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We study a rapidly oscillating scalar field with potential VðϕÞ ¼ kjϕjn nonminimally coupled to the
Ricci scalar R via a term of the form ð1 − 8πG0ξϕ

2ÞR in the action. In the weak coupling limit, we calculate
the effect of the nonminimal coupling on the time-averaged equation of state parameter γ ¼ ðpþ ρÞ=ρ. The
change in hγi is always negative for n ≥ 2 and always positive for n < 0.71 (which includes the case where
the oscillating scalar field could serve as dark energy), while it can be either positive or negative for
intermediate values of n. Constraints on the time variation ofG force this change to be infinitesimally small
at the present time whenever the scalar field dominates the expansion, but constraints in the early universe
are not as stringent. The rapid oscillation induced in G also produces an additional contribution to the
Friedman equation that behaves like an effective energy density with a stiff equation of state, but we show
that, under reasonable assumptions, this effective energy density is always smaller than the density of the
scalar field itself.
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I. INTRODUCTION

Rapidly oscillating scalar fields have long been of
interest in cosmology. They were first systematically
explored by Turner [1] and later reexamined by many
others, often in the context of dark energy [2–7]. These
earlier studies took the scalar field to be minimally coupled.
In this paper, we extend these results to an oscillating scalar
field that is nonminimally coupled to the curvature scalar R
via a term of the form ð1 − 8πG0ξϕ

2ÞR in the action.
Models with this particular coupling have been dubbed
“extended quintessence," and they have been extensively
studied with a variety of different potentials [8–14].
In this paper, we examine the behavior of a rapidly

oscillating extended quintessence field for which the
oscillation frequency ν is much larger than the Hubble
expansion rate H. There have been several previous studies
related to such models. Luo and Su [15] performed a
numerical study of oscillating extended quintessence mod-
els for which ν ∼H. El-Nabulsi [16] performed a similar
numerical study for the particular case of conformal
coupling. Sadjadi and Goodarzi [17] (see also Ref. [18])
investigated rapidly oscillating scalar fields with a nomin-
imal derivative coupling. Perivolaropoulos [19] examined
Brans-Dicke theories with an oscillating scalar field, while
some aspects of oscillating solutions with arbitrary cou-
plings were discussed by Jarv et al. [20,21]. The previous
work most similar to our own is Ref. [22], which examined
nonminimally coupled models with the same coupling as

that examined here, and numerically calculated the equa-
tion of state for these models in the Einstein frame. Here we
work in the physical frame, and derive analytically the
equation of state parameter in the limit of weak coupling.
We also derive updated observational constraints on such
models. While we have used the term “extended quintes-
sence” in accordance with earlier nomenclature for this type
of nonminimally coupled scalar field, we do not intend to
confine our discussion to models in which the scalar field
provides the dark energy; instead, we are interested in the
general cosmological behavior of these models.
In Sec. II, we review the standard results for minimally

coupled oscillating scalar fields. In Sec. III, we derive
the basic results for oscillating extended quintessence,
particularly the change in the equation of state parameter
due to the nonminimal coupling. In Sec. IV, we present
observational constraints on these models. We discuss our
conclusions briefly in Sec. V.

II. REVIEW OF MINIMALLY COUPLED
OSCILLATING SCALAR FIELDS

First, recall the behavior of a minimally coupled scalar
field ϕ oscillating in the potential

V ¼ kjϕjn: ð1Þ

For a minimally coupled scalar field, the pressure and
density are given by
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pϕ ¼
_ϕ2

2
− VðϕÞ; ð2Þ

ρϕ ¼
_ϕ2

2
þ VðϕÞ; ð3Þ

respectively, where the dot denotes the time derivative. The
quantity of greatest interest is the evolution of the scalar
field energy density with respect to the scale factor a, which
is given by

d ln ρϕ
d ln a

¼ −3γ; ð4Þ

where γ is defined as

γ ¼ pϕ þ ρϕ
ρϕ

: ð5Þ

The equation of motion for ϕ is

ϕ̈þ 3H _ϕþ dV
dϕ

¼ 0; ð6Þ

where H is the Hubble parameter, which depends on the
total density ρT as

H ¼
�
_a
a

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πGρT=3

p
: ð7Þ

Following Turner [1], we note that in the limit where the
oscillation frequency is much larger thanH, the density will
evolve slowly relative to the oscillation time scale. In that
case, Eqs. (2), (3), and (5) give

hγi ¼ h _ϕ2i
ρϕ

; ð8Þ

where the averages are taken over one oscillation period.
Let ϕmin and ϕmax be the minimum and maximum values
for ϕ. By symmetry ϕmax ¼ −ϕmin ≡ ϕm, and the value of
ρϕ, which is effectively constant over one oscillation
period, is just ρϕ ¼ VðϕmÞ≡ Vm. Then the period-aver-
aged value of γ given by Eq. (8) can be written as

hγi ¼ 1

Vm

R
_ϕ2dtR
dt

; ð9Þ

¼ 1

Vm

R
_ϕdϕR ð1= _ϕÞdϕ ; ð10Þ

¼ 2

R ϕm
−ϕm

½1 − VðϕÞ=Vm�1=2dϕR ϕm
−ϕm

½1 − VðϕÞ=Vm�−1=2dϕ
: ð11Þ

For a power law of the form given by Eq. (1), the integrals
can be evaluated exactly, yielding the main result of
Ref. [1]:

hγi ¼ 2n=ðnþ 2Þ: ð12Þ
This result implies that ρϕ scales as ρϕ ∝ a−6n=ðnþ2Þ, so the
cases n ¼ 2 and n ¼ 4 correspond to behavior resembling
nonrelativistic matter (ρ ∝ a−3) and radiation (ρ ∝ a−4),
respectively. We can also derive the dependence of ϕm on
the scale factor, a result that will be used later. From
ρϕ ∝ a−6n=ðnþ2Þ and ρϕ ¼ kjϕmjn, we get

ϕm ∝ a−6=ðnþ2Þ: ð13Þ
(See Ref. [23] for a more exact treatment.)
It is actually rather difficult to produce realistic models in

which the oscillating scalar field serves as dark energy. A
simple-minded application of Eq. (12) with hγi ≈ 0, as
required by observations, would necessitate a very flat
potential (n ≪ 1). This can be avoided by using potentials
of an unusual shape [6], but Johnson andKamionkowski have
argued that any rapidly oscillating scalar field with hγi < 1
will be unstable to the growth of inhomogeneities [24].

III. OSCILLATING EXTENDED QUINTESSENCE

We now extend the calculation of the previous section to
nonminimally coupled quintessence. The action for the
scalar field with potential VðϕÞ in the Jordan frame is

Sϕ ¼ −
1

2

Z �
ZðϕÞ∂μϕ∂μϕ −

FðϕÞR
8πG0

þ 2VðϕÞ
� ffiffiffiffiffiffi

−g
p

d4x;

ð14Þ
whereG0 is the bare gravitational constant. We examine the
model discussed previously in Refs. [10,12,13]; namely, we
choose ZðϕÞ ¼ 1 and FðϕÞ ¼ 1–8πG0ξϕ

2. Note that we
follow the convention of Ref. [9] in including a factor of
8πG0 in the definition of FðϕÞ, as opposed to, e.g., the
convention of Refs. [10,12,13]. For the potential VðϕÞ, we
take, as in the minimally coupled case,

VðϕÞ ¼ kjϕjn: ð15Þ
We assume that the field undergoes rapid oscillation
about ϕ ¼ 0, with oscillation frequency ν ≫ H.
This oscillation is superimposed on a slow decay in the
oscillation amplitude. Hence, the case ϕ ¼ 0, G ¼ G0

corresponds not to the present day but the asym-
ptotic future. The present-day value of G is given by
G ¼ G0h½1 − 8πG0ξϕ

2Þ�−1i, where the average is taken
over an oscillation period.
We adopt the flat Friedmann-Robertson-Walker universe

with the line element ds2 ¼ −dt2 þ a2ðtÞ½δijdxidxj�. The
equation of motion for ϕ is then
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ϕ̈þ 3H _ϕþ ∂V
∂ϕ þ ξRϕ ¼ 0: ð16Þ

The Ricci scalar R can be expressed in terms of the Hubble
parameter as

R ¼ 6ð2H2 þ _HÞ: ð17Þ

It is then straightforward to derive the scalar field density
and pressure [8]:

ρϕ ¼ 1

2
_ϕ2 þ VðϕÞ þ 6ξHϕ _ϕþ 3ξH2ϕ2; ð18Þ

pϕ ¼ 1

2
_ϕ2 − VðϕÞ − ξðð2 _H þ 3H2Þϕ2 þ 4Hϕ _ϕ

þ 2ϕϕ̈þ 2 _ϕ2Þ: ð19Þ

In what follows we focus only on the weak coupling
regime: 0 < ξ ≪ 1, in order to make our calculations
tractable, and all quantities of interest will be expanded
to linear order in ξ.
In the limit of interest, ν ≫ H, the first and third terms in

Eq. (16) are dominant, and (to lowest order in ξ) the field
undergoes symmetric oscillations around ϕ ¼ 0. Then,
from Eqs. (16), (18), and (19) the adiabatic index of the
scalar field averaged over one oscillation period is, to linear
order in ξ,

hγi ¼ hρϕ þ pϕi
ρϕ

¼ 1

ρϕ
½h _ϕ2i þ 2ξðhnVðϕÞi − h _ϕ2iÞ

þ 8ξHhϕ _ϕi − 2ξ _Hhϕ2i�: ð20Þ

We first note that hϕ _ϕi ¼ 0. Furthermore, the period-
averaged kinetic term is equal to the period-averaged
potential term up to order ξ: hnVðϕÞi − h _ϕ2i ∼OðξÞ [2].
The value of ρϕ in the denominator of Eq. (20) is

modified from its value in the minimally coupled case. For
the field oscillating between ϕ ¼ ϕmin and ϕ ¼ ϕmax, we
define, in a similar manner to the discussion in the previous
section, ϕm ≡ ϕmax ¼ −ϕmin and Vm ¼ VðϕmÞ. Then
evaluating Eq. (18) at either extremum, we obtain, for
the oscillating scalar field,

ρϕ ¼ Vm þ 3ξH2ϕ2
m: ð21Þ

Then our expression for the adiabatic index becomes

hγi ¼ h _ϕ2i − 2ξ _Hhϕ2i
Vm þ 3ξH2ϕ2

m
; ð22Þ

which, to linear order in ξ, is

hγi ¼ 1

Vm

�
1 −

3ξH2ϕ2
m

Vm

�
h _ϕ2i − 2ξ _H

Vm
hϕ2i: ð23Þ

We now proceed to calculate h _ϕ2i and hϕ2i using methods
similar to those in the previous section.
First consider h _ϕ2i. As in the previous section, we have

h _ϕ2i ¼
R
_ϕdϕR ð1= _ϕÞdϕ ; ð24Þ

but we now define an effective potential given by

VeffðϕÞ ¼ VðϕÞ þ 3ξH2ϕ2: ð25Þ

Treating Eq. (18) as a quadratic equation in _ϕ, we
obtain

_ϕ ¼ −6ξHϕ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðρϕ − VeffÞ þ 36ξ2H2ϕ2

q
; ð26Þ

¼ −6ξHϕ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðρϕ − VeffÞ

q
ðto linear order in ξÞ:

ð27Þ

Then to linear order in ξ, we also have

1= _ϕ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðρϕ − VeffÞ

p þ 3ξHϕ

ðρeff − VeffÞ
: ð28Þ

When we substitute the expressions from Eqs. (26) and
(28) into Eq. (24), the terms linear in ϕ vanish in both
integrals, leaving

1

Vm
h _ϕ2i ¼ 1

Vm

R ½2ðρϕ − VeffÞ�1=2dϕR ½2ðρϕ − VeffÞ�−1=2dϕ
: ð29Þ

However, this is just the value of γ for the minimally
coupled case with a potential given by Eq. (25), i.e., a
power law plus a small (different) power-law correction.
The value of γ for this particular case was calculated in
Ref. [1]; using that result, we derive

1

Vm
h _ϕ2i

¼ 2n
nþ 2

þ 3ξH2ϕ2−n
m

k
4ð2− nÞð3− nÞ
ð6− nÞðnþ 2Þ

Γð1
2
þ 1

nÞΓð3n− 1Þ
Γð1nÞΓð3n− 1

2
Þ :

ð30Þ

Now consider the second term in Eq. (23). Since it is
multiplied by ξ, we can neglect any order-ξ corrections to
hϕ2i. To zeroth order in ξ, we then have simply
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hϕ2i ¼
R
ϕ2½2ðρϕ − VÞ�−1=2dϕR ½2ðρϕ − VÞ�−1=2dϕ ; ð31Þ

where the VðϕÞ appearing in this equation is the zeroth
order potential given by Eq. (15), rather than Veff . The
integrals in Eq. (31) yield

hϕ2i ¼ ϕ2
m
Γð3nÞΓð1n þ 1

2
Þ

Γð1nÞΓð3n þ 1
2
Þ : ð32Þ

We combine Eqs. (23), (30), and (32) to obtain a final
expression for hγi. Because the scalar field oscillations
correspond to a time scale much shorter than H−1, we can
take both H and _H to be constant, and given by H2 ¼
8πG0ρT=3 and _H ¼ −4πG0ðρT þ pTÞ, where ρT and pT
are the total (scalar field plus background radiation or
matter) density and pressure, respectively.
Finally, since Vm ¼ ρϕ − 3ξH2ϕ2

m, and dropping terms
linear in ξ when plugging back into Eq. (23), we obtain

hγi ¼ 2n
nþ 2

þ 8πG0ξϕ
2
m
ρT
ρϕ

��
2ð2 − nÞ
nþ 2

þ γT

�
KðnÞ

−
�

2n
nþ 2

��
; ð33Þ

where γT ≡ ðpT þ ρTÞ=ρT , and KðnÞ is defined as

KðnÞ≡ Γð3nÞΓð1n þ 1
2
Þ

Γð1nÞΓð3n þ 1
2
Þ : ð34Þ

Note that KðnÞ is a slowly varying function of n: for
0 < n < 10, we have 1=

ffiffiffi
3

p
> KðnÞ > 0.4. Equation (33)

is our main result. It gives, to lowest order in ξ, the change
in the equation of state parameter for an oscillating scalar
field due to its nonminimal coupling.
Now consider the sign of the change in hγi induced by

the nonminimal coupling. If we define γc to be given by

γc ¼
2n

ðnþ 2ÞKðnÞ −
2ð2 − nÞ
nþ 2

; ð35Þ

then Eq. (33) indicates that the change in hγi is negative
when γT < γc and positive when γT > γc. In general, the
constraint γT < 2 is reasonable for ordinary cosmic com-
ponents. This can be justified, for instance, by assuming
that all the other components beyond ϕ obey the dominant
energy condition (DEC), which gives γi ≤ 2 for each
component i. The physical significance of the DEC is that
for a perfect fluid i, γi ≤ 2 is equivalent to the causality
condition c2sðiÞ ¼ dpi=dρi ≤ 1. These inequalities, together

with the fact that γϕ < 2 for all finite values of n, yield the
constraint for the total equation of state parameter: γT < 2.
In this paper we will focus, for simplicity, on this condition

for γT, leaving aside the possibility that it may be violated
in ekpyrotic/cyclic models or other scenarios [25–27].
Therefore, since γc ≥ 2 when n ≥ 2, we see that the
DEC bound γT < 2 automatically guarantees γT < γc, thus
implying that the change in hγi is always negative
when n ≥ 2.
In the opposite limit, we note that the weak energy

condition (WEC) implies that γT ≥ 0. Thus, the change in
hγiwill always be positive when γc < 0. Using Eq. (35), we
find that the latter condition is equivalent to n < 0.71. This
corresponds (for the minimally coupled case) to hγi < 0.5.
In the intermediate regime, 0.71 < n < 2, the change in hγi
can be either positive or negative, depending on the value
of γT .
Now consider a few illustrative examples. For n ¼ 2, the

behavior of the minimally coupled scalar field is dustlike
(γ ¼ 1), and Eq. (33) gives

hγi ¼ 1þ 8πG0ξϕ
2
m
ρT
ρϕ

�
1

2
γT − 1

�
: ð36Þ

The other case of greatest interest is n ¼ 4, as it gives rise to
radiationlike (γ ¼ 4=3) behavior. For this case, we obtain

hγi ¼ 4

3
þ 8πG0ξϕ

2
m
ρT
ρϕ

ð0.46γT − 1.64Þ: ð37Þ

As expected, both Eqs. (36) and (37) indicate that the effect
of the nonminimal coupling for γT < 2 is to decrease the
value of the equation of state parameter relative to its
minimally coupled value. These results are consistent with
the numerical results in Ref. [22], which show a similar
decrease in hγi relative to the minimally coupled case.
Finally, consider the case where the oscillating scalar

field serves as dark energy. As noted in Sec. II, this is
difficult to achieve, but we include it here for completeness.
Current observations constrain the dark energy equation of
state parameter to be γDE ≪ 1, which corresponds to n ≪ 1
for an oscillating scalar field. Thus, the argument above
indicates that the nonminimal coupling will increase the
value of hγi relative to its minimally coupled value.
However, we will see in the next section that any changes

in hγi due to the nonminimal coupling of the scalar field are
sharply constrained by observations.

IV. OBSERVATIONAL CONSTRAINTS

The model examined here is constrained by observa-
tional limits on the time variation of G, which is given by

G ¼ G0=ð1 − 8πG0ξϕ
2Þ: ð38Þ

The time variation ofG tracks the time variation in ϕ, which
can be broken into two parts: the rapid oscillation of ϕ with
frequency νmuch greater thanH, and the slow decay in the
amplitude ϕm.
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Consider first the slow secular variation in G.
Measurements of the orbit of Mars give [28]

_G=G < 1.7 × 10−13 yr−1; ð39Þ

at the present time. To compare with our model, we need to
average Eq. (38) over a single oscillation period. Taking
8πG0ξϕ

2
m ≪ 1, we can expand Eq. (38) to give

hGi ¼ G0½1þ 8πG0ξhϕ2i�: ð40Þ

Taking hϕ2i from Eq. (32), we obtain

hGi ¼ G0½1þ 8πG0ξϕ
2
mKðnÞ�: ð41Þ

Then to lowest order in ξ,

h _Gi=hGi ¼ 16πG0ξϕm
_ϕmKðnÞ: ð42Þ

Using ρϕ ¼ kϕn
m þOðξÞ, we have _ρ=ρ ¼ n _ϕm=ϕm ¼

−3Hhγi, with γ given by Eq. (12). Then we obtain

h _Gi=hGi ¼ −
96

nþ 2
HπG0ξϕ

2
mKðnÞ: ð43Þ

For H0 ¼ 70 km sec−1Mpc−1, the limit in Eq. (39) gives

8πG0ξϕ
2
m < 0.0024

nþ 2

12

1

KðnÞ ∼ 10−3: ð44Þ

Since equation (41) gives us the present-day value
of G, while G0 is the asymptotic value as the oscil-
lating field decays to zero amplitude, this limit tells us
that G will change by no more than 0.1% in the asymptotic
future.
This bound also limits the deviation of hγi from its value

in the minimally coupled case. For example, consider the
case n ¼ 2 in Eq. (36). Combining this equation with the
bound from Eq. (44) shows that the extended quintessence
modification to the value of γ is infinitesimally small,
unless ρϕ=ρT ≲ 10−3, i.e., the scalar field energy density is
a tiny fraction of the total energy density in the Universe.
Note, however, that this bound applies only at the present
day, as it is based on current measurements of _G=G.
While _G=G cannot be measured directly in the early

universe, it is possible to use big bang nucleosynthesis
(BBN) to constrain the total change inG between the epoch
of BBN (T ∼ 1 MeV) and the present. References [29,30]
give

jGBBN −Gnowj
Gnow

< 0.2 − 0.3: ð45Þ

(See also Ref. [31] for the specific case of Brans-
Dicke models). We can use Eq. (41) to translate this into

a limit on the difference between ϕ2
m at BBN and ϕ2

m at the
present:

8πG0ξjϕ2
mðnowÞ − ϕ2

mðBBNÞjKðnÞ < 0.2 − 0.3: ð46Þ

But from Eq. (13), we can conclude that
ϕmðnowÞ ≪ ϕmðBBNÞ, so that our limit becomes

8πG0ξϕ
2
mðBBNÞ < ð0.2–0.3Þ 1

KðnÞ : ð47Þ

This BBN bound is not as stringent as the limit on ξϕ2
m at

the present. Comparing with Eq. (33), we see that the
change in hγi compared to the minimally coupled case
could be non-negligible at the epoch of BBN, and there are
essentially no limits at earlier times.
For extended quintessence with a slowly varying scalar

field, solar-system limits on the Jordan-Brans-Dicke param-
eter generally provide stronger constraints than the limits on
the time variation ofG [10]. However, this is not the case for
the rapidly oscillating scalar fields considered here.As noted
in Refs. [22,32], modifications to standard general relativity
are undetectable on length scales above ν−1. Thus, one can
always postulate a sufficiently large ν to evade both solar-
system and laboratory constraints on these models.
Finally, the models examined here lead to a high-

frequency oscillation in G induced by the rapidly oscillat-
ing scalar field. While it might seem that this could not have
any observable effects, it was noted by Accetta and
Steinhardt [32,33] that the oscillation in G modifies
the Friedman equation in such a way as to produce an
additional effective component of the energy density.
Specifically, when G varies, the Friedman equation
becomes [32]

H ¼ 1

2

_G
G
þ
�
8πGρT

3
þ 1

4

�
_G
G

�2�1=2
: ð48Þ

If the oscillation frequency ν satisfies ν ≫ H, then the first
_G=G term averages to zero, but ð _G=GÞ2 ≠ 0. Thus, this
term contributes an effective energy density, ρeff , to the
expansion of the Universe that is in addition to the con-
tribution ρϕ from the scalar field itself. From Eq. (48), this
additional effective energy density is given by

ρeff ¼
3

32πG

�
_G
G

�2

: ð49Þ

Then for our particular model, Eq. (38) gives, to lowest
order in ξ,

ð _G=GÞ2 ¼ 256π2G2
0ξ

2ϕ2 _ϕ2: ð50Þ

We can derive ρeff by averaging this expression over an
oscillation period:
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ρeff ¼ 24πG0ξ
2hϕ2 _ϕ2i;

¼ 24πG0ξ
2

R
ϕ2 _ϕdϕR ð1= _ϕÞdϕ ;

¼ 24πG0ξ
2ϕ2

mρϕ
Γð3nÞΓð12 þ 1

nÞ
Γð1nÞΓð32 þ 3

nÞ
: ð51Þ

Since ϕm decreases with the expansion of the Universe, ρeff
necessarily decays more rapidly than ρϕ. To determine the
variation of ρeff with the scale factor, we note that, to lowest
order in ξ, ρϕ scales as ρϕ ∝ a−6n=ðnþ2Þ [Eq. (12)], while
ϕm ∝ a−6=ðnþ2Þ [Eq. (13)]. Then we obtain

ρeff ∝ a−6: ð52Þ
Thus, ρeff behaves like a component of the energy density
with a stiff equation of state, independent of the value of n.
We can rewrite Eq. (51) to obtain an expression for

ρeff=ρϕ:

ρeff
ρϕ

¼ ð8πG0ξϕ
2
mÞðξÞ ×Oð1Þ: ð53Þ

All of the factors on the right-hand side are less than 1, so
ρeff=ρϕ < 1, and we can neglect the contribution of ρeff to
the cosmological expansion in comparison to the scalar
field energy density itself. Note that tighter constraints on
oscillations in G can be derived from the orbits of the
planets in the Solar System when ν ∼ yr−1 [34].

V. CONCLUSIONS

We have derived the change in the time-averaged
equation of state parameter hγi for an oscillating scalar

field with a nonminimal coupling of the form
ð1 − 8πG0ξϕ

2ÞR. Our results indicate that the effect of
the nonminimal coupling is to decrease hγi below its value
for a minimally coupled oscillating scalar field for poten-
tials of the form VðϕÞ ¼ kjϕjn when n ≥ 2. Conversely, the
change in hγi is always positive for n < 0.71 (which
includes all power-law oscillating models for which the
scalar field could serve as dark energy). For intermediate
values of n, this change can be either positive or negative,
depending on the value of n and the total equation of state
parameter γT. However, as noted in the previous section,
current limits on the time variation of G constrain the
present-day change in hγi to be negligible whenever the
scalar field provides a substantial contribution to the total
energy density.
These constraints are relaxed in the early universe. While

BBN also constrains the time variation ofG, these limits are
considerably weaker than present-day bounds. Thus, the
nonminimal coupling could provide a non-negligible
change in the scalar field equation of state in the early
universe even when the scalar field contributes substan-
tially to the total energy density.
Another cosmological effect arises from the rapidly

oscillating value of G in the Friedman equation. While
this oscillation yields an effective energy density scaling as
a−6, we have shown that this effective energy density will
always be dominated by the density of the scalar field itself.
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