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I. INTRODUCTION

The cosmological singularity problem has attracted the
attention of researchers working in general relativity and its
modifications for a long time. Already in the seminal paper
by Robertson [1], where the early development of the
Friedmann-type cosmologies was reviewed and general-
ized, the question of the initial singularity was discussed.
The connection between the presence and sign of the spatial
curvature, the value of the cosmological constant and the
character of the dependence of the pressure on the scale
factor of the universe and the appearance of a singularity
were studied there in detail. It is interesting that Robertson
also considered the scenario of the cyclic evolution of the
universe according to some trigonometrical law, when it
exits of the singularity expands until some maximal value
of its radius then contracts and the process repeats itself

indefinitely. It appears that the fact the universe passes
through this singularity did not disturb him too much.
Later, the question of the generality of the initial

cosmological singularity and its appearance not only in
the homogeneous and isotropic Friedmann models was
intensively discussed [2,3]. The general theorems about the
existence of such a singularity were proven [3] and the
oscillatory approach to the cosmological singularity [4],
known also as Mixmaster Universe [5], was discovered as a
result of these discussions.
Another type of cosmological singularities, which can

arise in the future for some finite values of the scale factor
of the universe and can be rather soft was described in paper
[6]. The interest in such singularities essentially increased
during last years (see e.g. [7–12]). At this point the
condition for the crossing of such singularities become
important. Such conditions were analyzed in detail in paper
[13], where the opportunity of continuation of the geo-
desics through them was studied. Some curious effects
arising at the crossing of the soft future singularities were
described, for example, in paper [14].
In contrast with the crossing of the soft singularities the

idea of the possible crossing of the big bang–big crunch
singularity appears rather counterintuitive. For many years
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the desire of looking for models free of such singularities
dominated. However, in some cosmological models the
idea of the possible transition from big crunch to big bang
was studied. First of all, we would like to mention the string
or pre-big bang scenario [15–17]. As is well known a
definite prediction of string theory is the existence of a
scalar field referred to as the dilaton, which couples directly
to matter [18]. Its vacuum expectation value determines the
strengths of both the gauge and gravitational couplings. In
the pre-big bang cosmological model, the accelerated
expansion of the universe is driven by the kinetic energy
of the dilaton field.The presence of this dilaton field is
essential also from the point of view of discussion of the
cosmological singularity problem. Indeed, it was noticed in
the framework of the string pre-big bang cosmology that
the transition from the string frame, where the dilaton is
nontrivially coupled to gravity to the Einstein frame can
change drastically the observable evolution of the universe
and what looks like an expansion in one frame can look like
a contraction in another frame. We would like also to note
that in the framework of the string pre-big bang cosmology
not only isotropic Friedmann models, but also anisotropic
Bianchi-I models [19,20] were studied. In these works the
universe was filled not only by the dilaton, but also by an
antisymmetric tensor field, which influenced its dynamics.
Another approach to the problem of the singularity also

inspired by the superstring theories was developed in
papers [21–23]. In paper [21] a cosmological scenario
was proposed, in which the hot big bang universe was
produced by the collision of a brane in the bulk space with a
bounding orbifold plane, beginning from an otherwise cold,
vacuous, static universe. A particularly interesting aspect of
this cosmological scenario is that some characteristics of
the universe suggest slow expansion, other superluminal
expansion, other contraction. This is possible due to the fact
that for different equations the role of the scale factor is
played by different combinations of moduli fields. Some
combinations increase with time, mimicking an expanding
universe, and others decrease, mimicking a contracting
universe. In paper [22] the authors treat the singularity as
transition between a contracting big crunch phase and an
expanding big bang phase. A crucial role in their analysis is
played by a massless scalar field—a modulus. The theory is
reformulated in such a way as to define variables, which are
finite as the scale factor shrinks to zero. That suggests a
natural way to match the solutions before and after the
singularity. A general scenario of cyclic universe passing
through the singularity is presented in paper [23]. The
general features of the approach [21–23] are the role of the
scalar field and the construction of variables which are
finite at the singularity crossing. These features are essen-
tial also for the approach which we develop in this paper
and in the preceding papers [24,25] However before
presentation of our treatment we would like to mention
some other works. During the last decade some approaches

to the problem of the description of such a crossing were
elaborated [26–31]. Behind these approaches there are
basically two general ideas. Firstly, to cross the singularity
one must give a prescription matching nonsingular, finite
quantities before and after such a crossing. Secondly, such a
description can be achieved by using a convenient choice of
field parametrization.
In our preceding paper [24] we proposed a version of

the description of the crossing of singularities in universes
filled with scalar fields. This version was based on the
transitions between the Jordan and the Einstein frames. In
[24] we only considered an isotropic cosmological sin-
gularity, present in a flat Friedmann universe. We also
essentially used the relations between exact solutions of
the cosmological (Friedmann and Klein-Gordon) equa-
tions in two different frames, which were studied in detail
in our papers [32,33]. The main idea of the paper [24] was
the following: when in the Einstein frame the universe
arrives to the big bang–big crunch singularity, from the
point of view of the evolution of its counterpart in
the Jordan frame its geometry is regular, but the effective
Planck mass has a zero value. The solution to the
equations of motion in the Jordan frame is smooth at
this point and on using the relations between the solutions
of the cosmological equations in the two frames one can
describe the crossing of the cosmological singularity in a
uniquely determined way. The contraction is replaced by
the expansion (or vice versa) and the universe enters into
the antigravity regime. Analogously, when the geometry is
singular in the Jordan frame it is regular in the Einstein
frame, and on using this regularity we can describe in a
well determined way the crossing of the singularity in the
Jordan frame.
Wewould like also tomention the series of papers [34–37]

where the relation between the exact static solutions in the
Jordan frame and in the Einstein framewas studied in detail.
In particular, it was noticed that the singularity in one frame
can correspond to the regular surface in another frame.
It is important to note that the possibility of a change

of sign of the effective gravitational constant and of the
construction of a singularity-free isotropic cosmological
models including a scalar field conformally coupled to the
scalar curvature was studied in papers [38–43]. In paper
[44] this possibility was analyzed in detail.
Namely, in paper [44] it was pointed out that in a

homogeneous and isotropic universe one can indeed cross
the point where the effective gravitational constant changes
sign. However, the presence of anisotropies or inhomoge-
neities changes the situation drastically, because when the
value of the effective Planck mass tends to zero, and hence,
the effective gravitational constant tends to infinity, these
anisotropies and inhomogeneities grow indefinitely.
In our paper [25] we have investigated this phenomenon,

suggesting a simple field reparametrization, allowing one to
describe the big bang–big crunch singularity crossing in the
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Bianchi-I model filled with a minimally coupled scalar
field. In paper [25] we also wrote down asymptotic
solutions for the Bianchi-I universe filled with a confor-
mally coupled scalar field, describing its behavior just after
the big bang and in the far future. However, an exact
solution for this model on using a particular time para-
metrization was obtained many years ago [45]. In the
present paper we study the properties of this old solution
[45], which is very interesting from the point of view of
the possibility of the description of the singularity crossing.
We also compare the cosmological evolutions in the
Bianchi-I universe, filled with a minimally coupled or with
a conformally coupled scalar fields and see that such
evolutions are qualitatively different. Further, we obtain
an exact solution for the Bianchi—I universe in the induced
gravity theory.
The structure of the paper is as follows: in the second

section we present some general formulas for gravity with a
conformally coupled scalar field. Section III is devoted to
the exact solution for the Bianchi-I model filled with a
conformally coupled scalar field. In the fourth section we
describe the complete evolution and the crossing of the
singularities in this model and we also compare this
evolution with that in the Bianchi-I universe, filled with
a minimally coupled scalar field. In the fifth section we
obtain the general exact solution for a Bianchi—I universe
in induced gravity theory and the last section contains a
brief concluding remark.

II. SOME GENERAL FORMULAS FOR GRAVITY
WITH A CONFORMALLY COUPLED

SCALAR FIELD

Let us consider an action

S ¼
Z ffiffiffiffiffiffi

−g
p �

UðσÞR −
1

2
gμνσ;μσ;ν þ VðσÞ

�
; ð1Þ

where σ is a scalar field and the curvature scalar is
R ¼ gμνRμν. The curvature tensor is defined as

Rα
μβν ¼

∂Γα
μν

∂xβ −
∂Γα

μβ

∂xν þ Γα
γβΓ

γ
μν − Γα

γνΓ
γ
μβ; ð2Þ

while the Ricci tensor is

Rμν ¼ Rα
μαν ¼

∂Γα
μν

∂xα −
∂Γα

μα

∂xν þ Γα
γαΓ

γ
μν − Γα

γνΓ
γ
μα: ð3Þ

Using the standard formula expressing the Christoffel
symbols Γα

μν via the metric tensor, we get the variation of
the Ricci tensor with respect to the metric:

δRαβ ¼
1

2
gγδð∇γ∇βðδgδαÞ þ∇γ∇αðδgδβÞ

−∇γ∇δðδgαβÞ −∇β∇αðδgγδÞÞ: ð4Þ

Using Eq. (4), one can show that after integration by
parts, the term

UðσÞgμνδRμν

in the variation of the action (1) will be transformed into

ðgμν□U −∇μ∇νUÞδgμν:

By this way, varying the action (1) with respect to the
contravariant metric components, we obtained the Einstein
equation

U

�
Rμν −

1

2
gμνR

�
þ gμν□U −∇μ∇νU

¼ 1

2
σ;μσ;ν −

1

4
gμνσ;ασ;α þ

1

2
gμνV: ð5Þ

The variation with respect to σ gives the Klein-Gordon
equation

□σ þ V 0 þ U0R ¼ 0; ð6Þ

where “prime” means differentiation with respect to σ.
Substituting the expressions

∇μU ¼ U0σ;μ;

∇ν∇μU ¼ U00σ;μσ;ν þ U0∇ν∇μσ;

□U ¼ U00σ;ασ;α þ U0
□σ:

into Eq. (5), we obtain

U

�
Rμν −

1

2
gμνR

�
þ gμνU00σ;ασ;α þ gμνU0

□σ − U00σ;μσ;ν −U0∇ν∇μσ

¼ 1

2
σ;μσ;ν −

1

4
gμνσ;ασ;α þ

1

2
gμνV: ð7Þ

Contracting Eq. (7) with the contravariant metric, we get

−URþ 3U00σ;μσ;μ þ 3U0
□σ −

1

2
σ;μσ

;μ þ 2V: ð8Þ

In the case of the conformal coupling

U ¼ U0 −
σ2

12
: ð9Þ

Equation (8) is reduced to
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�
U0 −

σ2

12

�
Rþ 1

2
σ□σ þ 2V ¼ 0; ð10Þ

while the Klein-Gordon equation (6) becomes

□σ ¼ −V 0 þ σ

6
R: ð11Þ

Substituting the expression for □σ from Eq. (11) into
Eq. (10), we obtain

U0Rþ 2V −
1

2
σV 0 ¼ 0: ð12Þ

Thus, if V ¼ 0, then R ¼ 0, and the Klein-Gordon
equation is simply

□σ ¼ 0: ð13Þ

III. BIANCHI-I COSMOLOGICAL MODEL

We consider the Bianchi-I cosmological model with a
metric

ds2 ¼ N2ðτÞdτ2 − a2ðτÞðe2β1ðτÞðdx1Þ2
þ e2β2ðτÞðdx2Þ2 þ e2β3ðτÞðdx3Þ2Þ; ð14Þ

where N is the lapse function, a is the scale factor, and the
anisotropy parameters βi satisfy the condition

β1 þ β2 þ β3 ¼ 0: ð15Þ

Let us suppose that the universe is filled with a spatially
homogeneous scalar field, conformally coupled to the
scalar curvature. Then the Klein-Gordon equation (13) is

σ̈ þ
�
3
_a
a
−

_N
N

�
_σ ¼ 0; ð16Þ

where a “dot” means the derivative with respect to the time
parameter τ.
Let us introduce the shear

θ≡ _β21 þ _β22 þ _β23: ð17Þ

It is easy [46] to get equation to θ

_θ

θ
¼ 2

�
_N
N
− 3

_a
a
−

_U
U

�
; ð18Þ

that can be integrated:

θ ¼ N2

U2a6
θ0; ð19Þ

where θ0 is a constant.

One can see that it is convenient to choose the lapse
function N as follows [45]:

N ¼ a3: ð20Þ
In terms of the time parameter, determined by this choice of
the lapse function, the Klein-Gordon equation (16) acquires
a particularly simple form:

σ̈ ¼ 0: ð21Þ
Its solution is a linear function which we shall choose in the
following form:

σ ¼
ffiffiffiffiffiffiffiffiffiffiffi
12U0

p �
2τ

T
− 1

�
: ð22Þ

Such a form is convenient because at the moment τ ¼ 0
and τ ¼ T, the scalar σ takes such values for which the
function U, given by (9), is equal to zero.
Using the formulas (9) and (20) we can write down the

00 component of the Einstein equation (7) as�
U0 −

σ2

12

�
ð6h2 − θÞ − h _σσ ¼ 1

2
_σ2; ð23Þ

where h≡ _a=a. The spatial ii components of the Einstein
equation have the following form

�
U0 −

σ2

12

��
ä
a
−

_a2

a2
þ β̈i

�
−
σ _σ

6

�
_a
a
þ _βi

�
−

1

12
_σ2 ¼ 0:

After some algebra we have

�
U0 −

σ2

12

�
β̈1 −

σ _σ

6
_β1 ¼ 0: ð24Þ

The solution of this equation is

_β1 ¼
β10

ðU0 − σ2

12
Þ ; ð25Þ

where β10 is a constant. Analogous solutions can be found
for the anisotropy factors β2 and β3. Finally,

θ ¼ θ0
ðU0 − σ2

12
Þ2 ; θ0 ¼ β210 þ β220 þ β230: ð26Þ

Substituting the expressions (26) and (22) into Eq. (23),
we obtain

h2 þ
�

T − 2τ

τðT − τÞ
�
h −

1

τðT − τÞ −
θ0T4

96U2
0τ

2ðT − τÞ2 ¼ 0;

ð27Þ

Solving quadratic equation (27) with respect to h and
choosing the positive sign in front of square root, which
corresponds to an expansion, we obtain
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h ¼ τ þ τ0
τðT − τÞ ; ð28Þ

with

τ0 ¼
T
2

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ θ0T2

24U2
0

s
− 1

!
: ð29Þ

Correspondingly, the scale factor behaves as

aðτÞ ¼ a0jτ
τ0
T jjT − τj−τ0

T−1; ð30Þ

where a0 is a constant.
We would now like to find the dependence of the cosmic

time parameter t on the time parameter τ. This dependence
is given by the integral

t ¼
Z

NðτÞdτ ¼
Z

a3ðτÞdτ: ð31Þ

We shall find this dependence by considering separately
three regions of the values of the parameter τ:

0 ≤ τ ≤ T; ð32Þ

T ≤ τ < ∞; ð33Þ

−∞ < τ ≤ 0: ð34Þ

In the first region, given by (32) the time parameter is

t ¼ a30

Z
dττ3

τ0
T ðT − τÞ−3τ0

T −3

¼ a30
T2

�
1

k1

�
τ

T − τ

�
k1 þ 1

k2

�
τ

T − τ

�
k2
�
; ð35Þ

where

k1 ¼
3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ θ0T2

24U2
0

s
−
1

2
¼ 3

τ0
T
þ 1;

k2 ¼
3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ θ0T2

24U2
0

s
þ 1

2
¼ 3

τ0
T
þ 2:

The integration constant in (35) is chosen in such a way that
when τ → 0, the cosmic time t also tends to zero and this
moment corresponds to the big bang singularity as one
can see from the formulas (28) and (30). When τ → T, the
cosmic time tends to þ∞ and the universe undergoes an
infinite expansion. We can now study the dependence of
the scale factor a on cosmic time t in these two asymp-
totic cases.

First, when τ → 0:

t ∼ τk1 ; ⇒ τ ∼ t
1
k1 ;

a ∼ τ
τ0
T ∼ t

τ0
k1T ¼ t

ffiffiffiffiffiffiffiffiffi
1þθ0T

2

24U2
0

q
−1

3

ffiffiffiffiffiffiffiffiffi
1þθ0T

2

24U2
0

q
−1

¼ t
τ0

3τ0þT: ð36Þ

One can easily see that this formula corresponds to the
formulas (60) and (61), obtained in [25] on analyzing the
Einstein equations in the vicinity of the singularity in terms
of the cosmic time t.
When τ → T and t → ∞, we have

t ∼
1

ðT − τÞk2 ⇒ T − τ ∼ t−
1
k2 ;

a ∼ t

ffiffiffiffiffiffiffiffiffi
1þθ0T

2

24U2
0

q
þ1

3

ffiffiffiffiffiffiffiffiffi
1þθ0T

2

24U2
0

q
þ1

¼ t
τ0þT

3τ0þ2T: ð37Þ

This asymptotic behavior also coincides with that described
in [25]. One can easily also check that the behavior of
the anisotropy factor is Kasner-like and coincides with that
found in [25]. Indeed,

_βi ¼
βi0

U0 − σ2

12

¼ βi0T2

4U0τðT − τÞ : ð38Þ

In both the asymptotic regimes, τ → 0 and τ → T the
integration of Eq. (38) gives βi ∼ ln τ or βi ∼ lnðT − τÞ,
which, in turn implies the power-law dependence of the
factors eβi on the cosmic time t.
As a matter of fact, it would be more correct to speak

about the generalized Kasner-like behavior, and, corre-
spondingly, about the generalized Kasner indices. We can
also write down the corresponding relations for these
indices in terms of the quantities, introduced in this paper.
Thus, introducing these generalized Kasner indices pi
through the relation

aeβi ∼ tpi ; ð39Þ

we see that for t → 0 we have the following pair of
relations:

p1 þ p2 þ p3 ¼
3τ0

3τ0 þ T
; ð40Þ

p2
1 þ p2

2 þ p2
3 ¼

3τ0ð3τ0 þ 2TÞ
ð3τ0 þ TÞ2 : ð41Þ

Instead for t → ∞ the generalized Kasner indices satisfy
the relations
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p1 þ p2 þ p3 ¼
3ðτ0 þ TÞ
3τ0 þ 2T

; ð42Þ

p2
1 þ p2

2 þ p2
3 ¼

3ðτ0 þ TÞð3τ0 þ TÞ
ð3τ0 þ 2TÞ2 : ð43Þ

In both cases,

X3
i¼1

p2
i ¼ 2

X3
i¼1

pi −
�X3

i¼1

pi

�2

:

Let us note that while the standard Kasner indices [47] form
a one-parameter family, which can be parametrized, for
example, by the Lifshitz-Khalatnikov parameter [2], in the
formulas (40)–(41) and in the formulas (42)–(43) one
encounters two-parameter families. One could remember
that a two-parameter family of the Kasner indices was
already studied for the case of a Bianchi-I universe filled
with a minimally coupled massless scalar field [48] (see
also Sec. III of the paper [25]). However, in that case the
sum of the three Kasner indices was still equal to 1.
Moreover, the relations for the Kasner indices were valid
during all the cosmological evolution.
Wewish now to consider the parametric time interval (33).

Here

t ¼ a30

Z
dττ3

τ0
T ðτ − TÞ−3τ0

T −3

¼ a30
T2

�
1

k1

�
τ

τ − T

�
k1
−

1

k2

�
τ

τ − T

�
k2
�
: ð44Þ

When τ is close to T the cosmic time (44) tends to −∞ and
the cosmic scale factor a grows indefinitely. Then for
τ → þ∞, the cosmic time tends to a finite constant value
t0, where

t0 ¼
32a30U

2
0

T2ð3θ0T2 þ 64U2
0Þ
: ð45Þ

Thus, the universe undergoes an infinite contraction which
begins at t ¼ −∞ and ends at t ¼ t0. Let us see how the
scale factor behaves asymptotically. At τ → Tþ we have

t ∼ −
1

ðτ − TÞk2 ⇒ ðτ − TÞ ∼
�
−
1

t

� 1
k2 ;

a ∼ ð−tÞ

ffiffiffiffiffiffiffiffiffi
1þθ0T

2

24U2
0

q
þ1

3

ffiffiffiffiffiffiffiffiffi
1þθ0T

2

24U2
0

q
þ1

¼ ð−tÞ
τ0þT
3τ0þ2T: ð46Þ

On the other hand, when τ → þ∞

ðt − t0Þ ∼ −
1

τ2
⇒ τ ∼

1ffiffiffiffiffiffiffiffiffiffiffi
t0 − t

p ;

a ∼
1

τ
∼

ffiffiffiffiffiffiffiffiffiffiffi
t0 − t

p
: ð47Þ

As far as the anisotropy factors are concerned, when τ is
close to T and the universe is infinitely large, we again have a
Kasner-like behavior. The situation changes when we are
close to the big crunch singularity, i.e. when τ → þ∞.
Indeed, in this case the integration of the formula (38) gives
βi ∼ 1=τ → 0 and eβi does not reveal a power-law behavior.
Instead, one has some kind of the isotropization, but in
contrast to the isotropization in the Heckmann-Schucking
solution for the Bianchi-I universe filled with dust [49,50],
here the isotropization occurs during the contraction of
universe.
Finally, in the third region (34)

t ¼ a20

Z
dτð−τÞ3τ0T ðT − τÞ−3τ0

T −3

¼ a30
T2

�
1

k2

�
−τ

T − τ

�
k2
−

1

k1

�
−τ

T − τ

�
k1
�
: ð48Þ

Now, when τ → 0−, also the cosmic time t → 0− and

t ∼ −ð−τÞk1 ⇒ τ ∼ −ð−tÞ 1
k1 ;

a ∼ ð−tÞ

ffiffiffiffiffiffiffiffiffi
1þθ0T

2

24U2
0

q
−1

3

ffiffiffiffiffiffiffiffiffi
1þθ0T

2

24U2
0

q
−1

¼ ð−tÞ
τ0

3τ0þT: ð49Þ

When τ → −∞, the cosmic time t tends to a finite value
t1 ¼ −t0. In the vicinity of this point

a ∼
ffiffiffiffiffiffiffiffiffiffiffi
tþ t0

p
: ð50Þ

Let us note also that as follows from Eq. (28), at the
moment when the parametric time is equal to τ ¼ −τ0, the
Hubble parameter is equal to zero and the time derivative
of the scale factor is equal to zero. This moment correspond
to the point of the maximal expansion of the universe. The
corresponding cosmic time value is

t1 ¼
a30
T2

�
1

k2

�
τ0

T þ τ0

�
k2
−

1

k1

�
τ0

T þ τ0

�
k1
�
: ð51Þ

Let us note, that here at the big bang τ → −∞, the
anisotropy is absent, while the universe behaves in a
generalized Kasner-like way when the universe arrives at
the big crunch singularity at τ → 0−.
Finally, let us note that from the traditional point of view

only the interval with the parametric time τ confined in the
interval 0 ≤ τ ≤ T, where gravity has a positive sign, has a
physical sense [45]. Nevertheless, in the next section we
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shall try to describe the evolution of the universe, including
all the three intervals of the parametric time, by making
some kind of matching, then implementing some prescrip-
tions for the singularity crossings.

IV. COMPLETE EVOLUTION, SINGULARITY
CROSSINGS AND THE RELATION BETWEEN

THE JORDAN FRAME AND THE
EINSTEIN FRAME

We are now in a position to describe the complete
evolution of the Bianchi-I universe filled with the mass-
less scalar field conformally coupled to gravity, including
the singularity crossings. The latter will be treated in
the spirit of the approach developed in our preceding
publications [24,25].
As follows from the preceding section, the first stage

of the evolution corresponds to the second region of the
parametric time running (44). It begins in the infinitely
remote past t → −∞ when the volume of the universe is
also infinite and it begins its contraction. The universe is
anisotropic and its behavior is characterized by some set of
Kasner indices. The process of contraction occupies an
infinite cosmic time and at the moment t ¼ t0 it encounters
the big crunch singularity. As discussed above [see
Eq. (47)] the scale factor in this limit behaves as a ∼ffiffiffiffiffiffiffiffiffiffiffi
t0 − t

p
and the anisotropy factors disappear. Thus, we

encounter in the vicinity of this big crunch singularity the
situation, which was already studied in [24], where the
evolution of the flat Friedmann universe filled with a
massless scalar field was considered. In paper [24] the
transformations between the Jordan and the Einstein frames
were studied in detail. As is well-known the action,
including the scalar field, non-minimally coupled to the
gravity can be transformed into the action with a minimally
coupled canonically normalized scalar field by means of
the conformal transformation of the metric, combined with
a certain transformation of the scalar field. Such a combi-
nation of transformations is usually called a transition
between the Jordan frame and the Einstein frame. The form
of these transformations is particularly convenient, when
we consider the case of the conformal coupling, because in
this case these transformations are invertible. Indeed,
for values of the scalar field σ such that −

ffiffiffiffiffiffiffiffiffiffiffi
12U0

p
≤ σ ≤ffiffiffiffiffiffiffiffiffiffiffi

12U0

p
, or, in terms of the preceding section, if 0 ≤

τ ≤ T, then the transformations have the following form:

~gμν ¼ gμν
U0 − σ2

12

U1

; ð52Þ

ϕ ¼
ffiffiffiffiffiffiffiffiffi
3U1

p
ln
� ffiffiffiffiffiffiffiffiffiffiffi

12U0

p þ σffiffiffiffiffiffiffiffiffiffiffi
12U0

p
− σ

�
; ð53Þ

σ ¼
ffiffiffiffiffiffiffiffiffiffiffi
12U0

p
tanh

�
ϕffiffiffiffiffiffiffiffiffiffiffi
12U1

p
�
: ð54Þ

Here, ~gμν is a new metric, ϕ is a new scalar field andU1 is a
positive constant. In terms of these new variables the
coupling between the scalar field and gravity becomes
minimal.
However, if we consider the values of the scalar field σ

such that jσj > ffiffiffiffiffiffiffiffiffiffiffi
12U0

p
, then the situation changes. The

constant U1 changes sign (this effect could be called
“antigravity”) and the new scalar field ϕ should be
substituted by the phantom scalar field χ, whose kinetic
term has a negative sign. The relation between the fields σ
and χ is given by the formula

σ ¼
ffiffiffiffiffiffiffiffiffiffiffi
12U0

p
coth

�
χffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12jU1j
p �

: ð55Þ

In paper [24] it was shown that for the Friedmann
universe, when one encounters the cosmological singularity
in the Einstein frame, the evolution is regular in the Jordan
frame and vice versa. This fact was used to describe the big
bang–big crunch singularity crossing. We can now come
back to our Bianchi-I universe. As was explained above,
when the infinite contraction ends in the encounter with
the big crunch singularity, the universe behaves like an
isotropic one and its contraction is described by the formula
a ∼

ffiffiffiffiffiffiffiffiffiffiffi
t0 − t

p
. At the same time, when our parametric time

changes in the interval (44), the corresponding evolution
begins with the big bang singularity and the expansion is
described by the formula a ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t − ð−t0Þ

p
. At this point, it is

convenient to change the integration constant in the
formula (44) adding to the right-hand side of this equation
the constant −2t0. The big crunch and big bang are now
labeled by the same cosmic time moment t ¼ −t0.
Moreover, on applying the method, described in paper
[24], one can see that these singularities disappear if we
make the transition to the Einstein frame. Thus, on using
the correspondence formulas between the frames, one can
describe the big crunch–big bang singularity crossing in the
model with the conformally coupled scalar field. Namely,
the parametric time moment τ ¼ þ∞ is matched with the
parametric time moment τ ¼ −∞ and both correspond to
the cosmic time moment t ¼ −t0. What happens to the
scalar field σ in the moment of the singularity crossing?
If we apply the formula (22), we shall see that its value
changes from σ ¼ þ∞ to σ ¼ −∞. This jump appears to
be quite natural from the point of view of the regular
evolution in the Einstein frame. Indeed, in the Einstein
frame at the moment of the singularity crossing the
phantom field χ is equal to zero. On passing through zero,
the phantom field changes sign and it follows from the
formula (55) that the scalar field σ undergoes and infinite
jump.
After the crossing of this isotropic big crunch–big bang

singularity, the evolution of the universe corresponds to
the changing of the parametric time τ from τ ¼ −∞ to
τ ¼ 0. During this evolution the cosmic time initial value,
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corresponding to the big bang is equal to t ¼ −t0, the
universe expands until the moment τ ¼ −τ0, t ¼ t1, cor-
responding to the maximal scale factor, then it begins a
contraction, culminating in the second encounter with the
big crunch singularity at τ ¼ 0, t ¼ 0. However, this big
crunch singularity is different from that encountered at
t ¼ −t0. As was already mentioned above the universe at
τ → 0 has a Kasner-like behavior and is essentially aniso-
tropic. This singularity occurs simultaneously in both the
Jordan and the Einstein frames [25] and the regularity of the
evolution in one frame cannot be used for the description of
the singularity crossing in another frame. In paper [25] a
very simple method for the description of the singularity
crossing for some cosmological models was suggested. It
was based on the introduction of some new variables,
defined at certain regions of the phase space with the
subsequent analytical extension of the applicability of the
laws of the evolution of these variables outside of their
initial domains. This method gives the same prescription
for the singularity crossing of the Friedmann universe as
other methods and is easily applicable also for the Bianchi-I
universe, filled with minimally coupled scalar field. Here,
in spite of the fact that in both the frames we have a
singularity, on knowing what happens in the Einstein
frame, we can understand how the universe crosses the
big crunch–big bang singularity in the Jordan frame. One
can see that the behavior of the scale factor a at t → 0þ,
given by the formula (36), is quite similar to the behavior of
the scale factor of the universe at t → 0−, given by the
formula (49), and these formulas can be unified given the
description of the big crunch–big bang singularity as

a ∼ jtj

ffiffiffiffiffiffiffiffiffi
1þθ0T

2

24U2
0

q
−1

3

ffiffiffiffiffiffiffiffiffi
1þθ0T

2

24U2
0

q
−1

¼ jtj
τ0

3τ0þT: ð56Þ

Let us note that the behavior of the scalar field σ at the
crossing of this singularity is quite regular, it is linearly
growing with the time parameter τ passing through the
value σ ¼ −

ffiffiffiffiffiffiffiffiffiffiffi
12U0

p
.

Finally, after this second big bang, the universe begins an
infinite expansion, when the cosmic time runs from t ¼ 0
to t ¼ ∞. On summing up, we can say that the universe
begins its evolution being infinitely large and contracting.
Then it crosses the isotropic big crunch–big bang singu-
larity and begins expanding. This expansion stops at some
moment of time and the universe undergoes a period of
contraction culminating in the encounter with the aniso-
tropic big bang–big crunch singularity. Having crossed this
singularity the universe begins an infinite expansion. The
evolution of the Bianchi-I universe filled with a confor-
mally coupled scalar field is presented in Figs. 1 and 2.
It is interesting to compare the evolution of the universe

in the Bianchi-I universe, filled with a conformally coupled
scalar field with that, filled with a minimally coupled scalar

field. The latter is much simpler. It is known that the
corresponding equations of motion can be solved in terms
of the cosmic time parameter t and there are two solutions:
an infinite expansion which begins from the big bang
singularity and an infinite contraction culminating in the
encounter with the big crunch singularity. The crossing of
the big crunch singularity was described in paper [25] and
the complete evolution is given by the formula

aðtÞ ¼ a0jtj13; ð57Þ

where t runs from −∞ to þ∞. In contrast with the case of
the conformally coupled scalar field, we here have only one
anisotropic big crunch–big bang singularity (see Fig. 3).
In all the above, we have concentrated on the description

of the matching between the behaviors of the scale factor a
before and after the singularity. Indeed, from our point of
view, this question is more complicated when the behavior
of the anisotropy functions βi is simpler. As we know the
time derivative of these functions is inversely proportional

t

a

FIG. 1. Cosmological evolution of the Bianchi-I universe filled
with a conformally coupled scalar field.

t

a

FIG. 2. Cosmological evolution of the Bianchi-I universe filled
with a conformally coupled scalar field–crossing of the singu-
larity at t ¼ 0.
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to the cubes of the scale factors. Thus, on fixing the
proportionality constant, we can fix the behavior of the
anisotropy functions, provided the rules for the continu-
ation of the scale factor are defined. One should remember
that, integrating the equations for the anisotropy functions,
one also obtains an additive constant. We can fix the value
of this constant as well.
Let us remember that there is an intensive discussion

in the literature concerning the equivalence between the
Jordan and the Einstein frames in classical and quantum
cosmology (see e.g. [51,52] and references therein). In our
preceding papers [24,25,32,33] we have expressed the
opinion that while from the mathematical point of view
these two frames are equivalent, the physical pictures can
be quite different. We believe that the presented picture of
the cosmological evolution in Bianchi-I models gives a nice
illustration of our point of view.
Concluding we wish to say that the very topic of the

crossing of the big bang–big crunch singularity is still
rather controversial. However, we believe that it is worth
further studies. Perhaps, the status of the field reparamet-
rizations, allowing one to go beyond singularities is similar
to the changing of coordinates in the description of black
holes [53]. The latter does not remove the horizons, but
allows us to see what happens behind the horizons. We
think that something similar can also take place for
cosmological singularities.

V. INDUCED GRAVITY AND
BIANCHI-I UNIVERSE

In this section we present the general exact solution for
the Bianchi-I universe in the induced gravity model. The
induced gravity model corresponds to the following choice
of the coupling function between the scalar field and the
scalar curvature:

UðσÞ ¼ 1

2
γσ2; ð58Þ

where the constant γ is positive. The induced gravity was
first suggested in paper [54] and then has found many
applications in cosmology [55–58]. The general relations
between the induced gravity models and their counterparts
with minimally coupled scalar fields were considered in
papers [32,33]. Substituting the function (58) and the
metric (14) into Eqs. (5) and (6), we obtain the following
system of equations:

3γσ2
_a2

a2
−
1

2
γσ2θ þ 6γ _σσ

_a
a
−
1

2
_σ2 ¼ 0; ð59Þ

− γσ2
ä
a
−
1

2
γσ2

_a2

a2
þ γσ2

_N _a
Na

−
1

4
γσ2θ

− γσ̈σ þ γ _σσ
_N
N
− 2γ _σσ

_a
a
− γ _σ2 −

1

4
_σ2 ¼ 0; ð60Þ

σ̈ −
_N
N

_σ þ 3
_a
a
_σ − 6γσ

ä
a
þ 6γσ

_N _a
Na

− 6γσ
_a2

a2
− γσθ ¼ 0:

ð61Þ

Writing down these equations, we have also taken into
account the fact that

βi ¼
βi0N
a3U

; ð62Þ

for any choice of the lapse function N and the coupling
function U.
Let us now multiply Eq. (59) by 1

σ and Eq. (60) by − 6
σ

and add both of them to Eq. (61). As a result we obtain

σ̈ −
_N
N

_σ þ 3
_a
a
_σ þ _σ2

σ
¼ 0: ð63Þ

On now choosing the same time parameter τ, as that
used in Sec. III, which corresponded to the lapse function
N ¼ a3, be obtain a very simple equation

σ̈ þ _σ2

σ
¼ 0: ð64Þ

The general solution of this equation is

σ ¼ σ0
ffiffiffi
τ

p
; ð65Þ

where one of the two arbitrary constants, parametrizing this
solution, is included into the choice of the initial moment
of τ. Substituting the solution (65) into Eq. (59) and taking
into account also the expression (19), we see that _a

a is
proportional to 1

τ. That means that the scale factor a is a
power-law function of τ. Moreover, it immediately follows
from Eq. (31) that the cosmic time is also a power-law
function of the parametric time τ. As a result, both the scale

t

a

FIG. 3. Cosmological evolution of the Bianchi-I universe filled
with a minimally coupled scalar field.
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factor a and the scalar field σ can be found as a power-law
functions of the cosmic time t.
Thus, let us look for the solution of Eqs. (59)–(61) in the

following form:

σðtÞ ¼ σ0ts; ð66Þ

aðtÞ ¼ a0tr: ð67Þ

Substituting the formulas (67) into Eq. (59) we obtain the
following relation between the exponents r and s:

3rþ 2s ¼ 1; ð68Þ

or

s ¼ 1

2
−
3

2
r: ð69Þ

Another relation following from Eq. (59) and from the
relation (69) is

−r2ð16γ þ 3Þ þ 2rð4γ þ 1Þ − 1

3
¼ 16θ0

3a60σ
4
0γ

: ð70Þ

It immediately follows from the last equation that at a fixed
value of the coefficient γ the choice of the exponent r is
limited by the inequality

4γ þ 1

16γ þ 3
−

1

16γ þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8γð6γ þ 1Þ

3

r
≤ r ≤

4γ þ 1

16γ þ 3

þ 1

16γ þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8γð6γ þ 1Þ

3

r
: ð71Þ

We see that the acceptable values of the exponent r are
always positive and that they are less than 1

2
. Thus, when we

consider positive values of the cosmic time parameter t,
we always have an expansion. If we wish to consider a
contracting universe, we should substitute in the formulas
(67) t by ð−tÞ, where −∞ < t ≤ 0. Note that in the values
of r, satisfying the inequalities (71) can be less or greater
than 1

3
. The parameter s can be positive or negative

respectively. This means that when the universe approaches
the singularity at t → 0, the scalar field σ can grow
indefinitely if s < 0 and can tend to zero if s > 0. It is
interesting to note that a regime, when the scalar field σ as
well as the effective Newton constant are constant, is also
possible. That happens when s ¼ 0, r ¼ 1

3
. It is easy to see

from Eq. (70) that this happens when

6θ0 ¼ a60σ
4
0γ

2: ð72Þ

Such a regime is absent in the case of the isotropic flat
Friedmann model, i.e. when θ0 ¼ 0.

It is interesting now to see which regime corresponds to
that, described by the formulas (67), (68) when we make
the transformation from the Jordan frame to the Einstein
frame. As described in our preceding papers [32,33], such
a transformation gives the following relation between the
cosmological radii in these frames

~a ¼ a

ffiffiffiffiffiffi
U
U1

s
: ð73Þ

For the case of the induced gravity this means that

~a ∼ a × σ ∼ trþs: ð74Þ

However, we want to express the scalar factor ~a in the
Einstein frame as a function of the cosmic time ~t in the
Einstein frame. Thus, we have

~t ¼
Z

dt ~N ∼
Z

dtσðtÞ ∼
Z

dtts ∼ tsþ1: ð75Þ

Substituting the expression (75) into Eq. (74) and taking
into account the relation (68), we obtain

~a ∼ ~t
rþs
sþ1 ∼ ~t

1
3; ð76Þ

i.e. in the Einstein frame the standard regime (76) corre-
sponds to the regime (67) independently of the value of the
exponent r. Thus, the singularities in both the frames arise
simultaneously and there is no opportunity of describing
the singularity crossing in one frame, using a regular
evolution in another frame. We shall not dwell here on
another suggestion for the description of the singularity
crossing, which was presented in paper [25] and in the
preceding section of the present paper.
We would like now to describe the generalized Kasner

regime of the exact solution for the Bianchi-I universe.
By using the formulas (62), (65) and (67) we see that

_βi ¼
2βi0
γσ20a

3
0

1

t
: ð77Þ

Integrating this equation, we can obtain the expressions for
the generalized Kasner indices:

pi ¼ rþ 2βi0
γσ20a

3
0

: ð78Þ

Now, using the relation (70), we can obtain the relations for
the generalized Kasner indices:

p1 þ p2 þ p3 ¼ 3r; ð79Þ

p2
1 þ p2

2 þ p2
3 ¼ 1 −

ð1þ 4γÞð3r − 1Þ2
4γ

: ð80Þ
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Let us note that while the sum of the generalized Kasner
indices can be greater or less than 1, the sum of the squares
of these indices is always less or equal to 1.

VI. CONCLUDING REMARKS

We presented in this paper exact solutions for the
Bianchi-I universe filled with a minimally coupled massless
scalar field, a conformally coupled massless scalar field
and for the induced gravity Bianchi-I model. Furthermore,
we discussed some questions, connected with the possible
description of the big bang–big crunch cosmological
singularities crossing in anisotropic spacetimes. As is well
known the question of the singularity crossing leads to
some discussions and the situation is far from clear.
Nonetheless, we believe that the presentation of some
not yet conventional ideas can be useful and fruitful.
The main idea, used in this paper and in the preceding
papers, consists of the attempt to find such a parametriza-
tion of fields, participating in the cosmological evolution,
which provides a sufficient number of finite characteristics,
which permit one to describe the matching of the cosmo-
logical evolution before and after the singularity crossing.
To find such a parametrization, we utilize the presence of a
scalar field in the models under consideration. These two
features: the role of the scalar field and the definition of
the finite characteristics of the evolution makes our
approach in a way similar to other approaches, sketched
in the Introduction of the present paper. One should
recognize that neither us nor anyone else (at least, to our

knowledge) has a universal recipe and the problem should
be analyzed in a case by case manner.
Of course, since curvature invariants strongly diverge

in the singularity, quantum-gravitational effects become
important at least at the Planck curvature (and may be even
at a smaller one). Thus, our hypothesis can be reformulated
as the assumption that the finite characteristics we used for
matching of solutions on both sides of the singularity
remain mostly unaffected by these effects, as well as by
other possible modifications of gravity in the region of
super-high curvature.
Before concluding we would like to cite one more recent

approach to the treatment of the anisotropic cosmological
singularities [59]. In the framework of this approach a family
of modified gravity theories is considered. The main role in
these theories is played by the fundamental connection. It is
shown that in the Kasner universe, this connection is always
finite even when the metric is singular. While the authors of
[59] and other papers, developing this idea work with the
modified gravity in contrast to our more conservative
approach, we find their idea of the finite quantities, existing
in all the spacetime attractive and interesting.
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