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Ultralight axions have sparked attention because their tiny mass m ∼ 10−22 eV, which leads to a
kiloparsec-scale de Broglie wavelength comparable to the size of a dwarf galaxy, could alleviate the
so-called small-scale crisis of massive cold dark matter (CDM) candidates. However, recent analyses of the
Lyman-α forest power spectrum set a tight lower bound on their mass of m≳ 10−21 eV which makes them
much less relevant from an astrophysical point of view. An important caveat to these numerical studies is
that they do not take into account self-interactions among ultralight axions. Furthermore, for axions which
acquired a mass through nonperturbative effects, this self-interaction is attractive and, therefore, could
counteract the quantum “pressure” induced by the strong delocalization of the particles. In this work, we
show that even a tiny attractive interaction among ultralight axions can have a significant impact on the
stability of cosmic structures at low redshift. After a brief review of known results about solitons in the
absence of gravity, we discuss the stability of filamentary and pancakelike solutions when quantum
pressure, attractive interactions and gravity are present. The analysis based on 1 degree of freedom, namely
the breathing mode, reveals that pancakes are stable, while filaments are unstable if the mass per unit length
is larger than a critical value. However, we show that pancakes are unstable against transverse
perturbations. We expect this to be true for halos and filaments as well. Instabilities driven by the
breathing mode will not be seen in the low column density Lyman-α forest unless the axion decay constant
is extremely small, f ≲ 1013 GeV. Notwithstanding, axion solitonic cores could leave a detectable
signature in the Lyman-α forest if the normalization of the unknown axion core—filament mass relation is
∼100 larger than it is for spherical halos. We hope our work motivates future numerical studies of the
impact of axion self-interactions on cosmic structure formation.
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I. INTRODUCTION

The idea that the dark matter in our Universe could be
formed of ultralight bosons can be traced back to thework of
[1,2]. Lately, it has attracted a lot of attention owing to the fact
that, for a particle of mass around 10−22 eV, the correspond-
ing de Broglie wavelength, which defines the scale at which
“quantum pressure” sets in, is about a Kpc. Therefore, this
would alleviate the small-scale problems of the cold dark
matter candidates [3–6] (for a review, see Ref. [7]). The
cosmological properties of such ultralight bosons have been

scrutinized in detail, from the characterization of the linear
power spectrum [3,8] to the numerical analysis of the
nonlinearities at small scales through in N-body simulations
[9], the study of the innermost structure of halos [10], the
dynamical properties of the smallest objects [11] and the
impact on galaxy formation [12].
On the other hand, the hypothesis of ultralight bosons

as dark matter has been recently challenged in a series of
papers based on measurements of the Lyman-α forest
power spectrum extracted from high-redshift quasars
[13,14]. The Lyman-α forest arises from the filamentary
and sheetlike nature of the highly ionized, high-redshift
intergalactic medium (IGM). It probes fluctuations in the
matter distribution on scales k≳ 1 hMpc−1 [15–18] and,
therefore, is very sensitive to properties of the dark matter

*dvince@physics.technion.ac.il
†kehagias@central.ntua.gr
‡Antonio.Riotto@unige.ch

PHYSICAL REVIEW D 97, 023529 (2018)
Editors' Suggestion

2470-0010=2018=97(2)=023529(21) 023529-1 © 2018 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.97.023529&domain=pdf&date_stamp=2018-01-25
https://doi.org/10.1103/PhysRevD.97.023529
https://doi.org/10.1103/PhysRevD.97.023529
https://doi.org/10.1103/PhysRevD.97.023529
https://doi.org/10.1103/PhysRevD.97.023529


such as its free-streaming scale [19,20]. Fluctuations in the
Lyman-α forest set stringent lower bounds on the mass of a
ultralight bosons, m > 2 × 10−21 eV (95% C.L.) [13,14],
which appear to significantly limit the role of ultralight
bosons in cosmology (see also [21]). By contrast, Ref. [22]
argues that m ¼ 10−22 eV is still consistent with the data
owing to uncertainties in the thermal state of the high-
redshift IGM.
The goal of this paper is to offer the first study of the

impact of self-interactions among the ultralight bosons
on the mildly nonlinear large scale structure as traced by
the Lyman-α forest. In particular, we will investigate the
impact of an attractive force induced by a quartic coupling
on filamentary and sheetlike structures. Such an attractive
force arises when ultralight bosons are identified with
ultralight CP-odd axions, which arise from a symmetry-
breaking conjecture to solve the strong CP problem
[23–26]. For a mass of the order m ∼ 10−22 eV and a
decay constant (or symmetry-breaking scale) f∼1017GeV,
these ultralight axions may provide a large fraction of the
dark matter component as the energy of its oscillating
condensate contributes a fraction (see, e.g., [7])

Ω ∼ 10−1
�

f
1017 GeV

�
2
�

m
10−22 eV

�
1=2

ð1Þ

to the present-day critical density. For these fiducial values
the corresponding quartic coupling is extremely tiny,

λ ¼ m2

f2
∼ 10−96; ð2Þ

and, at first sight, completely negligible. This is the reason
why nearly all studies in the literature set this self-coupling
constant to zero. However, despite its tininess, the attractive
self-interaction of the ultralight axions plays a crucial role.
To convince oneself about the importance of the small

attractive forces among the axions, consider the case of
the spherical three-dimensional halos made of axions. In
the absence of gravity, such halos are always unstable.
In the presence of gravity, spherical halos are stable only if
their masses are smaller than about

M ∼ 7 × 109 h−1M⊙ for λ ∼ 10−96: ð3Þ

This has been known since the seminal work of Vakhitov
and Kolokolov [27] and stressed again more recently in
Refs. [28–34]. This result can be easily understood if one
realizes that the effective self-interaction coupling is not λ
itself, but λ multiplied by the phase-space density of axions
in the environment. Since there are situations in which the
latter is huge, the attractive force may become important.
This phenomenon is well-known in nonlinear physics as
it is responsible for the self-focusing of laser beams for
instance. Consequently, the current small-scale results

extracted from N-body simulations in which the quartic
coupling has been dismissed, so that there is no critical mass
above which halos are unstable, should be reconsidered.
As we already mentioned however, the fundamental

objects giving rise to the Lyman-α forest used to set
stringent bounds on the mass of the ultralight axions are
the IGM filaments and pancakes. Therefore, the following
question naturally arises: do these structures exist when
the dark matter is composed by ultralight axions? More
generally, in light of the instability of massive halos, it is
desirable to investigate how the cosmic web looks like
when the Universe is dominated by a sizeable fraction of
self-attracting ultralight bosons.
Our analytical findings indicate that the cosmic web is

influenced by a small, nonvanishing self-coupling among
ultralight axions. In particular, pancakes are unstable
against transverse perturbations even in the presence of
gravity; filaments are unstable if their mass per unit length
is larger than some critical value owing to the increase
of the attractive axion self-interaction which causes the
filaments to eventually collapse. These results indicate that
a more thorough investigation should be performed at the
numerical level in order to properly assess whether ultra-
light axions are ruled out by Lyman-α forest data and, on a
broader scope, to understand cosmic structure formation
in this scenario. Most cosmological simulations of ultra-
light axions thus far have ignored axion self-interactions,
focusing mainly on the impact of their large de Broglie
wavelength [9,10,35,36].
The paper is organized as follows. In Sec. II, we estimate

the impact of the attractive force among axions in the linear
regime. In Sec. III, we study the stability of the cosmic web
beyond the linear order in the case in which gravity is
switched off. This section contains results well-known in
the nonlinear physics community exploring the properties
of Bose-Einstein condensates. Section IV is devoted to the
stability analysis when gravity is turned on, whereas Sec. V
investigate the possibility of detecting unstable axion
filaments in the Lyman-α forest. Finally, Sec. VI summa-
rizes our findings and conclusions. We use natural units
ℏ ¼ c ¼ kB ¼ 1 throughout and adopt a cosmological
model consistent with CMB data [37,38].

II. AXION PERTURBATIONS
IN THE LINEAR REGIME

Our starting point is the action for the ultralight axion
field ϕ,

S½ϕ� ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
ð∂ϕÞ2 − Λ4

�
1 − cos

ϕ

f

��
; ð4Þ

where Λ is a sort of condensation scale, f is the decay
constant and g is the metric determinant. Expanding for
ϕ ≪ f and including the quartic coupling, one obtains a
potential of the form
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VðϕÞ ¼ 1

2
m2ϕ2 −

1

4!
λϕ4;

where m2 ¼ Λ4

f2
and λ ¼ m2

f2
: ð5Þ

For our fiducial choices of an axion mass m ¼ 10−22 eV
and a decay constant f ¼ 1017 GeV, we find λ ¼ þ10−96.
Higher order terms (ϕ6 and higher) are negligible as long as
ϕ=f ≪ 1, and this remains true as well when taking into
account the high phase-space density. Notice that ϕ has
a dimension of energy, and that the sign of the self-
interaction coupling leads to an attractive force. This will
be relevant for all our considerations.
The cross section per unit mass is

σ

m
¼ λ2

32πm3
∼ 10−97 cm2=g: ð6Þ

For comparison, constraints on self-interacting dark matter
from the merging of galaxy clusters impose the upper
bound σ=m≲ 1 cm2=g [39]. Therefore, one would naively
expect that axion self-interaction is completely negligible
as far as astrophysical scales are concerned. As we shall see
later however, because the axion phase space density is
enormous, self-interaction can play a role at sufficient large
number densities.
We will now perform a stability study and assess the

relevance of the axion self-interaction at the linear level.
The linear analysis is discussed in Ref. [40,41]. To derive
the nonrelativistic limit of the Klein-Gordon equation

□ϕ −m2ϕ ¼ −
λ

3!
ϕ3; ð7Þ

we set

ϕðx; ηÞ ¼
ffiffiffi
2

p
Re
�
ψðx; ηÞe−im

R
dη0a0
�
; ð8Þ

where we have adopted the conformal time η and the
complex phase of ψðx; ηÞ is such that

−iðE −mÞ
Z

dη0a0 ≪ −im
Z

dη0a0 ð9Þ

in the nonrelativistic limit. Note that ψ has the same units
as ϕ, i.e. units of energy. We thus obtain

_ϕðx; ηÞ ¼
ffiffiffi
2

p
Re
h
ð _ψ − imaψÞe−im

R
dη0a0
i

≈ −
ffiffiffi
2

p
Re
�
imaψe−im

R
dη0a0
�
; ð10Þ

and

ϕ̈ðx; ηÞ ¼
ffiffiffi
2

p
Ref½ψ̈ − imð2a _ψ þ _aψÞ −m2a2ψ �

× e−im
R

dη0a0 g
≈ −

ffiffiffi
2

p
Ref½imð2a _ψ þ _aψÞ þm2a2ψ �

× e−im
R

dη0a0 g: ð11Þ

In each expression, we have neglected the term with highest
time-derivative, as it is strongly suppressed relative to the
others. Substituting these relations into the Klein-Gordon
equation, we arrive at the Gross-Pitaevskii-Poisson (GPP)
equations in the nonrelativistic Newtonian gauge (upon
averaging over the fast period set by the axion mass)

ia

�
∂ηψ þ 3

2
Hψ

�
¼ −

1

2m
Δxψ þma2

�
Φ −

1

8f2
jψ j2

�
ψ

ΔxΦ ¼ 4π

m2
P
a2ρ; ð12Þ

where Φ is the Newtonian gravitational potential. We have
included in the axion energy density the dominant piece
solely, that is, ρ ≈m2jψ j2. Reference [32] proposes a
coordinate and field rescaling that absorbs all physical
constants. However, this rescaling involves explicitly mP
and, thus, is not suited to study the limit in which the
gravitational interaction becomes negligible. Therefore, we
decided to rescale the coordinates and the fields according to

η →
1

m
η ¼ ~η; x ¼ ~x; ψ →

m
f
ψ ¼ ~ψ ;

ρ →
1

f2
ρ ¼ ~ρ; Φ → m2Φ ¼ ~Φ: ð13Þ

The system of equations can be recast into

ia

�
∂ηψ þ 3

2
Hψ

�
¼ −

1

2
Δxψ þ a2

�
Φ −

1

8
jψ j2

�
ψ

ΔxΦ ¼ 4π ~Ga2jψ j2; ð14Þ

where the gravitational constant ~G ¼ ðmfÞ2=m2
P has dimen-

sions of energy square, and we have dropped the tildes from
the coordinates and the fields to avoid clutter. We perform
the standard Madelung transformation and write the wave
function ψðx; ηÞ as

ψðx; ηÞ ¼ Aðx; ηÞeiθðx;ηÞ: ð15Þ

Since the density now reads ρ ¼ jψ j2 ≡ A2, the normalized
GGP system Eq. (14) can be recast into the form
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_ρþ 3Hρþ ∇xðρuÞ ¼ 0;

_uþHuþ ðu · ∇xÞu ¼ −∇xQ − ∇xΦ − ∇xh;

ΔxΦ ¼ 4π ~Ga2ρ; ð16Þ

upon defining the axion phase velocity u≡ a−1∇xθ. This
shows that uðx; ηÞ is the physical, peculiar (bulk) velocity of
the axion condensate. Furthermore,

Q ¼ −
1

2a2
Δx

ffiffiffi
ρ

pffiffiffi
ρ

p ð17Þ

is the quantumpotential andhðρÞ ¼ −ρ=8 is the enthalpy per
unit mass.
We now linearize the GPP system. The contribution from

the so-called quantum “pressure” Q (which purely arises
from the uncertainty principle: the delocalization of the
particles increases with their momenta) is given by

∇xQ ¼ −
1

2a2
∇x

�
Δx

ffiffiffi
ρ

pffiffiffi
ρ

p
�

¼ −
1

2a2
∇x

�
Δx

ffiffiffiffiffiffiffiffiffiffiffi
1þ δ

pffiffiffiffiffiffiffiffiffiffiffi
1þ δ

p
�

≈ −
1

4a2
∇xðΔxδÞ: ð18Þ

Similarly, the interaction term becomes

∇xhðρÞ ¼ −
1

8
∇xρ ¼ −

ρ̄

8
∇xδ; ð19Þ

where ρ̄ is the physical, average density of axions.
Substituting these expressions into the Euler equation,
we obtain the linear growth equation

δ̈þH_δþ 1

4a2
Δ2

xδþ
ρ̄

8
Δxδ − 4π ~Ga2ρ̄δ ¼ 0 ð20Þ

or, in Fourier space,

δ̈k þH _δk þ
�
k4

4a2
−
ρ̄k2

8
− 4π ~Ga2ρ̄

�
δk ¼ 0; ð21Þ

where δk is the amplitude of the Fourier modes. Going back
to the dimensionful variables (physical units), this reads

δ̈k þH _δk þ
�

k4

4a2m2
−

ρ̄k2

8m2f2
− 4πGa2ρ̄

�
δk ¼ 0: ð22Þ

Like gravity, the self-interaction also induces a contribution
proportional to the mean density ρ̄. Ignoring the self-
interaction, the quantum pressure and gravitational pull
define a characteristic (comoving) “Jeans scale”

kJ ¼ ð16πGÞ1=4m1=2aρ̄1=4: ð23Þ

For nonrelativistic dust with ρ̄ ∝ a−3 and a Hubble param-
eter h ¼ 0.7, the comoving Jeans scale is given by

kJðaÞ ¼ 161a1=4m1=2
22 ðΩmh2Þ1=4 hMpc−1; ð24Þ

where, for convenience, we shall work with

m22 ≡ m
10−22 eV

;

f17 ≡ f
1017 GeV

;

λ96 ≡ λ

10−96
: ð25Þ

In configuration space, the corresponding Jeans length is

rJðaÞ ¼ 2π=kJ ¼ 39a−1=4m−1=2
22 ðΩmh2Þ−1=4 h−1Kpc;

ð26Þ

in agreement with [42].
Similarly, the self-interaction becomes larger (in magni-

tude) than the quantum pressure at wave numbers k < kI ,
where

kI ¼ 2−1=2af−1ρ̄1=2: ð27Þ

This corresponds to the (comoving) characteristic wave
number

kIðaÞ ¼ 1.5 × 10−2a−1=2f−117 ðΩmh2Þ1=2 hMpc−1; ð28Þ

which, in configuration space, translates into the

rIðaÞ ¼ 68a1=2f17ðΩmh2Þ−1=2 h−1Mpc: ð29Þ

In other words, the self-interaction always dominates the
quantum pressure on scales k≲ 1 hMpc−1 for our fiducial
parameter values.
The characteristic wave numbers kJ and kI are shown in

Fig. 1 as a function of a scale factor for various choices of
m22 and f17. Perturbations with a comoving wave number k
are linearly stable when they lie within the shaded area.
In linear theory, the axion self-interaction is relevant at
high redshift, but completely negligible at low redshift.
However, it affects the growth of perturbation only in
radiation domination so long as the decay constant is
f17 ≳ 0.03. Therefore, this suggests that axion self-
interaction can be safely neglected in the linear regime if
all the dark matter is in the form of axions.
Let us conclude this section with a brief discussion of

[43–45] (and the numerical study of [46]). These authors
implemented the full axion potential Λ4ð1 − cosðϕ=fÞÞ
into a CMB Boltzmann code and found that, for f17 ≲ 0.1
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(which corresponds to their coupling being ≳105), the
z¼0 linear power spectrum exhibits a bump around
k≳ 1 hMpc−1. They attribute this feature to a tachyonic
instability1 of the linear mode. This effect arises only when
the initial misalignment angle θi ≡ ϕi=f (where ϕi is the
initial field value) is very close to π, that is, ϕ starts at the
top of its potential. Such highly fine-tuned initial con-
ditions, which imply ϕi ∼ f, will not be considered here.

III. STABILITY ANALYSIS
BEYOND THE LINEAR REGIME:

EXCLUDING GRAVITY

In this section we start our considerations about the
impact of the self-interactions of the ultralight axions on the
nonlinear large scale structure. Albeit tiny, they can have a
huge influence on the cosmic web (namely, halos, pancakes
and filaments).
The fundamental implications of an attractive force

have been widely studied in nonlinear physics. They lead,
for instance, to the phenomena of modulation instability

and catastrophic self-focusing of laser beams or collapse
in Bose-Einstein condensates, with the collapse being
sometimes self-similar, i.e. described by mathematical
solutions whose forms are rescaled ground-state solitary
waves or solitons. We consider first the Gross-Pitaevskii
(GP) equation without gravity (and, therefore, ignore the
expansion of the Universe). The following results, which
are extensively discussed in [47], are standard in the
condensed matter community. However, we are of the idea
that summarizing here the salient features is useful for the
reader who might not be familiar with these arguments.2

More details can be found in Ref. [47].

A. Solitons in D-dimensions

We begin with the elliptic, nonlinear GP equation in
D-dimensions written in (cosmic) time t and rescaled
coordinates (notice that we have appropriately rescaled
the spatial coordinates and the wave function in order to
eliminate all the irrelevant coefficients)

i∂tψ þ Δxψ þ jψ j2ψ ¼ 0: ð30Þ

One can look for standing wave solutions of the form

ψðx; tÞ ¼ eiωtϕðxÞ; ð31Þ
where the function ϕðxÞ satisfies the equation

Δxϕ − ωϕþ jϕj2ϕ ¼ 0; ð32Þ

and ω has to be positive to ensure that the solution (and
its derivatives) vanishes at spatial infinity. One can easily
prove that the solution for the field ϕ arises from the
variational problem

δðH þ ωNÞ ¼ 0; ð33Þ
where

N ¼
Z

dDxjϕj2

H ¼
Z

dDx

�
j∇xϕj2 −

1

2
jϕj4
�
: ð34Þ

Here, Ω ¼ H þ ωN and −ω ≤ 0 formally are the grand-
canonical and chemical potential of the system. For
simplicity however, we shall refer to Ω as an effective
energy rather than a grand potential. Note that the chemical
potential is negative to allow for the number N of particles
to be arbitrarily large.

FIG. 1. The comoving wave number kJðaÞ (dashed green) and
kIðaÞ (solid red) as a function of a scale factor a for different
axion masses m22 and decay constant f17 (see text). The shaded
(yellow) area indicates the region that is linearly stable to
perturbations, i.e. k > minðkJ; kIÞ. The vertical (dotted) line
indicates the scale factor aeq of equivalence (zeq ¼ 3515 in
our cosmology with Ωmh2 ¼ 0.147). When the axion self-
interaction is neglected, stability occurs above the dashed (blue)
curve.

1The potential Eq. (5) is tachyonic (V 00 < 0) for ϕ=f ≥
ffiffiffi
2

p
, i.e.

outside the range of validity of our approximation (which
assumes ϕ ≪ f).

2In all these considerations we assume that the number of
particles is conserved. This of course fails to be true during a
collapse phase when the self-annihilation of the axion field into
its own relativistic quanta and/or photons become relevant due to
resonant effects, see for instance Ref. [48].
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Solitons form owing to the balance between non-
linear interaction and dispersion due to the quantum
pressure. They correspond to stationary points of their
Hamiltonians under the condition that the integral of
motion, i.e. the particle number, is kept fixed. Solitons
are therefore said to be associated to conditional extrema.
This is an important point to stress. Were the GP solitons
only stationary points of the Hamiltonian, the latter
would be unstable for those cases in which the
Hamiltonian is unbounded from below.3 For solitons
which are stationary and conditional points of the
Hamiltonian (i.e. they minimize the effective energy
Ω), one can invoke the Lyapunov theorem4 so that, in
order to prove the soliton stability, it is sufficient to prove
the boundness of the Hamiltonian while the total number
of particles is held fixed.
The following transformation (a uniform stretching of

the coordinates):

~ϕðxÞ ¼ 1

aD=2 ϕ

�
x
a

�
ð35Þ

preserves N and transforms the Hamiltonian H into

HðaÞ ¼ 1

a2

Z
dDxj∇xϕj2 −

1

2aD

Z
dDxjϕj4: ð36Þ

Equation (33) then implies that

∂H
∂a
				
a¼1

¼ 0 ð37Þ

or

H1 ¼
D
4
H2; ð38Þ

where

H1 ¼
Z

dDxj∇xϕj2 and H2 ¼
Z

dDxjϕj4 ð39Þ

are the kinetic and (minus) the potential energy, respec-
tively. On the other hand, since H1 ¼ −ωN þH2 (the
equation of motion implies that the energy Ω is zero for
a ¼ 1), one obtains

H1 ¼
Dωð4−DÞ=2

4 −D
N0;

H2 ¼
4ωð4−DÞ=2

4 −D
N0;

H ¼ ðD − 2Þωð4−DÞ=2

4 −D
N0; ð40Þ

where N0 ¼ ωD−1N parametrizes the total number of
particles. From this variational principle argument, one
sees that the Hamiltonian of the system evaluated at its
ground state is positive for D < 2 and vanishes at the
critical dimension D ¼ 2. Furthermore, since

∂2H
∂a2

				
a¼1

¼ 2ð2 −DÞH1; ð41Þ

the ground state realizes a minimum of HðaÞ when D < 2
and a maximum when D > 2. One concludes that the
standing wave which provides the ground state is stable for
D < 2 and unstable for D > 2.
The caseD ¼ 2 is called critical: both the kinetic and the

potential energy terms in the Hamiltonian have a similar
scaling, and the above analysis cannot furnish a conclusive
answer about the stability of the ground state solitons. If the
kinetic energy is larger than the (minus) potential energy,
the Hamiltonian is positive, increasing as a tends to zero;
in the opposite case, the Hamiltonian is unbounded from
below; all solitonic solutions on the ðH; aÞ-plane are
degenerated into the line H ¼ 0, whose soliton represents
a sort of separatrix between the manifolds of collapsing and
noncollapsing distributions. Let us elaborate further on this.
Consider the variance

V ¼
Z

d2xr2jψ j2; ð42Þ

with r ¼ jxj. V measures the width of the soliton if the latter
is centered at the origin. Using the fact that

d2V
dt2

¼
Z

d2xr2∂i∂jTij; ð43Þ

where

Tij ¼ 2ð∂iψ∂jψ
� þ ∂iψ

�∂jψ þ LδijÞ;

L ¼ −
1

2
f∇x · ðψ�∇xψ þ ψ∇xψ

�Þ þ jψ j4g; ð44Þ

are the momentum stress tensor and the Lagrangian density.
Repeated integration by parts leads to the identity [47]

3This is an essential argument in Derrick’s theorem [49] about
the stability of solitonic solutions in dimension D ≥ 3.

4According to this theorem, at least one stable solution is
present when some integral, e.g. the Hamiltonian, is bounded.
Consider for instance a system in a state corresponding to the
absolute minimum of such integral. Each variation of the solution
must increase its value in contradiction to the integral conserva-
tion. Hence, the solution must be stable.
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d2V
dt2

¼ 2

Z
d2x
X
j

Tjj

¼ 8

�Z
d2xj∇xψ j2 −

1

2

Z
d2xjψ j4

�
≡ 8H: ð45Þ

Since the Hamiltonian is conserved, this implies that

V ¼ 4Ht2 þ C1tþ C0; ð46Þ

where the integrations constants C0 and C1 are related to
additional conserved quantities. Because V is positive by
construction, if H < 0 (called the Vlasov-Petrishchev-
Talanov criterion [50]) then V reaches zero at some finite
time; ifH > 0 thenV grows indefinitely. In other words, any
perturbations of solitons that move the Hamiltonian away
from zero will lead either to collapse for H < 0 or to a
dynamics in which collapse is forbidden [51]. In this latter
case, the system completely spreads out because of
dispersion, the nonlinear interactions become insignificant,
and waves become linear at large times with their amplitude
tending to zero. The ground state soliton of the critical value
D ¼ 2 is the Townes ground soliton [52] andhas the property
of having the HamiltonianH ¼ 0 associated to some critical
number of axionsNc (see below). Solitons with a number of
particles smaller than Nc will then be stable [because the
Hamiltonian scales likeH ∝ ðNc − NÞ] thus confirming our
findings in the previous section. Let us elaborate further
about the implications of this generic analysis for the cosmic
web made out of ultralight axions.

1. Halos

According to the discussion above, halos, which corre-
spond to D ¼ 3 standing waves, must be unstable (in the
absence of gravity). This matches of course the findings of
Ref. [28], where it was found that, in the limit of vanishing
gravity, there are no stable three-dimensional halos for
ultralight bosons. The wave function becomes singular in
a finite amount of time. This phenomenon is generically
called supercriticalwave collapse, and it causes a fast transfer
of energy from the large to the small scales with the wave
function scaling around the singularity time t0 as [32,53]

ψðr; tÞ ¼ 1

ðt0 − tÞ1=2þiα χ

�
r

ðt0 − tÞ1=2
�

χðξÞ ¼ C=ξ1þ2iα for ξ ≫ 1; ð47Þ

where α≃ 0.545 and C≃ 1.01. When gravity is turned on
again, it can help stabilizing the halos so long as they are
smaller than a maximal mass, generating thereby what is
called a self-bound condensate.

2. Pancakes

Pancakes correspond to D ¼ 1 solitons and, therefore,
are stable according to the variational principle arguments.

3. Filaments

As we have seen previously, for filaments, i.e. D ¼ 2
standing waves, the variational principle is inconclusive.
In fact, one can show again that, at the critical dimension
D ¼ 2, the wave function may become infinite in a finite
amount of time if filaments are associated to a number of
particles larger than a critical valueNc. This phenomenon is
generically called critical wave collapse. To find Nc one
may consider the D ¼ 2 GP equation

i∂tψ þ
� ∂2

∂x2 þ
∂2

∂y2
�
ψ þ jψ j2ψ ¼ 0: ð48Þ

It gives rise to the so-called Townes solitons [52]

ψðx; y; tÞ ¼ eiωtϕTðrÞ; r2 ¼ x2 þ y2; ð49Þ

where −ω is an arbitrary chemical potential and ψ satisfies
the equation

�
d2

dr2
þ 1

r
d
dr

− ω

�
ϕT þ ϕ3

T ¼ 0: ð50Þ

The well-known Vakhitov-Kolokolov stability criterion
[27] dN=dð−ωÞ < 0, which reflects the fact that the
number of particles should increase when the chemical
potential is lowered, tells us that instability is reached for
filaments with particle number larger than

Nc ¼ π

Z
∞

0

drrϕ2
TðrÞ≃ 5.85: ð51Þ

The Vakhitov-Kolokolov stability criterion does not hold
for the Townes solitons themselves, which indeed are
degenerate as they all satisfy N ¼ Nc. As we already
mentioned, Townes solitons separate D ¼ 2 solitons which
are doomed to collapse if the associated number of particles
is too large (N > Nc), from those who can survive if their
associated number of particles is small enough (N < Nc).
From Eq. (46) one sees that the characteristic size of the
collapsing filaments scales roughly like ðt0 − tÞ1=2 (up to
logarithmic corrections, see later). Townes solitons for
which N ¼ Nc are unstable themselves. The instability
is fully nonlinear, i.e. it cannot be described by any
eigenvalue in the spectrum evaluated around the solitary
wave and leading to an instability. In fact, the two
eigenvalues λ� of the D ¼ 2 GP equation linearized at a
solitonic solution exactly vanish (while, for N > Nc, they
emerge on the real axis, which generates a linear insta-
bility). This corresponds to the fact that the D ¼ 2 GP
equation has conformal symmetry which allows us to
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conclude that, if ψðr; tÞ is a solution, so is l−1ψðr=l; t=l2Þ
[54]. In such a situation, there exists a self-similar solution
near the singularity of the form [55]

ψðr; tÞ≃ 1

l
χðξÞeiτþilξ2=4; ð52Þ

with

ξ ¼ r=l; τ ¼
Z

t

0

dt0

l2ðt0Þ

lðtÞ ¼
�
2π

t0 − t
ln lnðt0 − tÞ−1

�
1=2

: ð53Þ

B. Solitons and the role of transverse instabilities

So far we have summarized the stability landscape for
solitons living in D ¼ 1, 2 and 3. A natural question is
the fate of such objects when they are embedded in
three dimensions. Let us consider, for example, pan-
cakelike objects. It is well-known that they are unstable
when immersed in higher dimensions, for instance
against long-wavelength transverse fluctuations [56].
Therefore, let us consider the D ¼ 2 GP equation,
Eq. (48), with a perturbation along one extra transverse
direction [47]. Since the unperturbed soliton solution
reads (with ω > 0)

ψ0ðx; tÞ ¼ ΨðxÞeiωt; ΨðxÞ ¼
ffiffiffiffiffiffi
2ω

p

coshð ffiffiffiffi
ω

p
xÞ ; ð54Þ

one looks for solution of the perturbed equation where
there are tiny disturbances of the amplitude and the
phase

ψ ¼ Ψð1þ χÞeiðωtþρÞ: ð55Þ

Expanding for small χ and ρ we get

ψ ¼ ψ0 þ ðf þ igÞeiωt; ð56Þ

with f ¼ χΨ and g ¼ ρΨ. Linearizing the problem leads
to the following system of equations:

�
d2

dx2
− ωþ 3Ψ2

�
f ¼ ∂tg −

∂2f
∂y2 ;�

d2

dx2
− ωþ Ψ2

�
g ¼ −∂tf −

∂2g
∂y2 : ð57Þ

One introduces now the slow variables Y ¼ ϵy and T ¼
ϵt and expand the functions f and g in powers of ϵ,
f ¼ f0 þ ϵf1 þ ϵ2f2 þ � � � and similarly for g. At lead-
ing order one finds

�
d2

dx2
− ωþ 3Ψ2

�
f0 ¼ 0;

�
d2

dx2
− ωþΨ2

�
g0 ¼ 0; ð58Þ

so that

f0 ¼ aðY; TÞΨ0ðxÞ;
g0 ¼ bðY; TÞΨðxÞ: ð59Þ

The physical interpretation of the functions a and b
is a slow, long-wavelength modulation of both the
amplitude and phase of the solitonic solution,
ψ ≃Ψðxþ aðX; TÞÞeiðωtþbðY;TÞÞ. At linear order in ϵ
one gets

�
d2

dx2
− ωþ 3Ψ2

�
f1 ¼ ∂Tg0;�

d2

dx2
− ωþΨ2

�
g1 ¼ −∂Tf0; ð60Þ

which yields

f1 ¼ ∂Tb
dΨ
dω

;

g1 ¼ −
1

2
∂TaxΨ: ð61Þ

At second order in ϵ, one finds

�
d2

dx2
− ωþ 3Ψ2

�
f2 ¼ ∂Tg1 − ∂YYf0;�

d2

dx2
− ωþΨ2

�
g2 ¼ −∂Tf1 − ∂YYg0: ð62Þ

For a nontrivial solution f2 to exist, this system must
satisfy the solvability conditions5

Z
∞

−∞
dxf0∂Tg1 ¼

Z
∞

−∞
dxf0∂YYf0;Z

∞

−∞
dxg0∂Tf1 ¼ −

Z
∞

−∞
dxg0∂YYg0 ð63Þ

or, equivalently,

5To understand the origin of this conditions, let us reexpress the
first line of Eq. (58) asLf0 ¼ 0, where the differential operatorL is
self-adjoint. Similarly, the first line of Eq. (62) can be recast into the
system Lf2 ¼ s, where s is the inhomogeneous term. Therefore,
interpreting the integral of s · f0 as the scalar product ðs; f0Þ, we
obtain ðs; f0Þ ¼ ðLf2; f0Þ ¼ ðf2; Lf0Þ ¼ ðf2; 0Þ≡ 0, which is
precisely the first relation in Eq. (63).
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∂TTa ¼ 4

3
ω∂YYa;

∂TTb ¼ −4ω∂YYb: ð64Þ

Since ω is positive, these conditions imply that the
pancakelike solution is always unstable against the trans-
verse long-wavelength perturbations. In fact, in Ref. [57]
it was subsequently shown that there is a critical value of
transverse wavelength above which the soliton is unstable
against fluctuations which are not limited to be long-
wavelength. We do not expect gravity to change the
situation, as we will see in the next section.
The experience with pancakes immersed in a higher-

dimensional setup teaches us that the stability of the various
solitons is not at all guaranteed. It is generally accepted that
the focusing GP equation (similar to the one we discussed
here with attractive self-interaction) does not have stable
(bright) solitons in D ¼ 3. The reason is that the quantum
pressure is not enough to counteract the internal energy of
the soliton. The self-interaction energy indeed scales like
1=RD̄, where D̄ is the codimension of the soliton and R its
typical size (see the next section for more details), whereas
the quantum pressure scales like 1=R2. Therefore, only for
pancakes (D̄ ¼ 1) the quantum pressure can compensate the
attractive self-interaction, and hence only the pancake can
be stable in the absence of gravity. However, this stability
concerns only the breathing mode, i.e. the mode that shares
the same symmetries as the soliton itself. In other words, the
pancake is stable for planar symmetric fluctuations. We have
seen that arbitrary transverse fluctuations make the soliton
unstable. Therefore, in the absence of gravity, all solitons are
expected to be unstable in D ¼ 3.
All these preliminary considerations show that the

cosmic web of the ultralight axions is expected to be quite
different from the one in the standard cold or warm dark
matter (CDM and WDM) scenario because there is no
attractive interaction in this case. In the next section, we
bring gravity back into the game. This will necessarily limit
our capability in investigating the stability of the cosmic
wave, and we will restrict ourselves to a 1 degree of
freedom analysis, that is, to the breathing radius mode.

IV. STABILITY ANALYSIS BEYOND THE LINEAR
REGIME: INCLUDING GRAVITY

The goal of this section is to investigate the stability of
structures making up the cosmic web, such as halos,
pancakes and filaments, formed by the axion dark matter
in the presence of an attractive force plus gravity. Aswe have
seen already in the previous section, the impact of the self-
interaction among axion particles is not at all negligible.
To get insights about the stability issue, we simplify

the problem by reducing it to a 1 degrees of freedom by
considering fully symmetric solitonic objects with various
codimensions D̄. Namely, halos have zero-dimension, and

therefore D̄ ¼ 3; pancakes are two-dimensional objects
and therefore D̄ ¼ 1; filaments are one-dimensional strings
and, correspondingly, D̄ ¼ 2. Note that the case D̄ ¼ 3was
studied in detail in [28]. This simplification allows us to
include gravity into the stability analysis. The goal of this
section is to understand if the generic results described in
the previous section hold in the presence of gravity.

A. Hamiltonian

For simplicity, we set the chemical potential ω to zero,
that is, we leave the number of particles N unconstrained.
Therefore, the fundamental quantity we look at is the
Hamiltonian H associated with the GPP system

H ¼ EK þ EQ þ U þW; ð65Þ

where EK is the “classical” kinetic energy, EQ is the
quantum pressure, U is the internal energy and W is the
gravitational energy. Namely,

EK ¼ 1

2

Z
d3xρu2; EQ ¼ 1

8

Z
d3x

ð∇xρÞ2
ρ

U ¼
Z

d3x½ρhðρÞ − PðρÞ�; W ¼ 1

2

Z
d3xρΦ: ð66Þ

The pressure PðρÞ is given by the equation of state

P ¼ −
1

16
ρ2: ð67Þ

Therefore, the internal energy reads

U ¼ −
1

16

Z
d3xρ2: ð68Þ

We now look for configurations ðρ; uÞ that minimize
the Hamiltonian H½ρ; u�, that is, configurations which
are stable, steady-state solutions of the GPP system. As
we will discover, these configurations may exist only if
some critical conditions are met, and they crucially depend
on the quartic coupling.
We follow Ref. [28] and make a Gaussian ansatz for

the density profile ρðt; xÞ. We consider solutions with a
codimension D̄ ¼ 1 (planar symmetry or pancakes), D̄ ¼ 2

(cylindrical symmetry or filaments) and D̄ ¼ 3 (spherical
symmetry or halos), and use the corresponding cartesian,
cylindrical and spherical coordinates. Therefore,

ρðx; tÞ ¼ CD̄ðtÞe−r2=2R2ðtÞ; ð69Þ

where RðtÞ is a time-dependent characteristic length and

CD̄ðtÞ ¼
AD̄

ð2πÞD̄=2RD̄
: ð70Þ
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Adopting a different profile, i.e. the solution of Ref. [58] for
gas cylinders as a proxy for filaments for instance, would
only change the values of σD̄, ζD̄, νD̄ by factors of order
unity, but not affect scalings with AD̄, R. For pancakes
(D̄ ¼ 1), r ¼ jrj becomes the distance along the axis
normal to the sheet plane whereas, for filaments (D̄ ¼ 2)
r is the radius in the two-dimensional plane transverse to
the filament, and for halos (D̄ ¼ 3) r is the standard
distance from the halo center. Furthermore, A2 ≡M and
A1 ≡ Σ are mass per unit length and surface density,
respectively for filaments and pancakes; A3 ≡M is a
characteristic mass of the given halo.
Finally, we must also take the kinetic energy into account

for the minimization of H½ρ; u�. Following [28] and using
the ansatz u ¼ ð _R=RÞr for the velocity field (which follows
from a continuity argument) yields a kinetic energy EK ∝
1
2
_R2 regardless of the exact shape of ρðx; tÞ. However, such

an ansatz misses an important ingredient: dark matter
particles generally move along nonradial orbits [59–62].
Conservation of angular momentum prevents the object
from collapsing down to a singularity. In practice, the
kinetic energy associated to the solitonic solutions should
include—at least for D̄ ¼ 2 and 3—a centrifugal potential
which reflects the existence of nonradial motions and the
conservation of angular momentum,

EK ∝
1

2

�
_R2 þ h2

R2

�
: ð71Þ

For D̄ ¼ 3, h ¼ L is the magnitude of the angular
momentum vector whereas, for D̄ ¼ 2, h ¼ Lz is the
component along the filament axis. For D̄ ¼ 1 however,
symmetry implies that any net angular momentum would
be directed towards the direction perpendicular to the
pancake. Hence, such a term would not prevent the pancake
to collapse along the r-direction. Nevertheless, since the
exact magnitude of h is unknown, we will ignore it in the
subsequent analysis. This will not affect our result signifi-
cantly because it has the same scaling ∝ R−2 as the
quantum pressure EQ. However, we should bear in mind
that it is generally present and, in the case of standard
CDM, leads to stable solutions for D̄ ¼ 2 and 3.
We emphasize that the symmetric solutions considered

here describe axion solitonic cores inside halos, filaments
or pancake. We will come back to this point in Sec. V where
we discuss implications for Lyman-α forest measurements.

B. Halos

We start with the spherical symmetric halos already
studied thoroughly in Ref. [28]. Working with the rescaled
coordinates and fields, we have (we omit again the tildes
to avoid clutter)

ρ ¼ A3

ð2πÞ3=2R3
e−r

2=2R2

; r2 ¼ x21 þ x22 þ x23; ð72Þ

where A3 ¼ Mc=f2, and Mc is the mass of the axions
solitonic core, or “axion star”, at the center of the halo. The
factor of 1=f2 arises because the rescaled density is 1=f2

times the physical density. In order to calculate the energy
E we need the potential Φ, which satisfies

ΔΦ ¼ 4π ~Gρ: ð73Þ

Note that since

ρ → A3δ
ð3ÞðrÞ; R → 0; ð74Þ

we should impose the condition on Φ

Φ → −
A3

r
; R → 0: ð75Þ

The solution to Eq. (73) subject to the condition (75) is

Φ ¼ −
~GA3

r
erf

�
rffiffiffi
2

p
R

�
; ð76Þ

where erfðzÞ is the error function. Using, Eqs. (72)
and (76), one finds

EQ ¼ σ3
A3

R2
; σ3 ¼

3

8
;

U ¼ ζ3
A2
3

R3
; ζ3 ¼ −

1

128π3=2
;

W ¼ ν3
A2
3

R
; ν3 ¼ −

1

2
ffiffiffi
π

p ; ð77Þ

so that the total potential V ¼ EQ þ U þW is

VðRÞ ¼ σ3
A3

R2
þ ζ3

A2
3

R3
þ ν3

~GA2
3

R
: ð78Þ

Moving back to the dimensionful variables yields

VðRÞ ¼ σ3
f2

Mc

R2
þ ζ3
f4

M2
c

R3
þ ν3

�
m

fmP

�
2M2

c

R

¼ m2

f2

�
σ3
m2

Mc

R2
þ ζ3
m2f2

M2
c

R3
þ ν3
m2

P

M2
c

R

�
: ð79Þ

In other words, this is equivalent to replacing A3 by the
physical mass M and rescaling the dimensionless param-
eters σ3, ζ3 and ν3 as follows:
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σ3 →
1

m2
σ3

ζ3 →
1

m2f2
ζ3;

ν3 →
1

m2
P
ν3: ð80Þ

The physical energy is obtained upon a multiplication by
f2=m2, which would cancel the factor of m2=f2 in the
second equality. It is now very clear that the gravitational
energy correctly behaves likem−2

P and, thus, vanishes in the
limit mP → ∞. Conversely, the internal energy scales like
1=ðmfÞ2 and, thus, vanishes when the decay constant tends
towards f → ∞ at fixed m. Since the rescaling Eq. (80) is
valid for any codimension D̄, we shall hereafter express the
potential V directly in term of the physical mass (or surface
density etc.) and the dimensionless coupling σD̄, ζD̄ and νD̄.
Stable, steady solutions of the Hamiltonian are local

minima of VðRÞ and satisfy _R ¼ 0. For D̄ ¼ 3, the critical
radii for which V 0ðRÞ ¼ 0 turn out to be

Rc;halo ¼ −
�

σ3
ν3Mc

� 
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3

ζ3ν3
σ23

M2
c

s !
: ð81Þ

Only for the solution with the minus sign in front of the
square root

V00ðRc;haloÞ ¼ −ν3
M2

c

R3
c;halo

�
1 −

3ζ3
ν3R2

c;halo

�
ð82Þ

is positive, and there is a stable solution for masses
Mc ≤ Mc;max,

Mc;max ≃ σ3ffiffiffiffiffiffiffiffiffiffiffi
3ζ3ν3

p ; ð83Þ

that is (restoring dimensionful couplings)

Mc;max ¼ 7.1 × 109
f17
m22

h−1 M⊙

¼ 7.1 × 109
1

λ96
h−1 M⊙: ð84Þ

We observe that, in this case, gravity is essential to make
the solitonic core stable at least below some maximal
mass. Indeed, switching off gravity (i.e. ν3 ¼ 0) one gets
V 00ðRc;haloÞ < 0, and halos are always unstable, as was
already pointed out in [28]. By contrast, in the absence of
self-interaction (i.e. ζ3 ¼ 0), the quantum pressure always
counteracts gravity, and the stability radius is given by
Rc;halo ¼ −2σ3=ν3Mc at all mass.

C. Pancakes

For pancakes, we have

ρ ¼ A1

ð2πÞ1=2Re−r
2=2R2

; r2 ¼ x21; ð85Þ

where A1 ¼ Σc=f2 is the surface density of the solitonic
core inside the axion pancake. Now we have,

ρ → A1δðx1Þ; R → 0; ð86Þ

and therefore we should impose the condition for Φ

Φ → 2πA1jx1j; R → 0: ð87Þ

The solution to Eq. (73) which satisfies (87) is given by

Φ ¼ 4πA1



Rffiffiffiffiffiffi
2π

p e−r
2=2R2 þ r

2
erf

�
rffiffiffi
2

p
R

��
: ð88Þ

Integrating over the range −∞ < r < þ∞, we obtain

EQ ¼ σ1
Σc

R2
; σ1 ¼

1

8
;

U ¼ ζ1
Σ2
c

R
; ζ1 ¼ −

1

32
ffiffiffi
π

p ;

W ¼ ν1Σ2
cR; ν1 ¼ 2

ffiffiffi
π

p
; ð89Þ

and the potential V ¼ EQ þU þW is given by

VðRÞ ¼ σ1
Σc

R2
þ ζ1

Σ2
c

R
þ ν1Σ2

cR: ð90Þ

Axion filamentary cores collapse and stabilize at the critical
radius

Rc;pancake ¼
ffiffiffi
3

p σ1
ν1Σc

h
−α
�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α3

p �
−1=3

þ
�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α3

p �
1=3
i
; ð91Þ

where the (positive definite) dimensionless ratio α is

α≡ jζ1j
3

ffiffiffi
3

p Σ2
c

ν1σ
2
1

: ð92Þ

One can check that

V 00ðRc;pancakeÞ > 0 ð93Þ

regardless of the value of m, f or Σc. Introducing a
normalized surface density
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Σ10 ≡ Σc

1010 hM⊙Mpc−2
; ð94Þ

the dimensionless ratio becomes

α ¼ 1.6 × 10−2
jλj
m2

�
mP

m

�
2=3

Σ2=3
c

¼ 1.8 × 10−9
λ96Σ

2=3
10

m8=3
22

: ð95Þ

The one-dimensional mass-radius depends sensitively
on the value of α. So long as α is small, Rc;pancake is
approximately given by

Rc;pancake ≈ 6.7m−2=3
22 Σ−1=3

10 h−1Kpc ð96Þ

independently of the quartic coupling λ. This reflects the
fact that, for small values of λ and/or Σc, gravity is balanced
by the quantum pressure and the ultralight self-interaction
does not play any role. The latter becomes important when
α≳ 1 or, equivalently, when

Σ10 ≳ 1.4 × 1013
m4

22

λ3=296

: ð97Þ

For our fiducial choice of m and f, this occurs when the
surface density exceeds ∼1023 hM⊙Mpc−2. In this regime,
the one-dimensional stability radius is given by

Rc;pancake ≈ 2.0 × 109
m2

22

λ96Σ10

h−1Kpc: ð98Þ

Therefore, R → 0 in the limit λ → ∞ as expected. This
double power-law behavior is clearly seen in Fig. 2, where
the stability radius of pancakes, Eq. (91), is shown for
different values of the decay constant.
What about pancakes immersed in higher dimensions?

We have seen that, in the absence of gravity, they are
unstable against transverse fluctuations. Let us scrutinize
the fate of these pancakes when gravity is included. For this
purpose, inspired by Ref. [63], we study the transverse
instability modes of lower-dimensional objects embedded
in a higher-dimensional space as these modes can lead to
the breakup of the solitons through the so-called Landau
dynamics approach [64,65]. In practice, this amounts to
studying the semiclassical dynamics of the solitary wave as
a quasiparticle. The starting point is the one-dimensional
equation

i∂tψ þ Δxψ þ jψ j2ψ −ΦðxÞψ ¼ 0; ð99Þ

where ΦðxÞ is an external potential, which we will later
identify with the gravitational potential. In the limit of
vanishing gravity, the pancakelike solitonic solution reads

ψðx; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωþU2=2

p
eiðUx=2þωtÞ

cosh ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωþU2=4

p
ðx −Ut − x0ÞÞ

; ð100Þ

where x0 is the center of the solitonic pancake and
U ¼ ∂tx0 is its constant velocity. The energy associated
with this system is Ω1 ¼ H1 þ ωN, that is,

Ω1 ¼
Z

∞

−∞
dx

�
j∂xψ j2 −

1

2
ðjψ j4 − 2ωjψ j2Þ

�
: ð101Þ

Inserting Eq. (100) into (101) one finds

Ω1 ¼
1

3
ð4ωþ U2Þ3=2: ð102Þ

Let us now assume that the solution (100) is immersed in a
two-dimensional ambient space with coordinates ðx; yÞ. In
this case, the energy reads Ω2 ¼ H2 þ ωN, i.e.

Ω2 ¼
Z

∞

−∞
dx
Z

∞

−∞
dy

�
j∂xψ j2 þ j∂yψ j2

−
1

2
ðjψ j4 − 2ωjψ j2Þ

�
: ð103Þ

On assuming that x0 ¼ x0ðt; yÞ, the energy (103)
simplifies to

FIG. 2. Stability radius of the solitonic core for pancakes
(N ¼ 1) and filaments (N ¼ 2) as a function of the core surface
density Σ10 and mass per unit lengthM10, respectively. The solid
and dashed curves show Eqs. (91) and (120) for a decay constant
f17 ¼ 0.01, 0.1 and 1. The points on the abscissa indicate
the value M10 ¼ Mc;max for which the stability radius of the
filament vanishes [see Eq. (121)]. An axion mass m22 ¼ 1 is
assumed throughout for illustration.
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Ω2 ¼
Z

∞

−∞
dy

2þ ð∂yx0Þ2
6

f4ωþ ð∂tx0Þ2g3=2: ð104Þ

Therefore, if both the Hamiltonian H2 and the number of
particle N are conserved, Ω2 is also conserved, and we
obtain

0 ¼ dΩ2

dt

¼
Z

∞

−∞
dy

∂
∂t


2þ ð∂yx0Þ2

6
ð4ωþ ð∂tx0Þ2Þ3=2

�
: ð105Þ

This leads to the equation

6∂2
t x0 − 6∂yx0∂tx0∂t∂yx0

− 8ω∂2
yx0 − 2ð∂tx0Þ2∂2

yx0 þ 3∂2
t x0ð∂yx0Þ2 ¼ 0: ð106Þ

At the linearized level, x0 satisfies the equation

∂2
t x0 −

4ω

3
∂2
yx0 ¼ 0: ð107Þ

Clearly, for ω < 0 (and one can always reduce oneself to
this case by a Galilean transformation), this equation is of
elliptic-type and leads to instabilities. This indeed confirms
the analysis of Sec. III.
In the presence of a gravitational potential ΦðxÞ, the

Landau dynamics approach assumes that the energyΩ is an
adiabatic invariant, that is, ΦðxÞ varies slowly and (minus)
the chemical potential ω is replaced by ωþΦðxÞ. In this
case, the corresponding energy is

Ω2 ¼
Z

∞

−∞
dx
Z

∞

−∞
dy

�
j∂xψ j2 þ j∂yψ j2

−
1

2
ðjψ j4 − 2ðωþΦðxÞÞjψ j2Þ

�
; ð108Þ

and its variation gives rise to Eq. (99). For the solution
(100), we find

Ω2 ¼
Z

∞

−∞
dy

2þ ð∂yx0Þ2
6

ð4ωþ 4ΦðxÞ þ ð∂tx0Þ2Þ3=2:

ð109Þ

The Landau dynamics approach then assumes that

0 ¼
Z

∞

−∞
dy

∂
∂t


2þ ð∂yx0Þ2

6

× ð4ωþ 4ΦðxÞ þ ð∂tx0Þ2Þ3=2
�
; ð110Þ

leading to the equation

6∂2
t x0 − 6∂yx0∂tx0∂t∂yx0 − 6ð2 − ∂yx20Þ

∂Φ
∂x0

− 8ω∂2
yx0 − 2ð∂tx0Þ2∂2

yx0 þ 3∂2
t x0ð∂yx0Þ2 ¼ 0: ð111Þ

At the linear level (assuming that V is of the same order
as x20), we get that x0 satisfies

∂2
t x0 −

4ω

3
∂2
yx0 ¼ 2

∂Φ
∂x0 : ð112Þ

In the thin wall approximation, the potential of a sharply
localized pancake along the direction x will have a gravi-
tational potentialΦ ∼ jxj [see Eq. (87)]. Therefore, Eq. (112)
is a wave equation with a constant external source. Hence,
there will be again instability as in the case with no gravity.
We should stress that, in the above discussion, we have

taken the gravitational potential to be the potential resulting
from the Poisson equation with a source given by the
pancakelike soliton Eq. (100). Therefore, the dependence
of this solution on the transverse direction y appears
through the central position x0ðt; yÞ of the pancake.
However, the gravitational potential is in principle sourced
by the fluctuations of the soliton itself. Our analysis above
assumes that the energy functional (108) is still an adiabatic
invariant even if Φ is sourced by ψ. Within this approxi-
mation, we conclude that gravity is not able to halt the
transverse instabilities of the pancakelike profiles. It would
be interesting to investigate what is the role of gravity when
the gravitational potential is fully and consistently taken
account since the corresponding nonlocality might help the
stabilization [66].

D. Filaments

Filaments have N ¼ 2, so that their density profile reads

ρ ¼ A2

ð2πÞR2
e−r

2=2R2

; r2 ¼ x21 þ x22; ð113Þ

where A2 ¼ Mc=f2 is the mass per unit length of the
solitonic core at the center of the filament. Again since,

ρ → A2δ
ð2ÞðrÞ; R → 0; ð114Þ

we should impose the condition for Φ

Φ → 2A2 ln r; R → 0: ð115Þ

The solution to Eq. (73) which satisfies (115) is

Φ ¼ −A2Ei

�
r2

2R2

�
þ 2A2 ln r; ð116Þ

where EiðzÞ ¼ −
R
∞
−z dte

−t=t is the exponential integral
function. Discarding a (irrelevant) constant contribution
to the gravitational energy, we find
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EQ ¼ σ2
Mc

R2
; σ2 ¼

1

4
;

U ¼ ζ2
M2

c

R2
; ζ2 ¼ −

1

64π
;

W ¼ ν2M2
c lnR; ν2 ¼ 1; ð117Þ

so that the potential V becomes

VðRÞ ¼ σ2
Mc

R2
þ ζ2

M2
c

R2
þ ν2M2

c lnR: ð118Þ

For standard CDM, only the last term is present but, owing
to the centrifugal barrier, the Hamiltonian would exhibit
stable filamentary solutions for any value of the mass per
unit length M.
This should be contrasted to the axion case, for which

there exist stable filamentary configurations only below a
critical mass per unit length. Namely, introducing the
dimensionless quantity

M10 ≡ Mc

1010 M⊙Mpc−1
; ð119Þ

the critical radius is given by

Rc;filament ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ν2Mc
ðσ2 þ ζ2McÞ

s

¼ 1.5ðm2
22M10Þ−1=2

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1.4 × 10−7

M10

f217

s
h−1Kpc; ð120Þ

and exists only if σ2 þ ζ2Mc is positive. This yields the
condition M10 ≤ Mc;max, where the critical mass per unit
length (in unit of 1010 M⊙Mpc−1) is

Mc;max ¼ 7.0 × 106f217 ¼ 7.0 × 106
m2

22

λ96
: ð121Þ

A straightforward calculation shows that

V 00ðRc;filamentÞ > 0; ð122Þ

so that the solution is stable. Namely, the quantum pressure
overcomes both gravity and the attractive self-interaction,
and the filament does not collapse. By contrast, for a mass
per unit length M10 ≳Mc;max, the filaments are unstable
owing to the self-interaction being stronger than the
quantum pressure. This is in agreement with the results
of the previous section where it was shown that above a
critical number filaments are unstable in the absence of
gravity. For illustration, Eq. (120) is shown in Fig. 2 as a
function ofM10 for a few values of the decay constant f17.
When ζ2Mc ≪ σ2, the stability radius is given by

Rc;filament ≈

ffiffiffiffiffiffiffiffiffiffiffiffi
2σ2
ν2Mc

s
; ð123Þ

independently of the strength ζ2 of the self-interaction. For
a decay constant f17 ≳ 0.01, this is a very good approxi-
mation so long as M10 ≲ 2.
On which time scale do these filamentary cores collapse

if σ2 þ ζ2Mc is negative ? Upon making the ansatz
u ¼ ð _R=RÞr [28] and substituting into the expression of
EK , the Lagrangian reads

LðR; _R; tÞ≈EK −EQ −U −W

¼Mc
_R2 −VðRÞ

¼Mc
_R2 −

σ2Mc þ ζ2M2
c

R2
− ν2M2

c lnR: ð124Þ

The corresponding equation of motion is

McR̈ ¼ −
1

2
V 0ðRÞ; ð125Þ

whose solution is

M−1=2
c ðt − tiÞ ¼

Z
Ri

RðtÞ

dR

ðVðRiÞ − VðRÞÞ1=2 : ð126Þ

Here, Ri is the radius of the filament at initial time ti, and
we have assumed an initial velocity _Ri ≡ 0. The collapse
time tcoll is obtained from the requirement RðtcollÞ ¼ 0, so
that the solution can be reexpressed as

M−1=2
c ðtcoll − tiÞ ¼

Z
Ri

0

dR

ðVðRiÞ − VðRÞÞ1=2 : ð127Þ

Ignoring the self-gravity contribution to the potential
(which scales only logarithmic), the radius behaves like

RðtÞ≃ ffiffiffi
2

p
jσ2 þ ζ2Mcj1=4ðtcoll − tÞ1=2 ð128Þ

close to the collapse time. Taking ti ≈ 0, we obtain the time
scale tcoll over which a filament of initial thickness Ri
disappears. Comparing this time scale to the age of the
Universe, t0 ≈ 1.4 × 1010 yr, and restoring dimensionful
mass and couplings, we obtain

tcoll
t0

∼
mR2

i

2t0jσ2 þ ζ2Mc=f2j1=2

≃ 4.8
m22

ðMc=f217Þ1=2
�

Ri

h−1Kpc

�
2

: ð129Þ

Our naive estimate agrees with the scaling tcoll ∝ M−1=2
c

found by [31] in the limit M ≫ Mmax. Note that we have
neglected the expansion of the Universe and, moreover,
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assumed that the mass per unit length is conserved.
Filaments with an axion core of mass Mc ≳Mc;max

collapse on a time scale tcoll < t0 so long as their initial
(proper) radius is Ri ≲ 10 h−1Kpc. As we shall see in
Sec. V however, such filaments are so rare when f17 ≳ 0.01
than this instability can be safely ignored.

V. SIGNATURE IN THE LYMAN-α FOREST

We will now investigate whether the instabilities found
above can leave a detectable signature in the Lyman-α
forest. For sake of illustration, we shall focus on the D ¼ 2
solutions with cylindrical symmetry, as a proxy to the dark
matter filaments traced by the Lyman-α forest.

A. Axion core–filament mass relation

In order to relate the solitonic, filamentary solution
discussed in Sec. IV D to a high-redshift filament of gas
seen in Lyman-α absorption, we must take into account the
fact that the axion solitons are surrounded by a haze of
virialized axions which extend much farther than the
solitonic core. The latter is dubbed “axion star” in the
literature when it refers to the axion core at the center of
spherical halos. Numerical simulations of the GPP system
have established that the core-halo mass relation is given by
Mc ∝ M1=3

halo [9,36,67–69]. We will assume that the same
relation holds for filamentary configurations but, since it
has thus far not been measured from simulations, we will
treat the overall normalization scale as a free parameter.
Namely, we write

Mc ¼ 1.1 × 10−3Ac

�
Mg

4.4 × 10−3fgAc

�
nc
; ð130Þ

where the baryonic or gas massMg per unit length and the
coremassMc are both in unit of1010 M⊙Mpc−1, fg ∼ 0.2 is
the baryon mass fraction, nc is the powerlaw index, and Ac is
an overall normalization factor (whichmay generally depend
on f17). Simulations suggest that Ac ¼ 1 and nc ¼ 1=3 for
noninteracting axion cores within dark matter halos.
Filaments with a baryonic mass per unit length M≳

1012 M⊙Mpc−1 are very rare at redshift z ∼ 3 as shown,
e.g., by the excursion set analysis of [70]. Therefore, if the
above axion core-filament mass relation holds with Ac ¼ 1,
it is unlikely that a filamentary object with an axion core
mass Mc ≳ 0.1 is observed as an absorption feature in the
Lyman-α forest. Such a mass would still be ∼4 order of
magnitude below the critical mass Mc;max for a decay
constant as low as f17 ¼ 0.01. Therefore, axion self-
interactions will not imprint any signature in the Lyman-
α forest unless the decay constant is f17 ≪ 0.01.
Notwithstanding, since the core—mass relation (130)

is uncertain for filaments, it is interesting to explore the
impact of the solitonic axion core on Lyman-α absorption
features as a function of the normalization Ac. In principle,

we should also consider possible variations in nc (the
analysis of [69] suggest that nc ≈ 0.4 is a better fit to the
numerical data). For simplicity however, we shall hereafter
assume a unique value nc ¼ 1=3 of the powerlaw index.

B. Hydrostatic approximation

Absorption features in the Lyman-α forest are charac-
terized by their column density NHI of neutral hydrogen HI
(and their width, but we shall ignore it here). While it is
straightforward to estimate a column density for a spheri-
cally symmetric absorber [see [71], for instance], the task is
more challenging in D ¼ 2 because both the pressure
gradient ∇rP ∼ −c2sρr̂=r and the gravitational acceleration
g ∼ −GMr̂=r scale like 1=r.
To estimate the characteristic size of the Lyman-α

absorption feature and, thereby, assign a column density
NHI to dark matter filaments, we assume that the gas is in
hydrostatic equilibrium so that the characteristic size of the
feature changes only slowly with time. This is a reasonable
approximation so long as the sound-crossing and free-fall
time scales are short compared to the age of the Universe,
which is the case for NHI ≳ 1014 cm−2.
Let ρg, Tg and Pg be the gas density, temperature and

pressure, ρc the density of dark matter and Φ the total
gravitational potential. Hydrodynamical simulations have
shown that, in the low density, highly ionized IGM traced
by the Lyman-α forest (δρg=ρ̄g ≲ 5), equilibrium between
photoionization and adiabatic cooling leads to a tight power-
law relation between the gas temperature and density of the
form Tg ¼ T̂gðρg=ρ̄gÞγ−1, where T̂g is the gas temperature at
mean gas density ρ̄g and the value of the exponent γ depends
on the details of the process [72]. Using the ideal gas law,
the low density is thus described by a polytropic equation of
statePg ¼ Kργ , withK ¼ 1

μmp
T̂gρ̄

1−γ
g . Here,mp is the proton

mass andμ ≈ 0.6 is themeanmolecularmass appropriate to a
fully ionized plasma of primordial abundance.
The polytropic equation of state, together with the

hydrostatic equilibrium

1

ρg
∇rPg ¼ −∇rΦ; ð131Þ

the continuity and the Poisson equation, eventually yields
the cylindrical Lane-Emden equation with the dark matter
component as an external source,

1

ξ

d
dξ

�
ξ
dθ
dξ

�
þ θn ¼ −

ρDM
ρ0

; ð132Þ

where the polytropic index satisfies n ¼ 1=ðγ − 1Þ and ρ0 is
the gas density on the symmetry axis (r ¼ 0). The radial
coordinate r transverse to the filament has been rescaled
according to r ¼ αnξ, where [58]
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α2n ¼
Kðnþ 1Þρ1=n−10

4πG
: ð133Þ

Furthermore, the gas density is written in terms of the
dimensionless function θðξÞ such that ρgðξÞ≡ ρ0θðξÞn.
Solutions to the cylindrical Lane-Emden equation are

subject to the initial conditions θð0Þ ¼ 1 and θ0ð0Þ ¼ 0. In
the absence of a source, they can be found numerically for
arbitrary values of the polytropic index n as shown in [58].
The abscissa ξ1 of the first zero of θ, i.e. θðξ1Þ ¼ 0,
corresponds to Pgðξ1Þ ¼ ρgðξ1Þ ¼ 0 and, therefore, defines
the size of the gas filament. The size of the filament
strongly depends on n. Ignoring the source term, one finds
ξ1 ≈ 2.405 for n ¼ 1 (γ ¼ 2), ξ1 ≈ 2.92 for n ¼ 2 (γ ¼ 1.5)
whereas, in the limit n → ∞ (corresponding to γ → 1), ξ1
diverges [58].
We will now outline how we assign a HI column density

to a filament, and provide some estimate for their abun-
dance, before we solve the inhomogeneous Lane-Emden
equation (132).

C. Column densities and abundances

Firstly, we use results from hydrodynamical simulations
and write the number density of neutral hydrogen in the
IGM as nHI ¼ n̂HIðρg=ρ̄gÞβ, where [73]

n̂HI ¼ 7.0 × 10−11
�

Γphot

10−12 s−1

�
−1
�

T̂g

104 K

�−0.7

×

�
Ωbh2

0.0227

�
2
�
1þ z
4

�
6

cm−3 ð134Þ

is the HI number density at mean gas density ρ̄g. Here,
β ¼ 2 − 0.7ðγ − 1Þ andΓphot is the photoionization rate [73].
The numerics assume a primordial helium abundance of
Y ¼ 0.248. The exact values of the temperature T̂g at mean
gas density, the exponent γ and the photoionization rate Γphot

at a given redshift depend on the details of the reionization
history and the cosmology. In the redshift range z ∼ 2–4,
observations of high-redshift quasars indicate that
T̂g ∼ 104 K, Γphot ∼ 10−11–10−12 s−1 and γ is in the range
1–1.6 (see [18] for a recent review on the properties of the
high-redshift IGM). We shall adopt the fiducial values
T̂g ¼ 104 K, Γphot ¼ 10−12 s−1, Ωbh2 ¼ 0.0227 and γ ¼ 2

(i.e. n ¼ 1). Arguably, γ ¼ 2 is somewhat in tension with
observations but, as we shall see below, this choice will
enable us to obtain an analytic expression for the Green
function of the cylindrical Lane-Emden equation.
For these fiducial values, the normalization α2n ∝

ρ̄−1g Δ1=n−1, where Δ ¼ ρ0=ρ̄g is the ratio of central to
average gas density, is given by

α1 ¼ 1.8 × 1037
�
1þ z
4

�
−3=2

GeV−1

¼ 78

�
1þ z
4

�
−3=2

h−1Kpc ð135Þ

and does not depend on Δ. Using Eq. (132), the mass of
gas Mg per unit length reads [58]

Mg ¼ 2π

Z
r1

0

drrρgðrÞ

¼ 2πρ0α
2
1jξ1θ0ðξ1Þj

¼ 3.2 × 1010Δjξ1θ0ðξ1ÞjM⊙Mpc−1; ð136Þ

where r1 ¼ α1ξ1. For n ¼ 1, the filament baryonic mass
Mg grows linearly with the central gas density. Note also
that it is always independent of redshift.
Assuming that the line-of sight to the distant quasar is

perpendicular to the symmetry axis and goes through the
origin, the HI column density of the filament is

NHI ¼ 2

Z
r1

0

drnHIðr; θ; zÞ

¼ 2αnn̂HIΔβ

�
1þ z
4

�
9=2
Z

ξ1

0

dξθðξÞnβ

¼ 4.87 × 1013Δ2

�
1þ z
4

�
9=2
Z

ξ1

0

dξθðξÞ2cm−2;

ð137Þ

where, in the last equality, we have specialized the result
to our fiducial choice of parameters, for which β ¼ 2. The
homogeneous Lane-Emden equation gives jξ1θ0ðξ1Þj≃
2.25 and

R
dξθðξÞ2 ≃ 1.35. For a filament with overdensity

Δ ¼ 2 at redshift z ¼ 3, this yields

Mg ≃ 1.4 × 1011 M⊙Mpc−1

NHI ≃ 2.6 × 1014 cm−2

α1ξ1 ≃ 188 h−1Kpc; ð138Þ

where α1ξ1 is the proper radius of the filament. These
values are consistent with the typical baryonic mass,
column density and width of filaments identified in
hydrodynamical simulations of the low density, high-
redshift IGM [74,75].
Of course, most of the sight lines do not actually pass

through the center and perpendicularly to the filament.
Therefore, our estimate of NHI is only indicative as one
shall expect a wide range of HI column densities for each
filament depending on the impact parameter etc. of the
sight lines. In fact, the column density distribution (per
unit absorption length) fðNHI; zÞ, which is approximately
given by [76]
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fðNHI;zÞ¼
1

H0

Z
d lnMnðM;zÞ dσ

dNHI
ðM;NHI;zÞ; ð139Þ

where dσ=dNHI ∝ R2
filament is the differential cross section

for producing absorbers with column density NHI, should
reflect the gas density profile around a filament (see, e.g.,
[77]). This motivates the calculation of gas density profiles
presented in Sec. V D.
To estimate the abundance of such absorption lines, we

approximate filaments as objets that have virialized along
two dimensions (rather than three as for halos). In the
excursion set theory, the abundance of such objects is
determined by the first-crossing distribution of a barrier
with height δcðzÞ ≈ 1.686 by Markovian random walks
[70]. Here, δc is the linear, critical collapse threshold in the
spherical collapse approximation. Consequently, the aver-
age, logarithmic number density n̄fðMÞ of filaments of
dark matter massM ¼ f−1g Mg · L, where L ∼ 1 h−1Mpc is
the proper length of the filament, is given by

n̄fðM; zÞ ¼ dNf

d lnM
¼ ρ̄m

M
νfðνÞ d ln σ

d lnM
; ð140Þ

where νðMÞ≡ δc=σðMÞ is the peak height, σðM; zÞ is the
root mean square (r.m.s.) variance of the density field
linearly extrapolated to redshift z, and the first crossing
distribution reads

νfðνÞ ¼
ffiffiffi
2

π

r
νe−ν

2=2: ð141Þ

This implies that the fraction of mass in filaments with
mass greater than M is

Ffð> M; zÞ ¼ Erfc

�
νðMÞffiffiffi

2
p

�
: ð142Þ

Assuming L ¼ 1 h−1Mpc as suggested by numerical sim-
ulations, z ¼ 3 filaments with a baryonic mass per unit
length Mg ¼ 1010–11 M⊙Mpc−1 have an abundance in the
range nf ∼ 10−3–10−1. Hence, there are ubiquitous in the
high-redshift cosmic web. However, their abundance drops
quickly below 10−5 as soon as M exceeds 1013 h−1M⊙.
Assuming Ac ¼ 1, the critical axion core mass inferred

from Eq. (130) should thus be Mc;max ≲ 0.01–0.1 (in unit
of 1010 M⊙Mpc−1), that is, f17 ≲ 10−4 for the axion
attractive self-interaction to strongly affect low column
density Lyman-α absorbers.

D. Including the gravitational pull from the axion core

Equation (132) shows that, when the dark matter source
is included, the second derivative θ00ðξÞ becomes more
negative near the origin. In this case, the position ξ1 of the

first zero could thus be noticeably smaller than obtained
with the homogeneous equation if the dark matter density is
sufficiently large. More precisely, we expect that the product
jξ1θ0ðξ1Þj is not much affected since θ0ðξ1Þ ∼ 1=ξ1, but the
integral of the HI profile θnβ [see Eq. (137)] becomes much
smaller. Therefore, this may eventually yield column den-
sities NHI lower than naively inferred above.
In order to get some quantitative estimate for the impact

the axion core on the filamentary gas profile, we ignore the
haze of virialized axions and set ρDM ¼ ρc, where ρc is the
density profile of the solitonic solution, Eq. (113). Here
again, we assume a polytropic index n ¼ 1, for which the
homogeneous Lane-Emden equation with initial conditions
θð0Þ ¼ 1 and θ0ð0Þ ¼ 0 admits the solution θðξÞ ¼ J0ðξÞ
[58]. For n ¼ 1, the general solution to the inhomogeneous
equation Eq. (132) is θðξÞ ¼ J0ðξÞ þ θpðξÞ, where the
particular solution θpðξÞ solves the inhomogeneous
problem with initial conditions θpð0Þ ¼ θ0pð0Þ ¼ 0. For
0 ≤ ξ < ξ0, the Green’s function Gðξ; ξ0Þ satisfying
Gð0; ξ0Þ ¼ ∂ξGð0; ξ0Þ ¼ 0 is trivially Gðξ; ξ0Þ ¼ 0. For
ξ0 > ξ, we seek a solution of the form Gðξ; ξ0Þ ¼
Cðξ0ÞJ0ðξÞ þDðξ0ÞY0ðξÞ, where J0 and Y0 are independent
solutions to the homogeneous equation. Applying the
continuity and jump condition at ξ ¼ ξ0, the Green’s
function eventually reads

Gðξ; ξ0Þ ¼ Θðξ − ξ0Þ J0ðξ0ÞY0ðξÞ − J0ðξÞY0ðξ0Þ
ðJ1ðξ0ÞY0ðξ0Þ − J0ðξ0ÞY1ðξ0ÞÞ

: ð143Þ

The physical interpretation of the Green’s function is
straightforward: Gðξ;ξ0Þ ¼ 0 for ξ0 > ξ because Birkhoff’s
theorem ensure that the gas profile θðξÞ only depends on
the dark matter source at ξ0 < ξ.
The solution to the inhomogeneous Lane-Emden equa-

tion thus

θðξÞ ¼ J0ðξÞ −
1

ρ0

Z
∞

0

dξ0Gðξ; ξ0Þρcðξ0Þ; ð144Þ

and, for our fiducial choice of m22 and f17, is very sensitive
to the normalization fc of the axion core—filament mass
relation. In principle, the solution should be refined iter-
atively from an initial guess because the axion coremassMc
depends on the baryonic massMg of the filament, which is

itself a function of jξ1θ0ðξ1Þj. However, since Mc ∝ M1=3
g

weakly depends onMg and, furthermore, jξ1θ0ðξ1Þj ∼Oð1Þ
for the range of parameters considered here, we shall skip
this iterative search and simply set the baryonic mass to
Mg ¼ 3.2 × 1010Δ M⊙Mpc−1. The total dark matter mass
can then be inferred upon assuming a gas fraction fg.
Finally, let us emphasize again that, for a decay constant

f17 ≥ 0.01 required to match the observed density of
dark matter without much fine-tuning (and a possibly
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temperature-dependent axion mass [78]), the mass of the
solitonic axion core is always orders of magnitude smaller
than Mc;max. Consequently, unless the normalization Ac is
extremely high (i.e. Ac ≫ 103), which is very unlikely,
Rc;filament is weakly dependent on f17 (see Fig. 2). Hence,
the conclusions drawn here hold regardless of the exact
value of the decay constant provided that f17 ≳ 0.01.
Figure 3 shows various solutions spanning the range 1 ≤

Δ ≤ 10 (as is appropriate to the mildly nonlinear Lyman-α
forest) for our fiducial axion mass m22 ¼ 1 and decay
constant f17 ¼ 1. The dark matter profile is the Gaussian
Eq. (113), with a radius Rfilament given by the stability
condition Eq. (120). The top and bottom panels assume a
normalization Ac ¼ 10 and 103, respectively. As a result,
the axion solitonic core mass and radius are

Mc ∼ 109 M⊙Mpc−1; Rfilament ∼ 4 h−1Kpc ð145Þ

for Ac ¼ 10, and

Mc∼ 2×1010 M⊙Mpc−1; Rfilament∼ 1 h−1Kpc ð146Þ

for Ac ¼ 103. The impact of the axion core is largest at low
gas central overdensity Δ owing to the mass dependence
Mc ∝ M1=3

g of the axion core—filament mass relation.
Whereas, for Ac ¼ 10, the axion leaves a small signature on
the profile, the latter becomes significantly more compact
for Δ ≤ 5 when Ac ¼ 103. In the particular case Δ ¼ 1,
the HI column density drops from NHI ∼ 5 × 1013 cm−2
(Ac ¼ 10) down to ∼1012 cm−2 (Ac ¼ 103) while its radius
shrinks to ∼8 h−1Kpc. Since the line column density
fðNHI; zÞ, Eq. (139), depends on both the filament cross
section and profile, we expect that the Lyman-α forest
should be strongly affected if Ac is as large as 103.
Overall, this demonstrates that the gravitational pull

sourced by the solitonic axion core in the Lane-Emden
equation is crucial to our discussion. Obviously, the
question of whether axion self-interactions leave a signa-
ture in the Lyman-α forest can only be fully addressed with
numerical simulations, which can also be used to extract the
value of Ac. Nonetheless, we believe our analytic approach
provides useful insight into this issue.

VI. CONCLUSIONS

In this paper we have taken the first step towards the
understanding of the impact of a tiny, but nonvanishing,
self-interaction among ultralight axions on the large
scale structure of the Universe. We have considered
axion masses m ¼ m22 × 10−22 eV and decay constants
f ¼ f17 × 1017 GeV, for which the axions can provide a
significant fraction of the dark matter. Our analytical
investigation based on the GP equation and on the breath-
ing mode has shown that (for m22 ¼ 1)

(i) Spherical axion cores are stable only if their masses
are smaller than about 7 × 109f17 h−1M⊙, in agree-
ment with the findings of [28]. We extended the
analysis of [28] and emphasized that gravity is
essential in rendering halos stable below the critical
mass. With no gravity taken into account, the tiny
self-interaction strength would make halos of all
masses collapse. The potential of the halo breathing
mode (fluctuations of its radius) develops a local
minimum which is destroyed for halos above a mass
threshold. Thus, halos with a mass below the cutoff
mass are stable against spherical symmetric pertur-
bations in the presence of gravity.

(ii) Pancakelike solitonic cores are stable if one
restricts oneself to the breathing mode, but they are
unstable against transverse perturbations. Our com-
putation emphasizes that, although one-dimensional
soliton solutions of the GP equation exists, these

FIG. 3. Solutions to the Lane-Emden equation Eq. (132) as a
function of the gas overdensity Δ at the center of the filament,
which takes values in the range 1 ≤ Δ ≤ 10. The top and bottom
panel assume a normalization Ac ¼ 10 and 103 for the axion
core—filament mass, respectively. They display the normalized
gas profile θðξÞ as a function of the dimensionless radius ξ. The
points indicate the abscissa ξ1 of the first zero-crossing, which
should be interpreted as the radius of the filament. The gas
equation of state is a polytrope with index n ¼ 1 (i.e. an exponent
γ ¼ 2). The axion profile is the solitonic solution Eq. (113), with
a radius R ¼ Rc;filament given by the stability condition Eq. (120).
An axion mass m22 ¼ 1 and a decay constant f17 ¼ 1 are
assumed for the calculation of Rc;filament. For the range of axion
core masses obtained here (see text), the axion self-interaction is
very weak so that Rc;filament is well approximated by Eq. (123).
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pancakelike objects do not survive the presence
of fluctuations along the transverse directions
once they are immersed in a higher-dimensional
environment. Gravity does not seem to alter this
conclusion.

(iii) Axions cores within filaments are stable if their mass
per unit length is smaller than the critical value

Mmax ¼ 7.0 × 1016f217 M⊙Mpc−1: ð147Þ

Filamentary axion cores with mass Mc ≳Mc;max
are unstable and collapse by redshift z ¼ 0 but,
for f17 ≳ 0.01, they are expected to form inside
objects which are so rare that this instability would
never be observed. Therefore, within the approx-
imations made in this paper, the attractive axion self-
interaction does not have an impact on the Lyman-α
forest unless f17 ≲ 10−4, or the normalization Ac of
the axion core -filament mass relation (relative to its
value for spherical halos) is very high. Notwith-
standing, hydrostatic equilibrium considerations
suggest that, for f17 ≥ 0.01, axion solitonic cores
inside filaments will leave a detectable impact on the
distribution of Lyman-α absorption lines provided
that Ac ≳ 102. This effect arises from the gravita-
tional pull of the axion core, which affects the gas
density profile and estimated HI column densities of
high-redshift filaments.

Notice that at small radii the breathing mode analysis
reveals that gravity is always negligible in the corres-
ponding potential. Furthermore, the existence of critical
mass scales for axion halos and filaments should be
contrasted to the standard CDM case, for which the
global energetics analysis performed here predicts the
existence of solutions at all masses owing to the centrifugal
barrier (CDM filaments are indeed observed in realistic
large scale structure CDM simulations, see e.g. [79]).
Therefore, our findings suggests that the cosmic web
may look significantly different if the dark matter is a
light self-interacting axion rather than a cold, massive
fermion.
Our analysis can be improved in several ways. Firstly, we

have not discussed transverse perturbations for filaments
and halos in the presence of gravity. It is not unreasonable
to expect that they might lead to instability as well. We
leave this analysis for the future.
Secondly, one could ask what is the role of the higher-

order terms in the GP equation derived from the axion
periodic potential. They might indeed provide a defocusing
(repulsion) needed to support the stability. In fact, the full
axion potential may assist the stability. One can for
example calculate the internal energy of a filament with
the Gaussian density profile (113). In this case, we find that
the axion self-energy (in the regime where the full axion
potential is relevant) is given by

U ¼ 48ζ2π
2M2R2



1 − γ þ Ci

�
1

2πR2

�

þ logð2πR2Þ − 2πR2Si

�
1

2πR2

��
; ð148Þ

where Ci and Si are the cosine and sine integral functions
and γ is the Euler gamma. It is easy to verify that for
large R ≫ 1, U ≈ ζ2M2=R2, which is what we found in
Sec. IV D. Therefore, keeping only the leading ϕ4 term
from the axion potential in the nonrelativistic limit, we can
wrongly conclude that the filaments are unstable. However,
for R ≪ 1, the internal energy is given instead in Eq. (148),
and it is straightforward to check that the total energy (the
quantum pressure and the internal energy) now develop a
minimum even without the presence of gravity. Of course,
the full potential is relevant only when ϕ ∼ f, that is, during
the final stages of the collapse. The take home message is
that the full axion potential could be relevant for the final
fate of halos, pancakes and filaments. For instance, it has
been recently discovered that even a collapsing condensate
can leave behind highly robust soliton configurations
in D ¼ 3 after collapse [80].
Thirdly, although our analytic approach captures the

essential features of Lyman-α absorbers in the presence of
an axion core, it does not take into account peculiar
velocities, thermal broadening etc. Furthermore, the nor-
malization of the axion core—filament mass is left uncon-
strained. It would thus be desirable to investigate these
issues further with numerical simulations. These should
also give us insights into the importance of transverse
instabilities which we neglected here.
We conclude by mentioning that the nonlinear processes

induced by the self-interactions might also lead to other
unexpected phenomena if the dark matter is composed by
ultralight axions. One of them is the so-called four-wave
mixing process observed in experiments [81] where three
initial wave packets interact nonlinearly to produce a
fourth packet. This phenomenon might be relevant when
considering possible regions of overdensities and the relation
between the three- and the four-point correlators of the dark
matter.
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