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We present a toy model of an axion gauge field inflation scenario that yields viable density and
gravitational wave spectra. The scenario consists of an axionic inflaton in a steep potential that is effectively
flattened by a coupling to a collection of non-Abelian gauge fields. The model predicts a blue-tilted
gravitational wave spectrum that is dominated by one circular polarization, resulting in unique
observational targets for cosmic microwave background and gravitational wave experiments. The
handedness of the gravitational wave spectrum is incorporated in a model of leptogenesis through the
axial-gravitational anomaly; assuming electroweak sphaeleron processes convert the lepton asymmetry into
baryons, we predict an approximate lower bound on the tensor-to-scalar ratio r ∼ 3–4 × 10−2 for models
that also explain the matter-antimatter asymmetry of the Universe.
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I. INTRODUCTION

Inflation is the leading paradigm for the hot big bang
origin of the Universe [1–3]. The basic features of the
inflationary scenario, notably a spatially flat Universe with a
spectrum of nearly scale-invariant, adiabatic, Gaussian-
distributed density perturbations, are consistent with the
growing catalog of experimental and observational data [4].
Many models of inflation also predict a spectrum of
primordial gravitational waves [5], which would leave a
distinct imprint on the polarization pattern of the cosmic
microwave background (CMB) [6–8]. This “B-mode” pat-
tern is being actively pursued by a number of CMB
experiments [9–18]. Yet for all the successes, models of
inflation that predict a potentially measurable level of
gravitational waves typically require masses and field
excursions that exceed the Planck scale, raising a specter
of instability against quantum gravitational corrections [19].
Chromo-natural inflation was proposed, in this context,

as a new method for inflating with sub-Planckian masses
[20]. The model consists of an axionic inflaton with a shift
symmetry, as found in natural inflation [21]

VðχÞ ¼ m4ð1 − cos χ=fÞ; ð1Þ

where χ is the scalar field and m; f ≪ MP are the mass
parameters. Alone, this would make the potential too steep
to slow roll. However, the scenario features a coupling
to a collection of non-Abelian gauge fields with a
vacuum expectation value. In the simplest realization,
the model posits that an SU(2) subgroup of an SU(N) is

in a flavor-space locked configuration, whereby the global
part of the SU(2) is identified with the O(3) rotational
symmetry of spacetime. The exchange of energy introduced
by the axion-Chern-Simons coupling serves to flatten the
effective potential and bring about slow roll inflation.
The fluctuation spectra in Chromo-natural inflation do not

resemble the predictions in the simple case of single field
inflation. In fact, the standard relationships that link the
Hubble scale H, slow roll parameters ϵH ¼ − _H=H2, ηH ¼
ϵH − Ḧ= _HH with the spectrum amplitudeΔ2

ζ , scalar spectral
index ns, and tensor-to-scalar ratio r, do not apply. (See
Ref. [22] for a review.) Instead, numerical calculations,
supported by analytic approximations, reveal a red-tilted
spectrum of density perturbations and a strongly amplified,
chirally asymmetric, blue-tilted spectrum of gravitational
waves. In the original formulation of Chromo-natural infla-
tion, there is no satisfactory compromise between the pre-
dicted values of ns and r that is consistent with observational
constraints. Chromo-natural inflation and its variant, Gauge-
flation, as originally proposed, are thus ruled out [23–25].
In this work, we propose a toy model variation of the

original model, which now satisfies current bounds on
scalar and tensor spectra. Our clue comes from the
tendency of the original model to produce a smaller ns
and larger r than would be expected based on the slow roll
parameters. By modifying the axion potential into a form
that naively predicts a larger spectral index ns and a smaller
tensor-to-scalar ratio r,

VðχÞ ¼ m4ð1 − cos χ=fÞnχ2 ð2Þ
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with 0 < nχ < 1, we have been able to identify a family of
models with viable spectra. Moreover, the model predicts a
blue-tilted gravitational wave spectrum that is dominated by
one handedness of circular polarization, resulting in unique
observational targets for cosmic microwave background and
gravitational wave experiments. The handedness of the
gravitational wave spectrum is transferred to a chiral asym-
metry of leptons through the axial-gravitational anomaly.
Requiring that this asymmetry matches the observed baryon
asymmetry of the Universe, we obtain a novel constraint on
our model that places the CMB B-mode spectrum squarely
within reach of ongoing and future experiments.
These results are timely because CMB experiments

have recently ruled out the simplest inflationary scenarios
that predicted high amplitude B modes as a consequence of a
high energy scale of inflation [26]. Our model is one of a
new class of recently proposed gauge field models [27–31]
that illustrate that a detectable B-mode signal can be
generated from inflation at a relatively low energy scale [32].
In the following sections we introduce the model and

present our calculation procedure for the scalar and tensor
spectra. Our first main result is summarized in Fig. 2, which
shows the range of our family of models in the ns − r
parameter space. We examine the unique features imprinted
on the CMB temperature and polarization anisotropy
spectra in these models, and look ahead to forecast the
ability of future gravitational wave observatories to cor-
roborate this model. Our second main result, the frequency
spectrum of the gravitational wave background, is shown
in Fig. 5. Finally, we examine a possible connection to
leptogenesis. Figure 7 illustrates our third main result,
whereby models that explain the matter-antimatter asym-
metry of the Universe also predict an approximate lower
bound on the tensor-to-scalar ratio.

II. THE THEORY

The action for the theory is

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

P

2
R −

1

4
FaμνFaμν −

1

2
ð∂χÞ2 − VðχÞ

þ χ

M
Faμν

~Faμν þ Lm

�
; ð3Þ

where we use metric signature −þþþ and curvature
conventions as in Ref. [33]. The SU(2) gauge field is
defined by the field-strength tensor

Fa
μν ≡ ∂μAa

ν − ∂νAa
μ − gϵabcAbμAcν; ð4Þ

where g is the coupling constant, and the dual field-strength
tensor is

~Faμν ¼ 1

2
ϵμναβFa

αβ: ð5Þ

Greek letters are used to represent spacetime indices, and
latin letters i; j;… are used for spatial indices. The SU(2)
indices are indicated by a; b; c;…, and are raised and
lowered by a metric η ¼ diagð1; 1; 1Þ. The permutation
density is ϵμναβ ¼ ½μναβ�= ffiffiffiffiffiffi−gp

and ½0123� ¼ þ1. We use
the potential of Eq. (2) with 0 < nχ < 1, which is sym-
metric under shifts χ → χ þ 2πf. Although this potential is
too steep to yield slow roll inflation, the axionic coupling to
the SU(2) field sufficiently flattens the potential. The cusp
at the origin is not important for this model, and may be
safely smoothed off; alternatively, the cusp might play a
role in the postinflationary reheating phase. For simplicity,
however, we work with the potential

V ¼ m4ðχ=mÞnχ=nχ ; ð6Þ

which has the benefit of introducing one fewer parameter.
We comment on the differences with this potential in later
discussion.
The background cosmology, in a Robertson-Walker

spacetime with line element ds2 ¼ aðτÞ2ð−dτ2 þ dx⃗2Þ,
consists of a homogeneous scalar χðτÞ and vector field
Ab
μ in a flavor-space locked configuration,

Ab
i ¼ ϕðτÞδbi ; ð7Þ

with all other components vanishing. The nonzero compo-
nents of the field-strength tensor are

Fb
0i ¼

ϕ0

a
δbi Fb

ij ¼ −gϕ2ϵbij; ð8Þ

where derivatives with respect to conformal time are
denoted with a prime. This field configuration resembles
a pair of uniform, stationary electric and magnetic fields
for each flavor, pointing along the x-, y-, z-directions.
Although the configuration is anisotropic in flavor, it is
isotropic in pressure and energy. The energy density and
pressure are

ρ ¼ 3

2a4
ðϕ02 þ g2ϕ4Þ þ 1

2

�
χ0

a

�
2

þ V;

p ¼ 1

2a4
ðϕ02 þ g2ϕ4Þ þ 1

2

�
χ0

a

�
2

− V: ð9Þ

The equations of motion are

χ00 þ 2
a0

a
χ0 þ a2V;χ ¼ 12

g
a2M

ϕ2ϕ0;

ϕ00 þ 2g2ϕ3 þ 4gϕ2
χ0

M
¼ 0: ð10Þ

The free parameters of the theory are g, M, and the
parameters of the potential. (We have also considered
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enlarging the gauge group, although no new behavior
emerges. See Appendix.)
The new accelerating solutions occur when the field χ

sits at the extremum of the effective potential Veff ¼
V − χ

MFaμν
~Faμν. We refer to the solution, wherein

∂Veff=∂χ ¼ 0, as the “accelerating track.” For our numeri-
cal investigations, we may start the field evolution either on
or off this track. While we have not fully investigated the
phase space dynamics, we have found that a large range of
initial conditions lead to inflation. The accelerating track
has a finite life, however, in the sense that inflation
eventually ends in these models. The track leads the scalar
field to the bottom of its potential, whereupon the gauge
field kinetic energy, in the form of time-evolving electric
and magnetic fields, dominates with equation of state
w ¼ 1=3. Hence, the model has a graceful exit from
inflation.
As an example, we show several trajectories with the

same set of parameters but varying initial conditions. In
Fig. 1 we show the evolution of χ and ϕ in a scenario with
nχ ¼ 1=4. We also show the evolution of each of the two
parts of the effective potential as the system evolves
towards and along the accelerating track. The slow roll
parameter ϵV based on the potential V is much greater
than unity, ϵV ≫ 1, so that inflation without the axionic
coupling to the gauge field is not feasible. At 60 e-foldings
before the end of inflation, the standard slow roll expres-
sions predict a curvature power spectrum amplitude
Δ2

ζ ¼ H2�=ð8π2ϵH�Þ ¼ 3.1 × 10−10 with spectral index
ns ¼ 1þ 2ηH� − 4ϵH� ¼ 0.98, and a spectrum of gravita-
tional waves with tensor-to-scalar ratio r ¼ 16ϵH� ¼ 0.025.
As we show in the next sections, the actual fluctuation
spectra are dramatically different.

III. SCALAR PERTURBATIONS

We introduce scalar perturbations of the metric and
gauge field. Our notation and procedure follows very
closely that of Refs. [25,34]. For the metric, we write

ds2 ¼ a2ðτÞðð−1þ 2ΦÞdτ2 þ 2∂iBdτdxi þ dx⃗2Þ: ð11Þ

Since we are considering only linearized perturbations there
is no coupling of Fourier modes, so that we can choose the
Fourier wave vector to point along the z-direction without
any loss of generality. Hence, we consider metric perturba-
tions with wave vector pointing in the z-direction, whereby
the nonzero metric perturbations are δgtt ¼ a22Φ and
δgtz ¼ a2∂zB. Likewise, for the gauge field

δAa
μ ¼ a

0
B@

0 δQ 0 0

0 0 δQ 0

∂zY 0 0 δQþ ∂2
zδM

1
CA: ð12Þ

We proceed to insert these into Eq. (3) and evaluate the
second order action. The Fourier transformed action is

S¼
Z

d3kdτL;

L¼ X†0AX0 þ ðX†0BXþH:c:Þ þX†CXþ ðX†0DNþH:c:Þ
þ ðX†ENþH:c:Þ þN†FN; ð13Þ

where X ¼ fδM; δQ; δχg are the dynamical degrees of
freedom, and N ¼ fY; B;Φg are the constraints. After
evaluating the constraint equations and reinserting into the
action, we have

L ¼ X†0ðA −DF−1D†ÞX0 þ X†0ðB −DF−1E†ÞX
þ X†ðB† − EF−1D†ÞX0 þ X†ðC − EF−1E†ÞX: ð14Þ

Now that the constraint or gauge variables have been
eliminated, we can obtain the equations of motion for the
scalar perturbations.
To obtain a canonical kinetic term, we introduce the

transformation matrix M so that X ¼ MΔ, and Δ ¼
fΔ1;Δ2;Δ3g are the new scalar modes. The Lagrangian
becomes

FIG. 1. (Left) The evolution of the scalar field χ (solid, black) and the gauge field amplitude ϕ (dashed, red) are shown across
100 e-foldings of inflation, where N ¼ ln a and Nend ¼ 0 is the end of inflation. (Right) The evolution of the scalar field in terms of V;χ
(dashed, black) and the gauge field in terms of F ~F=M for two sets of initial conditions (red and orange). The horizontal axis is offset in
this figure, so the end of inflation occurs at large N. The (blue) dot shows the starting point for the gauge field. The system rapidly
evolves to the accelerating track, as shown by the convergence of the scalar and gauge field trajectories towards the right.
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L ¼ 1

2
ðΔ†0TΔ0 þ Δ†0K1Δþ Δ†K2Δ0 þ Δ†WΔÞ; ð15Þ

1

2
T ¼ M†ðA −DF−1D†ÞM; ð16Þ

1

2
K1 ¼ M†ðA −DF−1D†ÞM0 þM†ðB −DF−1E†ÞM;

ð17Þ

1

2
K2 ¼ M†0ðA −DF−1D†ÞMþM†ðB† − EF−1D†ÞM;

ð18Þ

1

2
W ¼ M†0ðA −DF−1D†ÞM0 þM†ðC − EF−1E†ÞM

þM†0ðB −DF−1E†ÞMþM†ðB† − EF−1D†ÞM0:

ð19Þ
We can integrate by parts so that the Lagrangian sim-
plifies to

L ¼ 1

2
ðΔ†0TΔ0 þ Δ†0KΔ − Δ†KΔ0 − Δ†Ω2ΔÞ; ð20Þ

K ¼ 1

2
ðK1 − K2Þ; ð21Þ

Ω2 ¼ −W þ 1

2
ðK1 þ K2Þ0: ð22Þ

The resulting equation of motion is

Δ00 þ T−1ðT 0 þ 2KÞΔ0 þ T−1ðK0 þ Ω2ÞΔ ¼ 0: ð23Þ

By suitable choice of M we can arrange that in the high
frequency limit,

T ¼ I; K ¼ Oðk0Þ; Ω2 ¼ k2I; ð24Þ

so that each mode Δ behaves like a free oscillator.

A. Quantum fluctuations

The action of the normal modes Δ of the scalar
perturbations of the metric and gauge field at high
frequency resembles that of free fields in Minkowski
spacetime. As in the standard treatment, we promote these
modes and conjugate momentum to quantum operators,

Δl → Δ̂l ¼
Z

d3k
ð2πÞ3 ½Δ

l
kðτÞâlk⃗ eik⃗·x⃗ þ Δl�

k ðτÞâl†
k⃗
e−ik⃗·x⃗�;

ð25Þ

Δl0 → π̂lΔ ¼
Z

d3k
ð2πÞ3 ½Δ

l0
k ðτÞâlk⃗ eik⃗·x⃗ þ Δl0�

k ðτÞâl†
k⃗
e−ik⃗·x⃗�;

ð26Þ

where the superscript l ¼ 1, 2, 3 distinguishes among the
three normal modes. We can apply the canonical commu-
tation relations on the field and its conjugate momentum,
½Δ̂lðx⃗Þ; π̂lΔðx⃗0Þ� ¼ iδðx⃗ − x⃗0Þ, and similarly enforce the
normalization of the annihilation and creation operators
½âl

k⃗
; âl†

k⃗0
� ¼ ð2πÞ3δðk⃗ − k⃗0Þ, whereupon the mode functions

are normalized by the condition iðΔl�
k Δl0

k − Δl�0
k Δl

kÞ ¼ 1.
Since the solution to the mode function wave equation at
high frequency is Δl

k ∝ e−ikτ, we can start modes that
are sufficiently far inside the horizon that k ≫ a0=a;
gϕ; χ0=M with the initial condition Δl

k ji ¼ e−ikτ=
ffiffiffiffiffi
2k

p
,

Δl0
k ji ¼ −ike−ikτ=

ffiffiffiffiffi
2k

p
. The annihilation and creation oper-

ators for different normal modes, e.g., with different values
of l, all commute. So, our three quantum fields live on a
product of three separate Hilbert spaces, and we need to
evolve the coupled equations of motion Eq. (23) under
three separate sets of initial conditions. The first we call the
H1 system, under which we evolve Eq. (23) with initial
conditions

H1∶ Δ1ji ¼
e−ikτiffiffiffiffiffi
2k

p ; Δ10ji ¼ −ik
e−ikτiffiffiffiffiffi
2k

p ;

Δ2ji ¼ Δ20ji ¼ 0; Δ3ji ¼ Δ30ji ¼ 0: ð27Þ

The second and third follow similarily,

H2∶ Δ2ji ¼
e−ikτiffiffiffiffiffi
2k

p ; Δ20ji ¼ −ik
e−ikτiffiffiffiffiffi
2k

p ;

Δ1ji ¼ Δ10ji ¼ 0; Δ3ji ¼ Δ30ji ¼ 0: ð28Þ

H3∶ Δ3ji ¼
e−ikτiffiffiffiffiffi
2k

p ; Δ30ji ¼ −ik
e−ikτiffiffiffiffiffi
2k

p ;

Δ1ji ¼ Δ10ji ¼ 0; Δ2ji ¼ Δ20ji ¼ 0: ð29Þ

The power spectrum of fluctuations in each of the normal
modes is then the sum over the three Hilbert spaces,
jΔlj2 ¼ jΔlj2H1

þ jΔlj2H2
þ jΔlj2H3

for each l.

B. Curvature spectrum

The ultimate goal in evaluating the scalar perturbations is
to determine the power spectrum of curvature fluctuations.
From the definition of the curvature fluctuation,

ζ ¼ −
H
_ρ
δρ; ð30Þ

where δρ ¼ −δTt
t, we arrive at the following result:
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ζ ¼ ðR1X0 þ R2X þ R3NÞ: ð31Þ

Using results from the previous subsections, we determine
that

ζ ¼ ðR1 − R3F−1DÞMΔ0 þ ½ðR1 − R3F−1DÞM0

þ ðR2 − R3F−1EÞM�Δ: ð32Þ

This must be evaluated at the end of inflation, for the
curvature perturbation on each Hilbert space. The power
spectrum is

Δ2
ζ ¼

k3

2π2
ðjζj2H1

þ jζj2H2
þ jζj2H3

Þ: ð33Þ

For comparison, in the standard case of single field slow
roll inflation, the power spectrum is Δ2

ζ ¼ H2�=8π2ϵH� with
spectral index ns ¼ 1þ d lnΔ2

ζ=d ln k ¼ 1þ 2ηH� − 4ϵH�.

IV. TENSOR MODES

We consider gravitational waves and tensor fluctuations
of the gauge field. Since we are considering only linearized
perturbations, there is no coupling of Fourier modes, so that
we can choose the Fourier wave vector to point along the
z-direction without any loss of generality. Hence, we
consider a gravitational wave propagating in the z-direction,

δgμν ¼ a2hμν ¼ a2

0
BBB@

0 0 0 0

0 hþ h× 0

0 h× −hþ 0

0 0 0 0

1
CCCA: ð34Þ

Similarly, we consider a z-directed gauge field wave

δAa
μ ¼ ataμ ¼ a

0
B@

0 tþ t× 0

0 t× −tþ 0

0 0 0 0

1
CA: ð35Þ

These expressions are inserted into the action (3), which
is then expanded to quadratic order. In order that the
gravitational wave and gauge field have canonical kinetic
terms, we introduce a change of variables,

hþ;× ¼
ffiffiffi
2

p

aMP
vþ;×; tþ;× ¼ 1ffiffiffi

2
p

a
uþ;×: ð36Þ

However, the þ and × polarization modes are coupled.
Hence, by rotating into a circular polarization basis

vþ ¼ 1ffiffiffi
2

p ðvL þ vRÞ; v× ¼ iffiffiffi
2

p ðvL − vRÞ;

uþ ¼ 1ffiffiffi
2

p ðuL þ uRÞ; u× ¼ iffiffiffi
2

p ðuL − uRÞ; ð37Þ

the left- and right-circularly polarized equations decouple.
The full equations, in terms of the Fourier space amplitudes,
are as follows:

v00L þ
�
k2 −

a00

a
þ 2

a2M2
P
ðg2ϕ4 − ϕ02Þ

�
vL

¼ 2

aMP
½ðgϕþ kÞgϕ2uL − ϕ0u0L�; ð38Þ

u00L þ
�
k2 þ 2gkϕþ 4ðgϕþ kÞ χ

0

M

�
uL

¼ 2

aMP

�
a

�
vL
a

�0
ϕ0 þ gϕ2

�
k − gϕþ 4

χ0

M

�
vL

�
: ð39Þ

The equations for vR, uR are obtained by replacing k → −k.
The coupled gravitational wave-gauge field system in

Eqs. (38) and (39) has three notable features. First, the
gravitational wave acquires an additional masslike term

2

a2M2
P
ðg2ϕ4 − ϕ02Þ; ð40Þ

arising from the anisotropic shear of the gauge field.
Second, a tachyonic instability in the left-circularly polar-
ized gauge field wave, occurring when

k2 þ 2gkϕþ 4ðgϕþ kÞ χ
0

M
< 0; ð41Þ

breaks chiral symmetry and pumps energy into left-
circularly polarized gravitational waves for g > 0, ϕ < 0,
and χ0 < 0. In contrast, for the same parameter signs, the
right-circular polarization has no such instability. Third, at
high frequencies k ≫ a0=a; gϕ; χ0=M, the gravitational
wave and gauge field interconvert through the phenomenon
of gravitational wave-gauge field oscillations [35]. All
three effects play a role in the production of a primordial
gravitational wave spectrum.

A. Quantum fluctuations

The action of the gravitational wave and gauge field at
high frequency resembles that of a free field in Minkowski
spacetime. As in the standard treatment, we promote the
gravitational wave and its conjugate momentum to quan-
tum operators,

v → v̂ ¼
Z

d3k
ð2πÞ3 ½vkðτÞâk⃗e

ik⃗·x⃗ þ v�kðτÞâ†k⃗e−ik⃗·x⃗�; ð42Þ
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v0 → π̂v ¼
Z

d3k
ð2πÞ3 ½v

0
kðτÞâk⃗eik⃗·x⃗ þ v0�k ðτÞâ†k⃗e−ik⃗·x⃗�: ð43Þ

In this case, we can apply the canonical commutation
relations on the field and its conjugate momentum,
½v̂ðx⃗Þ; π̂vðx⃗0Þ� ¼ iδðx⃗ − x⃗0Þ and similarly enforce the nor-
malization of the annihilation and creation operators
½âvðk⃗Þ; â†vðk⃗0Þ� ¼ ð2πÞ3δðk⃗ − k⃗0Þ, whereupon themode func-
tions are normalized by the condition iðv�kv0k − v�0k vkÞ ¼ 1.
Since the solution to themode functionwave equation at high
frequency is vk ∝ e−ikτ, we can start modes that are suffi-
ciently far inside the horizon that k ≫ a0=a; gϕ; χ0=M with
the initial conditionvkji ¼ e−ikτ=

ffiffiffiffiffi
2k

p
,v0kji ¼ −ike−ikτ=

ffiffiffiffiffi
2k

p
for each polarization. Next, the gauge field fluctuations are a
separate, independent quantum field. Similarly, we promote
the gauge field tensor wave and its conjugate momentum to
quantum operators,

u → û ¼
Z

d3k
ð2πÞ3 ½ukðτÞb̂k⃗e

ik⃗·x⃗ þ u�kðτÞb̂†k⃗e−ik⃗·x⃗�; ð44Þ

u0 → π̂u ¼
Z

d3k
ð2πÞ3 ½u

0
kðτÞb̂k⃗eik⃗·x⃗ þ u0�k ðτÞb̂†k⃗e−ik⃗·x⃗�: ð45Þ

As above, we find that for modes that are sufficiently far
inside the horizon, the appropriate initial conditions are
ukji ¼ e−ikτ=

ffiffiffiffiffi
2k

p
, u0kji ¼ −ike−ikτ=

ffiffiffiffiffi
2k

p
, for each polariza-

tion. But the gauge field tensor modes are built on an
independent Hilbert space from the gravitational waves.
Hence, the â and b̂ annihilation and creation operators
commute with each other. So in fact we need two copies
of Eqs. (38) and (39).
The first copy we call the Hv system, to describe the

evolution of gravitational and gauge field tensor waves due
to quantum fluctuations of the gravitational wave vacuum.
The initial conditions of this system are summarized as
follows:

Hv∶vLji ¼
e−ikτiffiffiffiffiffi
2k

p ; v0Lji ¼−ik
e−ikτiffiffiffiffiffi
2k

p ; uLji ¼ u0Lji ¼ 0:

ð46Þ

The second copy is the Hu system, which describes the
evolution of gravitational and gauge field tensor waves due
to quantum fluctuations of the gauge field tensor wave
vacuum,

Hu∶ vLji ¼ v0Lji ¼ 0; uLji ¼
e−ikτiffiffiffiffiffi
2k

p ; u0Lji ¼−ik
e−ikτiffiffiffiffiffi
2k

p :

ð47Þ

The right-circular polarization modes follow a similar
procedure with identical initial conditions; only the

equation of motion differs. The power spectrum of fluc-
tuations is

hĥijL;k⃗ðτÞĥijL;k⃗0 ðτÞi
¼ 2hĥL;k⃗ðτÞĥL;k⃗0 ðτÞi
¼ 2ðhHvjĥL;k⃗ðτÞĥL;k⃗0 ðτÞjHviþ hHujĥL;k⃗ðτÞĥL;k⃗0 ðτÞjHuiÞ

ð48Þ

¼ð2πÞ3δðk⃗þ k⃗0ÞPLðkÞ; ð49Þ

PLðkÞ ¼ 2ðjhL;kj2Hv
þ jhL;kj2Hu

Þ

¼ 4

a2M2
P
ðjvL;kj2Hv

þ jvL;kj2Hu
Þ; ð50Þ

Δ2
LðkÞ ¼

k3

2π2
PL: ð51Þ

This procedure allows us to calculate the gravitational wave
amplitude arising from quantum fluctuations of the gravi-
tational field, and from quantum fluctuations of the gauge
field, separately. There is no interference cross term
between the two because they are independent quantum
fields. The factor of 2 appearing in the power spectrum is
due to our convention for the polarization tensor.
The phenomenon of gravitational wave-gauge field

oscillations [35] can be seen in the behavior of jhL;kj2Hv

and jhL;kj2Hu
. During inflation, modes deep inside the

horizon oscillate with frequency k. However, the amplitude
jhL;kj2Hv

also modulates. On its own this would be troubling,
since the quantum state would appear to remember its
initial conditions through its modulation phase. However,
the sum jhL;kj2 þ jtL;kj2Hv

is constant. The same holds true
for the fields on the Hu Hilbert space. Because deep inside
the horizon, tL;k on Hv and hL;k on Hu are the same
inhomogeneous mode, and likewise for tL;k onHu and hL;k
on Hv, then the sum jhL;kj2Hv

þ jhL;kj2Hu
is also constant,

deep inside the horizon. This erases the modulation phase,
and thereby preserves the desirable feature of the infla-
tionary quantum state.
Note that in the standard case we have only quantum

fluctuations of the gravitational field, so that vL satisfies the
equation

v00L þ ðk2 − a00=aÞvL ¼ 0 ð52Þ

with initial conditions vLji ¼ e−ikτi=
ffiffiffiffiffi
2k

p
, v0Lji ¼ −ikvLji,

and the power spectrum is

Δ2
LðkÞ ¼

k3

2π2
PL ¼ k3

2π2
4

a2M2
P
jvL;kj2 ¼

H2�
π2

; ð53Þ
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where H� is the Hubble factor at horizon exit of a mode
with comoving wave number k ¼ a�H�. An identical
prescription holds for the right-circular polarization waves.
The total tensor power spectrum is

Δ2
GWðkÞ ¼ Δ2

LðkÞ þ Δ2
RðkÞ: ð54Þ

Because the parity between left- and right-circular polar-
izations is broken, we introduce the V Stokes parameter or
circular polarization power spectrum, defined as

Δ2
GW;VðkÞ ¼ Δ2

LðkÞ − Δ2
RðkÞ: ð55Þ

It is also useful to characterize the degree of parity violation
in terms of a chirality parameter, Δχ ¼ Δ2

GW;V=Δ2
GW .

V. PERTURBATION SPECTRA

We have evaluated the scalar and tensor spectra for a
variety of axionic gauge field inflation scenarios with
potential given by Eq. (6). For each family of potentials
with a given nχ , we choose parameters g, M, and m to
produce a scalar spectrum with amplitude Δ2

ζ ¼ 2.2 × 10−9

at a reference wave number k ¼ 0.05 inv-Mpc, which
exited the horizonN� e-foldings before the end of inflation.
This normalization is in rough agreement with current
bounds on the amplitude of the fluctuation power spectrum
[4]. The value of N� is determined according to a standard
calculation in which adiabatic evolution of the relativistic
degrees of freedom of the cosmological fluid is assumed
from the end of inflation to the present day. Because our
models generally predict a lower value of H� than in
standard slow roll models, the e-folding calculation typi-
cally gives N� ≃ 55. The relationship between the power
spectrum amplitude Δ2

ζ and the Hubble parameter H� is
nonlinear, so the range of e-foldings is more tightly
constrained than in standard slow roll inflationary models.
The remaining parameter freedom yields a trajectory in the
ns − r plane. We plot several such trajectories against the

current bounds in Fig. 2. The broad overlap indicates that
these models produce viable scalar and tensor spectra.
We consider a scenario with nχ ¼ 1=8, g ¼ 1.4 × 10−3,

M ¼ 1.7 × 10−4MP, and m ¼ 1.7 × 10−3MP as a definite
example, represented by the black dot in Fig. 2. The scalar
index is ns ¼ 0.962 at 55 e-foldings before the end of
inflation, which we map to the reference wave number k ¼
0.05 inv-Mpc. The tensor spectrum has amplitude Δ2

GW ¼
7.6 × 10−11 for a tensor-to-scalar ratio r0.05 ¼ 0.035, and
r0.002 ¼ 0.025. The spectrum is almost entirely composed
of left-circularly polarized gravitational waves: the chirality
parameter ranges from Δχ ≃ 0.9 at k ¼ 0.002 inv-Mpc, up
to unity at high frequencies. These spectra, illustrated in
Fig. 3, are consistent with current observational bounds
[4,26,36,37]. We caution that some constraint analyses use
r0.05 and then extrapolate to r0.002 using the standard,
inflationary consistency relations. Since these relationships
do not apply to our model, such bounds on r0.002 are not
rigorous.
Tension in the cosmological parameter constraints [39]

have compelled researchers to consider a wider range of
cosmological models than straight-up, vanilla ΛCDM.
Recently, the effect of a dark radiation component on
the inflationary parameters r and ns was examined, in light
of current data (e.g., Refs. [38,40–42]). Even though the
data tightly constrain the effective number of neutrino
species, Neff ¼ 3.00� 0.20ð1σÞ, the bound on the spectral
index loosens to ns ¼ 0.9628� 0.0096ð1σÞ [38], as illus-
trated in the right panel of Fig. 2.
We originally invoked a periodic, sinusoidal potential,

but then quickly restricted our attention to a simple power
law. We expect that in the case of the sinusoidal potential,
the behavior of the perturbation spectra in different epochs
resembles that of the various power laws. That is, for a
potential with nχ ¼ 1=16 in Eq. (2), we expect that the
stages of inflation will resemble a power law as in Eq. (6)
with nχ ¼ 1=4, followed by an era described by nχ ¼ 1=8,
and finally nχ ¼ 1=16. The rate at which the effective
power law index varies depends on the relative size of the

FIG. 2. (Left) The nχ ¼ 1=4 (dashed), nχ ¼ 1=8 (solid), nχ ¼ 1=16 (dot-dashed) family of models in the ns − r0.05 parameter space is
shown. The black dot represents the example model described in the text. The blue contours give an approximate representation of the
1; 2σ contours based on the limits ns ¼ 0.9667� 0.0040ð1σÞ [36] and r0.05 < 0.07 (95% C.L.) [37]. (Right) We show the same curves,
plus the case nχ ¼ 1=2 (dotted), using the relaxed constraint ns ¼ 0.9628� 0.0096ð1σÞ [38], obtained by allowing the presence of a
dark radiation component.
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inflaton χ and the mass scale f. We leave the investigation
of this behavior for future work.

A. Cosmic microwave background

We have calculated the CMB temperature and polariza-
tion anisotropy spectra for the example model. We have
chosen noninflationary cosmological parameters that are
consistent with a best-fit ΛCDMmodel. The distinguishing
property of the CMB spectra in these scenarios is the
prediction of nonzero parity-odd correlations hTBi and
hEBi. These spectra are illustrated in Fig. 4. The B-mode
polarization power hBBi may soon be within reach of
stage-III CMB experiments, provided that foregrounds can
be removed cleanly [43].
To assess the sensitivity of future experiments to parity-

odd signals, we turn to Ref. [44], where the 1σ error bars
on Δχ are shown for future experiments. We reproduce
the underlying calculations, shown in our Fig. 4, for an
idealized satellite experiment (CMBpol) and a cosmic-
variance limited experiment. If we consider a scenario with
a chiral asymmetryΔχ ¼ 0.9, as predicted in many of these
models, then detection by a cosmic-variance limited experi-
ment at the 2; 3σ level would require a tensor-to-scalar ratio

in excess of r > 0.012; 0.027. In this idealistic experimen-
tal situation, the nχ ¼ 1=8 model illustrated in the previous
subsection would be close to the threshold of detection. We
note, as pointed out in Ref. [44], that the signal is
dominated by low l contributions to the temperature—
B-mode correlation hTBi, meaning a full sky experiment
would be needed. In the case of a lower-amplitude signal or
a less-than-idealized experiment, it would not be possible
to discern the chiral pattern based on these correlations
[45]. In a sense, the problem lies in the two-dimensional
nature of the gravitational wave imprint on the CMB. A
two-dimensional imprint cannot distinguish between left-
and right-circular polarizations, but a three-dimensional
imprint can. Proposals to overcome this challenge using
future galaxy- and 21-cm clustering surveys [46,47] might
dramatically lower the threshold.

B. Primordial gravitational wave background

We have calculated the present-day spectral density of
primordial gravitational waves predicted in this model of
axionic gauge field inflation. To be definite, we follow the
procedure given in Ref. [48], although we have not
included the slight damping effects of neutrinos or the

FIG. 4. (Left) The BB (solid, black), TB (dotted, blue), and EB (dashed, red) anisotropy power spectra are shown for our example
scenario, for which r ¼ 0.035, nt ¼ 0.074, and Δχ ¼ 0.92. (Right) The sensitivity to a chiral asymmetry Δχ is shown as a function of
the tensor-to-scalar ratio r for an idealized satellite experiment (CMBpol) and a cosmic-variance limited experiment, as originally
presented in Fig. 2 of Ref. [44]. The dot-dashed lines show the threshold values of r required to enable a 2; 3σ detection of chirality for a
model with Δχ ¼ 0.9.

FIG. 3. (Left) The scalar curvature power spectrum,Δ2
ζ , is shown as a function of wave number. The solid (blue) curve shows the result

of our numerical calculation; the dashed (black) curve is an analytic fit with tilt ns ¼ 0.962 and running index dns=d ln k ¼ −3 × 10−4 at
a reference wave number k ¼ 0.05 inv-Mpc. (Right) The tensor spectrum is shown as a function of wave number. The lower (solid, blue)
curve shows the right-circular polarization, whereas the upper curves show the left-circular polarization, the total spectrum, and an
analytic fit with tilt nt ¼ 0.074 and running dnt=d ln k ¼ 2 × 10−3.
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thermal history of the cosmological fluid. The spectrum we
obtain is unique in two different ways. First, a blue-tilted
spectrum has been achieved without violating the null energy
condition (i.e., the expansion rate does not increase during
inflation). The blue tilt means the spectrum might be within
reach of future gravitational wave observatories. Second, the
spectrum is dominated by left-circularly polarized gravita-
tional waves, which means that sensitivity to the V Stokes
parameter of a stochastic gravitational wave background
would be important to test this model. Recent work has
shown that a pair of satellite gravitational wave observatories,
with sensitivity beyond the reach of LISA [49,50], would be
required to detect the primordial V polarization [51]. As
illustrated in Fig. 5, the predicted spectrum may be tested in
two distinct frequency regimes, separated by nearly 17 orders
of magnitude. Similar conclusions have recently been
obtained by Ref. [52]. As we discuss next, there is a further,
indirect test at the highest frequencies.

VI. LEPTOGENESIS

The chiral asymmetry of the gravitational wave back-
ground may help explain the matter-antimatter asymmetry
of the Universe. This inflationary scenario contains the
elements required for a leptogenesis scenario, similar to the
scenario proposed in Ref. [57]. The crux of the argument
rests on index theorems that relate the properties of

wave operators to a spacetime-curvature invariant [58].
In particular, the number of right-handed minus left-handed
axial vector solutions on a spacetime manifold is equal to
P=24, where

P ¼ 1

16π2

Z
d4x

ffiffiffiffiffiffi
−g

p
Rμναβ

~Rμναβ ð56Þ

is the Pontryagin number [59,60], and

R ~R≡ Rμναβ
~Rμναβ ¼ 1

2
ϵαβμνRαβσδRμν

σδ: ð57Þ

In physics, this result is expressed in the form of the
gravitational anomaly for the lepton number current

∇μJ
μ
l ¼ NR−L

24ð16π2ÞRμναβ
~Rμναβ; ð58Þ

where NR−L is the number of right-handed minus left-
handed Weyl fermions [61]. (We note that the factor of 24
has been omitted from previous investigations [57,62,63].)
Physically what happens is that the chirally asymmetric
gravitational wave spectrum acts as a biased background
for the evolution of the Dirac equation [64]. Pairs of
fermions are created, favoring one chirality over the other.
Coincidentally, this phenomenon has recently been
observed in an analogue condensed matter system [65].
In an idealized spacetime such as Bianchi IX, which

resembles a single, circularly polarized gravitational wave
wrapped around a closed Robertson-Walker spacetime,
this phenomenon imparts a handedness onto the spectrum
of lepton creation [66]. In our scenario, the biased chirality
originates at the perturbative level with the circularly
polarized gravitational wave background. Integration of
the gravitational anomaly equation through the inflationary
epoch shows that a lepton asymmetry is created.
Leptogenesis in gauge field inflation models that use this
process has been previously considered in Refs. [62,63,67].
To determine the magnitude of the lepton asymmetry

generated through this process, we define the number
density of chiral fermions nl as determined by an observer
with four-velocity u, by n ¼ −u · Jl. For a comoving,
cosmological observer, then n ¼ aJ0l where n satisfies the
differential equation

∂
∂τ nl þ 3

a0

a
n ¼ NR−L

24ð16π2Þ aR
~R: ð59Þ

Recasting this as an integral, the solution is

nl ¼ NR−L

24ð16π2Þa3
Z

dτa4R ~R: ð60Þ

Next, we evaluate R ~R in our spacetime, to quadratic order
in tensor gravitational wave perturbations. We obtain

FIG. 5. The present-day gravitational wave spectral density
ΩGW is shown as a function of frequency for left- (blue) and right-
(red) circularly polarized gravitational waves. The difference
becomes highly pronounced near the end of inflation. However,
the chiral asymmetry vanishes for modes deep inside the horizon,
which is seen in the convergence at high frequency. The power-
law integrated curves [53] for the sensitivities of the big bang
nucleosynthesis (BBN), CMB (Planck), LIGO/Virgo, aLIGO,
and Pulsar Timing Array (PTA) to a power-law stochastic
background are adapted from Fig. 1 of Ref. [54]. For comparison,
we show the projected sensitivity of BBO, a futuristic satellite-
based gravitational wave observatory, to the intensity (solid) and
circular polarization (dashed), which is adapted from Fig. 4 of
Ref. [51]. The curve labeled μ-FIRAS shows the bound on a
stochastic gravitational wave background due to measurements of
the degree of spectral distortion of the CMB, as calculated in
Ref. [55]. The curve labeled “Pixie” is a projection of the
expected improvement on this bound by a futuristic, satellite-
based spectral distortion experiment [56].
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a4R ~R ¼
Z

d3k
ð2πÞ3

d3k0

ð2πÞ3 e
iðk⃗þk⃗0Þ·x⃗ðIRðk⃗; k⃗0Þ − ILðk⃗; k⃗0ÞÞ;

ð61Þ

IP ¼ −4ðk02khPðk⃗0Þh0Pð−k⃗Þ − k2k0h0Pðk⃗0ÞhPð−k⃗Þ
þ kh0Pðk⃗0Þh00Pð−k⃗Þ − k0h00Pð−k⃗Þh0Pðk⃗0ÞÞ; ð62Þ

where hP are the Fourier amplitudes of polarization
P ¼ R, L. Next, we evaluate the expectation value
hnli: we convert the Fourier amplitudes to operators,
and apply the commutation relations in the quantum state
previously identified for the inflationary scenario. The
expectation value is

hnli ¼
NR−L

24ð8π2Þa3
Z

dτ
Z

d3k
ð2πÞ3

d3k0

ð2πÞ3 e
iðk⃗þk⃗0Þ·x⃗ð2πÞ3δðk⃗þ k⃗0ÞðFRðk⃗Þ − FLðk⃗ÞÞ; ð63Þ

FP ¼ d
dτ

½k3ðjhP;kj2Hv
þ jhP;kj2Hu

Þ − kðjh0P;kj2Hv
þ jh0P;kj2Hu

Þ�:
ð64Þ

We now appreciate that the Chern-Pontryagin scalar is an
exact divergence, as we convert the above expression into a
boundary term. We assume that the difference between
the right- and left-circularly polarized spectra vanished in
the distant past [i.e., at the lower limit of integration in
Eq. (63)], which is consistent with our inflationary model.
Hence, the number density may be expressed in terms of
the final gravitational wave spectra,

hnli ¼
NR−L

24ð8π2Þa3
Z

d ln k½k3ðΔ2
R − Δ2

LÞ − kðΔ02
R − Δ02

L Þ�;

ð65Þ

ΔP ¼ k3

π2
ðjhP;kj2Hv

þ jhP;kj2Hu
Þ;

Δ02
P ¼ k3

π2
ðjh0P;kj2Hv

þ jh0P;kj2Hu
Þ; ð66Þ

which we evaluate at the end of inflation.
It is convenient to express the asymmetry in terms of a

ratio between the lepton asymmetry density and the entropy
density of the radiation fluid. This ratio is constant over the
epoch of adiabatic evolution of the thermalized radiation
fluid. We assume for convenience that reheating is instan-
taneous. That is, the energy density of the inflaton and
gauge field at the end of inflation are converted into thermal
radiation,

ρ ¼ 3M2
PH

2
end ¼

g�π2

30
T4; ð67Þ

with g� effective degrees of freedom. We solve for temper-
ature, and express the entropy density s ¼ 2g�sπ2T3=45
in terms of Hend, entropy degrees of freedom g�s, and
constants. The result is

hnli
s

¼ NR−L

24ð8π2Þa3end

R
d ln k½k3ðΔ2

R − Δ2
LÞ − kðΔ02

R − Δ02
L Þ�

Cg1=4� ðHendMPÞ3=2
;

ð68Þ

where C ¼ ð128π2=45Þ1=4 ≃ 2.3 and we set g�s ¼ g�,
again for simplicity.
We have evaluated hnli=s for a series of axionic gauge

field inflation models. We first present results for the
specific case of the model with nχ ¼ 1=8 and r ¼ 0.035,
explored earlier in this paper. To consider a minimal model,
we set g� ¼ 106.75 as for the standard model. We next
fix NR−L ¼ −3 for the three left-handed standard model
neutrinos. The integrand of Eq. (68) is illustrated in Fig. 6,
where the contributions from the k3 and k terms are shown
separately. We obtain

hnli
s

¼ −2.45 × 10−10; ð69Þ

where the negative sign indicates a left-handed excess.
The Sakharov conditions for successful baryogenesis

are violation of baryon number, CP violation, and that the
cosmic fluid should be out of equilibrium when these

FIG. 6. The integrand of Eq. (68) is illustrated (solid, black) as a
function of wave number, in units of the comoving Hubble scale at
the end of inflation. Separate contributions due to the k3ðΔ2

R − Δ2
LÞ

(dashed, blue) and kðΔ02
R − Δ02

L Þ (dotted, red) terms are shown
separately. In all cases the absolute value has been taken.
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symmetry violations take place [68]. This inflationary
model satisfies these conditions by providing for the
violation of lepton number through the gravitational
anomaly, Eq. (58); the classical field configurations for
the pseudoscalar axion χ and the gauge field Aa

μ are CP
asymmetric; the inflationary solutions for the vacuum
expectation values of the fields are out of equilibrium.
The conversion of a net lepton number into a net baryon
number can occur through standard model electroweak
sphaeleron processes. To determine the lepton-baryon
exchange rate, we draw upon the result [69,70]

ΔB ¼ 8Nf þ 4NH

22Nf þ 13NH
ΔL; ð70Þ

where Nf is the number of lepton families and NH is the
number of Higgs doublets. In the standard model, with
three families and one Higgs doublet, this yields
ΔB ¼ 28

79
ΔL.

If the above assumptions are justified, then we may
convert the above lepton excess into a baryon excess,
whereby this model predicts

η≡ nB
nγ

¼ nB
s
=
nγ
s
¼

�
−
28

79

hnli
s

�
=ð0.14Þ ¼ 6.1 × 10−10:

ð71Þ

We use g�s ¼ 3.91 to calculate nl=s, and we have inserted
a minus sign to convert from left-handed leptons to
baryons. This result matches the observed value η ¼
6.10ð�0.04Þ × 10−10 [36]. Hence, within the caveats of
this toy model, the elements are in place for successful
baryogenesis.
We have carried out this calculation for a range of

inflationary models, varying nχ and parameters g, M,
and m. We have fixed N� ¼ 55 and the scalar amplitude
Δ2

ζ ¼ 2.2 × 10−9. For each value of the scalar field poten-
tial index nχ , the predicted value of r lies along a curve in
the ns − r plane, as shown in Fig. 2. Along each such curve,
the predicted baryon to photon ratio is found to increase
with increasing r. In Fig. 7 we have marked the point at
which the predicted baryon to photon ratio matches the
observed value with a black circle. We have fit these points
to a straight line that runs across the viable range of ns with
r in the range 0.03–0.04. Hence, if the model is to explain
the baryon asymmetry of the Universe, then the predicted
value of the tensor-to-scalar ratio lies in the range 0.03–
0.04. These models are a target for observation. Detection
of a BB spectrum at the amplitude r0.05 ∼ 3–4 × 10−2, with
parity-violating TB and EB correlations, would be strongly
suggestive of an axionic gauge field inflationary and
leptogenesis scenario.
We have examined the spectrum of tensor gauge field

waves as well, in order to confirm that they remain

perturbative as do the gravitational waves. Recalling
Eq. (35), we write the mean squared fluctuation ampli-
tude as

hðδAÞ2i≡ hδAa
μδAb

νiδabgμν ¼
Z

d3k
ð2πÞ3 jukðτÞj

2=a2; ð72Þ

which is to be compared with hA2i ¼ hAa
μAb

νiδabgμν ¼
3ϕ2=a2. On a mode by mode basis, we want to check that
the ratio

σ2AðkÞ≡ 1

hA2i
d

d ln k
hðδAÞ2i ¼ k3

6π2ϕ2
jukðτÞj2 ð73Þ

is less than unity. This criterium was also discussed for
Higgsed gauge field inflationary models [28,29]. We have
numerically evaluated σA for a range of wave numbers, in
the case of several models that produce the observed
baryon asymmetry, i.e., lying along the dashed line in
Fig. 7. At the end of inflation, we find that σAðkÞ is
negligibly small for wave numbers that lie outside the
horizon. For the unamplified chirality, σA is also tiny.
However, σA grows for left-circularly polarized modes
that are just inside the horizon, similar to the peak seen in
Fig. 6. We find that σ2A ≃ 10−4 at its peak, k=H≃ 5, which
suggests a root mean squared fluctuation δA=A≲ 10−2 that
appears to be safely perturbative.
We also calculate the spectral energy density

ΩδA ¼ 1

ρc

d
d ln k

hρδAi; ð74Þ

where the leading contribution to the fluctuation energy
density at high frequency is ρδA ≃ ðt02 þ k2t2Þ=2a2 and

FIG. 7. Inflationary models with spectral index ns and
tensor-to-scalar ratio r0.05 that produce a baryon asymmetry
η ¼ 6.1 × 10−10 are indicated by the black circles for the cases
of nχ ¼ 1=4 (dotted, red), 1=6 (dashed, red), 1=8 (solid, red), and
1=16 (dot-dashed, red). The dashed black line is a straight-line
fit, showing that the tensor-to-scalar ratio for viable models
that match the observed baryon asymmetry lies in the range
r0.05 ∼ 3–4 × 10−2.
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t ¼ u=
ffiffiffi
2

p
a. The spectral energy density in the gauge field

is more simply expressed as a fraction of the background
gauge field energy density, whereby

1

ρA

d
d ln k

hρδAi ¼
2

3ðϕ02 þ g2ϕ4Þ
k2

8π2
ðju0kðτÞj2 þ k2jukðτÞj2Þ:

ð75Þ
Following a numerical calculation similar to that described
in the above paragraph, we find that ΩδA ≪ 1 at the end of
inflation, peaking at an amplitude ≲10−4 for left-circularly
polarized modes that are just inside the horizon, with
k=H≃ 5. From this we conclude that the energy in the
gauge field remains safely in the perturbative regime. We
note that this amplitude exceeds the nucleosynthesis bound
illustrated in Fig. 5. However, we do not expect these tensor
waves in the gauge field to survive through the nucleo-
synthesis era. Rather, these subhorizon tensor waves
participate in the reheating process and, with the gauge
field itself, convert into standard model radiation. For
tensor waves that are well outside the horizon at the end
of inflation, the nucleosynthesis [71] and cosmic micro-
wave background bounds [72] on energy density are easily
satisfied in these models.
Here we discuss the parameter dependences. For a given

potential exponent nχ , due to a degeneracy among the three
parameters (g, M, m), models with a normalized scalar
amplitude lie along a line as shown back in Fig. 2. Along
such a line, tracing an upwards path of increasing r, the
baryon excess η grows nonlinearly. For example, in the
vicinity of η ¼ 6.1 × 10−10, η scales as η ∝ r8=3.
We have assumed the inflaton and gauge field instanta-

neously thermalize into a relativistic bath of g� ¼ 106.75
degrees of freedom. If we allow the number of degrees of
freedom to increase, which is entirely reasonable, then the
lepton excess hnli=s decreases. To achieve the observed
value of η then we have to raise r. Hence, our current
estimate of the value of r that gives the observed η is in fact a
lower bound.
We have fixed the reference wave number k ¼ 0.05 inv-

Mpc to correspond to modes that depart the horizon
N� ¼ 55 e-foldings before the end of inflation. In other
models of inflation, the number N� may range from
approximately 50–60. We do not have this same freedom
in this model, as discussed earlier. However, suppose we
were to assume that thermalization is not instantaneous, but
is delayed by Ntherm e-foldings at the end of inflation.
Depending on the equation of state of the dominant form of
energy during this prethermalization stage, the predicted
ratio hnli=s would shift up or down. In most inflationary
models, the inflaton oscillates at the bottom of its potential
at the end of the accelerated expansion, yielding a matter-
dominated prethermalization epoch. In our case, however,
the gauge field dominates at the end of inflation, so that the
equation of state is rapidly driven to w ¼ 1=3. In this case, a

delay in thermalization makes no change in our prediction
of hnli=s and therefore η.
We note that the integration is dominated by the highest

frequency modes, meaning those modes that are still
subhorizon or have just exited the horizon at the end of
inflation. Here we make substantial improvement relative
to previous estimates of the degree of lepton asymmetry
generated through chiral primordial gravitational waves.
Whereas previous investigations simply cut off the inte-
gration at the wave number corresponding to the horizon
radius at the end of inflation, we continue our integration to
slightly higher wave numbers corresponding to subhorizon
modes. Our cutoff is provided naturally, since the asym-
metry between left- and right-circular polarizations drops
off rapidly for subhorizon modes. Or to put it another way,
there is no chiral asymmetry for deep subhorizon modes;
instead, the equations of motion distinguish the handedness
as modes begin to approach horizon crossing. The drop off
in chirality can be seen in the behavior of the integrands in
Fig. 6 as well as in the convergence of left and right hands
of the tail of the gravitational wave spectrum in Fig. 5.
Finally, we point out that if right-handed neutrinos are

produced in reheating, then the slight lepton asymmetry
created through gravitional processes can be erased.
Therefore, to preserve the lepton asymmetry, we must
assume the neutrino mass mνR is much greater than the
reheat temperature, Trh. If thermalization is instantaneous,
then Trh ¼ ð90M2

PH
2
end=g�π

2Þ1=4 ≃ 3 × 1015 GeV, where
Hend ¼ 4 × 10−6MP for the model in question, which sets
a high threshold for the neutrino mass. This is roughly
consistent with the heavy neutrino masses obtained by a
seesaw mechanism [73,74]. If thermalization is delayed,
leading to a lower reheat temperature, then the bound
on the neutrino mass would be similarly reduced. We also
note that if right-handed neutrinos exist, then we implicitly
assume that their masses are above the energy scale
corresponding to the gravitational wave frequencies that
dominate the integrals in Eq. (68). For the model in question
the masses must exceed mνR ≫ 5 ×Hend ≃ 5 × 1013 GeV
to be safely out of reach. Clearly, advancing this scenario
beyond that of a toy model will require a more complete
treatment of reheating.

VII. SUMMARY

In this work we have presented a toy model of inflation
that features an inflaton and a gauge field. The inflaton
potential itself is far too steep to yield slow roll inflation on
its own. However, the coupling between the gauge field and
the inflaton effectively flattens the potential, and inflation
ensues. All mass scales and the field excursion during
inflation are well below the Planck scale, and all dimen-
sionless couplings are small but not finely tuned. The epoch
ends naturally when the inflaton reaches the bottom of its
potential, whereupon the gauge field dominates with
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equation of state w ¼ 1=3. We have shown that density and
gravitational wave spectra are produced with amplitude and
spectral tilt, which are consistent with current observations,
as illustrated in Fig. 2.
The most remarkable features of the spectrum of

gravitational waves are the circular polarization and the
blue tilt that extends out to high frequencies. We have
explored the consequences of this chiral asymmetry for the
polarization pattern imprinted on the cosmic microwave
background and for the direct detection of the stochastic
gravitational wave background by a future, satellite-based
interferometric observatory. The circular polarization
signal is shown to be within reach of both means of
detection, and offers a distinct method to test this scenario.
Finally, the blue tilt and chiral asymmetry provide key
ingredients for a leptogenesis scenario to explain the
matter-antimatter asymmetry of the Universe. If this toy
inflationary model is to explain the observed baryon
asymmetry, then we predict a tensor-to-scalar ratio of no
less than r0.05 ∼ 3–4 × 10−2, as shown in Fig. 7.
We have explored many aspects of this inflationary

model, but many more investigations lie ahead. Our method
of numerical calculation of the spectra is inefficient, and
so we have kept a narrow focus and made simplifying
assumptions. Within the confines of this toy model, we
have yet to explore the full parameter predictions. We leave
for future work the study of non-Gaussianity and bispectra
[31], the behavior of vector modes, and a more realistic
treatment of the particle physics background of this model.
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APPENDIX: SU(N)

We have investigated inflationary scenarios in which
the axionic inflaton is coupled to a gauge field that is
symmetric under a larger group, SU(N). To maintain
homogeneity and isotropy of the field energy, we extend
our flavor-space locked configuration to the N ¼ ½N=2�
disjoint SU(2) subgroups within an SU(N). Hence, two
such subgroups can be embedded in SU(4) and SU(5), three
in SU(6), SU(7), etc. The field strength tensor is

Fa
μν ≡ ∂μAa

ν − ∂νAa
μ − gfabcAbμAcν; ðA1Þ

where fabc are the structure constants for the relevant gauge
group. The vector field Ab

μ equals a different scalar ϕn in
each subgroup, where n labels the subgroup. The energy
density and pressure are

ρ ¼ 3

2a4
XN
n¼1

ðϕ02
n þ g2ϕ4

nÞ þ
1

2

�
χ0

a

�
2

þ V;

p ¼ 1

2a4
XN
n¼1

ðϕ02
n þ g2ϕ4

nÞ þ
1

2

�
χ0

a

�
2

− V: ðA2Þ

The equations of motion are

χ00 þ 2
a0

a
χ0 þ a2V;χ ¼ 12

g
a2M

XN
n¼1

ϕ2
nϕ

0
n;

ϕ00
n þ 2g2ϕ3

n þ 4gϕ2
n
χ0

M
¼ 0: ðA3Þ

The phase space for N > 1 rapidly becomes difficult to
track. However, our numerical experimentation reveals
two simplifying results. First, when there is more than
one subgroup, a subset of the gauge fields dominates. These
dominant fields rapidly evolve towards a common field
strength ϕ, and guide the scalar χ onto the accelerating
track. Second, the remaining gauge fields that are sub-
dominant dilute away like radiation. The resulting picture
of axionic gauge field inflation with multiple subgroups is
that there is a single field strength ϕ for each of the N d
dominant subgroups. The energy density and pressure
become

ρ ¼ 3N d

2a4
ðϕ02 þ g2ϕ4Þ þ 1

2

�
χ0

a

�
2

þ V;

p ¼ N d

2a4
ðϕ02 þ g2ϕ4Þ þ 1

2

�
χ0

a

�
2

− V: ðA4Þ

The equations of motion are

χ00 þ 2
a0

a
χ0 þ a2V;χ ¼ 12N d

g
a2M

ϕ2ϕ0;

ϕ00 þ 2g2ϕ3 þ 4gϕ2
χ0

M
¼ 0: ðA5Þ

There is a further simplification. By replacing ϕ→ϕ=
ffiffiffiffiffiffiffi
N d

p
and g → g

ffiffiffiffiffiffiffi
N d

p
all background equations can be made

equivalent to the original case with a single SU(2). It is not
obvious whether this scaling can bring the fluctuation
spectrum into agreement with SU(2), too, since there are
still N d fluctuating fields.
To evaluate the scalar perturbation spectra, we enlarge

Eq. (12) to allow for scalar perturbations in each of
the N subgroups. We express the second order action
in terms of the dynamical degrees of freedom
X ¼ fδM1; δQ1; δM2; δQ2;…δMN ; δQN ; δχg and N ¼
fY1; Y2;…YN ; B;Φg are the constraints. Hence there are
2N þ 1 degrees of freedom and N þ 2 constraints.
Operationally, the procedure follows the case outlined
for SU(2) in Sec. III.
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The gravitational wave equations for an axion gauge
field inflation scenario with N subgroups are as follows:

v00L þ
�
k2 −

a00

a
þ 2N
a2M2

P
ðg2ϕ4 − ϕ02Þ

�
vL

¼ 2

aMP

XN
n¼1

½ðgϕþ kÞgϕ2uLn − ϕ0u0Ln�; ðA6Þ

u00Ln þ
�
k2 þ 2gkϕþ 4ðgϕþ kÞ χ

0

M

�
uLn

¼ 2

aMP

�
a

�
vL
a

�0
ϕ0 þ gϕ2

�
k − gϕþ 4

χ0

M

�
vL

�
: ðA7Þ

The equations for vR, uRn are obtained by replacing
k → −k. To evolve the quantum fluctuations in vL requires
N þ 1 sets of Eqs. (A6) and (A7). For the first set, the
initial conditions are

vLji ¼
e−ikτiffiffiffiffiffi
2k

p ; v0Lji ¼ −ik
e−ikτiffiffiffiffiffi
2k

p ; uLnji ¼ u0Lnji ¼ 0:

ðA8Þ

We refer to the solution to vL for this set of initial
conditions as “vLH” where the H indicates the homo-
geneous solution. For each subsequent set, for
n ¼ 1; 2;…N , the initial conditions are

vLji ¼ v0Lji ¼ 0; uLnji ¼
e−ikτiffiffiffiffiffi
2k

p ; u0Lnji ¼ −ik
e−ikτiffiffiffiffiffi
2k

p :

ðA9Þ

We refer to the solutions to vL for these sets of initial
conditions as “vLIn” for the nth inhomogeneous solution.
Each of these inhomogeneous solutions are the same, so we
drop the n from the subscript. The power spectrum is
obtained by adding in quadrature the homogeneous sol-
ution for vL with the N inhomogeneous solutions for vL
due to each uLn. Hence

Δ2
L ¼ k3

2π2
4

a2M2
P

�
jvLHj2 þ

XN
n¼1

jvLInj2
�

¼ k3

2π2
4

a2M2
P
ðjvLHj2 þN jvLIj2Þ ðA10Þ

gives the left-circularly polarized gravitational wave power
spectrum.
We have evaluated the scalar and tensor spectra for

N ¼ 2 for the specific case of nχ ¼ 2 in the gauge-flation
picture. Gauge-flation [75] is a twin model of inflation to
Chromo-natural inflation when the scalar field is on the
accelerating track [76]. Formally, the action for the theory
can be obtained from Eq. (3) by integrating out the scalar χ.
In the scalar sector, there are 2N degrees of freedom;
however, the two dominant modes are the same as in the
N ¼ 1 case. As a consequence, the parameters g,m,M can
be chosen to bring the N ¼ 2 scalar spectrum into agree-
ment with the N ¼ 1 case. We have also made analytic
calculations that suggest that this agreement occurs for
higher N . For the tensors, the same rescaling ϕ → ϕ=

ffiffiffiffiffi
N

p
can be extended to the gauge field waves, and thereby bring
theN ¼ 2 tensor spectrum into agreement with theN ¼ 1

case. Hence, both the N ¼ 2 scalar and tensor spectra are
identical to the N ¼ 1 case.
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