contribution of lensing magnification; and we have grouped the remaining seven terms under a single
“GR effects” contribution ΔGR in Eq. (1).

APPENDIX B: DETAILS OF THE BIAS CALCULATION

In Sec. III B, we approximate h∂α∂βχ
2ðθobsÞi as Fαβ around the inferred (and possibly biased) parameters (here,

χ2 ≡ −2 logℒ). We show here why this approximation is valid at the linear level. Differentiating Eq. (8), we find

∂αχ
2 ¼

X
l

fsky
2lþ 1

2

�
TrðC−1

l ∂αClÞ −
X
m

a†lmC
−1
l ∂αClC−1

l alm
2lþ 1

�
ðB1Þ

∂α∂βχ
2 ¼

X
l

fsky
2lþ 1

2

�
TrðC−1

l ∂α∂βClÞ − Trð∂αClC−1
l ∂βClC−1

l Þ −
X
m

a†lmC
−1
l ∂α∂βClC−1

l alm
2lþ 1

þ
X
m

a†lmC
−1
l ∂αClC−1

l ∂βClC−1
l alm

2lþ 1
þ
X
m

a†lmC
−1
l ∂βClC−1

l ∂αClC−1
l alm

2lþ 1

�
: ðB2Þ

Since ha†ai ¼ Cobs
l , we find the expectation value

h∂αχ
2i ¼ −

X
l

fsky
2lþ 1

2
TrðC−1

l ∂αClC−1
l ΔClÞ; ðB3Þ

where we have defined Cobs
l ≡ Cl þ ΔCl. This yields the expression for the vector v given in Eq. (14). For the second

derivatives, we find

6The conformal Newtonian gauge is defined by the line element ds2 ¼ −a2ðηÞ½ð1þ 2ψÞdη2 − ð1 − 2ϕÞδijdxidxj�.
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h∂α∂βχ
2ðθobsÞi ¼

X
l

fsky
2lþ 1

2
½TrðC−1

l ∂αClC−1
l ∂βClÞ þ TrðKαβ;lΔClÞ�; ðB4Þ

where Kαβ;l is given by

Kαβ;l ≡ C−1
l ∂αClC−1

l ∂βClC−1
l þ C−1

l ∂βClC−1
l ∂αClC−1

l − C−1
l ∂α∂βClC−1

l : ðB5Þ

Therefore, if ΔCl ≈ ∂αCl · ðθobsα − θthα Þ, the second term in Eq. (B4) is of second order, and we can approximate
h∂α∂βχ

2ðθobsÞi as Fαβ.
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