
 

Preheating after multifield inflation with nonminimal couplings. I.
Covariant formalism and attractor behavior
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This is the first of a three-part series of papers, in which we study the preheating phase for multifield
models of inflation involving nonminimal couplings. In this paper, we study the single-field attractor
behavior that these models exhibit during inflation and quantify its strength and parameter dependence. We
further demonstrate that the strong single-field attractor behavior persists after the end of inflation.
Preheating in such models therefore generically avoids the “dephasing” that typically affects multifield
models with minimally coupled fields, allowing efficient transfer of energy from the oscillating inflaton
condensate(s) to coupled perturbations across large portions of parameter space. We develop a doubly
covariant formalism for studying the preheating phase in such models and identify several features specific
to multifield models with nonminimal couplings, including effects that arise from the nontrivial field-space
manifold. In papers II and III, we apply this formalism to study how the amplification of adiabatic and
isocurvature perturbations varies with parameters, highlighting several distinct regimes depending on the
magnitude of the nonminimal couplings ξI .
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I. INTRODUCTION

This is the first paper in a three-part series that examines
the early stages of postinflation reheating in models that
involve multiple scalar fields, each nonminimally coupled
to gravity. (The companion papers are Refs. [1,2].)
Postinflation reheating is a critical phase in the history of

the cosmos, necessary to connect early-Universe inflation
to the usual successes of the standard hot big bang scenario.
Reheating falls between two regimes that are well con-
strained by observations, and which match the latest
observations remarkably well: production of a spatially
flat universe seeded with nearly scale-invariant primordial
curvature perturbations during inflation [3–10], and produc-
tion of specific abundances of light nuclei during big-bang
nucleosynthesis [11–13]. Though it remains difficult to relate
the reheating phase directly to specific, testable predictions
for observations, the process of reheating remains critical in
order to compare predictions from the inflationary era with

present-day observations, since relating comoving scales at
different cosmological epochs requires knowledge of the
intervening expansion history of the Universe [14–21]. See
[4,22–25] for recent reviews of reheating.
The postinflation reheating phase not only must bring the

early Universe to thermal equilibrium in a radiation-
dominated phase at an appropriately high temperature,
but reheating should also populate the Universe with matter
like the kind we see around us today. During inflation, the
energy density of the Universe was presumably dominated
by one or more scalar “inflaton” fields. After reheating, the
energy density should include contributions from multiple
species of matter, including the Standard Model particles or
(at least) types of matter that decay into Standard Model
particles prior to big-bang nucleosynthesis. Such inter-
actions could address other longstanding challenges in
cosmological theory, such as generating the observed
baryon-antibaryon asymmetry [26–29]. Reheating there-
fore must be a multifield phenomenon.
Arguably, inflation itself should be treated as a process

involving multiple fields. Realistic models of high-energy
particle physics typically include many distinct scalar fields
at high energies [30–34]. Hence we consider multiple scalar
fields to be a central ingredient of realistic models of
inflation. Nonminimal couplings between the scalar fields
and the Ricci spacetime curvature scalar are also a generic
feature of realistic models of the early Universe. Many
theoretical motivations for nonminimal couplings derive
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from high-energy model building, including dilatons and
moduli fields, but a more basic motivation comes from
renormalization: as has long been known, models with self-
interacting scalar fields in curved spacetime require non-
minimal couplings as counterterms in order to remain
self-consistent at high energies. Nonminimal couplings are
induced by quantum corrections even in the absence of bare
couplings; they are a generic feature of scalar fields in
curved spacetime [35–41]. Moreover, such couplings arise
even in a classical background spacetime. Thus their effects
can be important at energy scales relevant to inflationary or
postinflationary dynamics, even for models in which
quantum-gravitational corrections to the Einstein-Hilbert
action—which would presumably be quadratic or higher
order in the spacetime curvature—may remain subdomi-
nant at those energy scales [42].
In recent work [44–47] we have studied the dynamics

during inflation from multifield models with nonminimal
couplings, including generalizations of “Higgs inflation”
[48]. These papers have demonstrated that such models
generically predict observable quantities (related to the
spectrum of primordial curvature perturbations) squarely
in the most-favored region of the latest observations.
Moreover, such models exhibit a strong attractor behavior:
across broad regions of parameter space and phase space
the fields relax to an effectively single-field trajectory early
in inflation. Hence the predictions for observable quantities
from these models show little dependence on coupling
constants or initial conditions [46]. Such attractor behavior
is a generic feature of multifield models with nonminimal
couplings, including the so-called “α attractors” [49].
In this paper we focus on the dynamics of such models

immediately after inflation, during the “preheating” phase.
During preheating, the scalar-field condensate(s) that drove
inflation decay resonantly into higher-momentum quanta.
We develop a doubly covariant formalism that incorporates
metric perturbations and field fluctuations self-consistently
(to first order), and which also respects the reparametriza-
tion freedom of the nontrivial field-space manifold. We
restrict our attention to the early stages of preheating, for
which an approximation linear in the fields’ fluctuations
remains reliable, and only consider decays into scalar fields
rather than fermions or gauge fields. Our approach comple-
ments previous studies that have examined reheating in
models with nonminimally coupled fields [50–56], includ-
ing Higgs inflation [57–60], as well as with noncanonical
kinetic terms or other string-inspired features of the action
[61–65]. In our companion papers [1,2], we analyze the
amplification of perturbations in this family of models
semianalytically and numerically across wide regions of
parameter space.
We find three principal distinctions from the well-studied

cases of preheating with minimally coupled fields. First, the
conformal stretching of the scalar fields’ potential in the
Einstein frame affects the oscillations of the background

fields, compared to the case of minimal couplings. In
particular, for strong nonminimal couplings ξI ≫ 1, the
background fields’ oscillations interpolate between the
behavior of minimally coupled models with quadratic
and quartic self-couplings. Second, the single-field attractor
behavior during inflation typically leads to greater effi-
ciency during preheating than in corresponding multifield
models with minimal couplings, in which dephasing of the
background fields’ oscillations usually damps resonances
[24,66,67]. Third, the nontrivial field-space manifold con-
tributes differently to the effective masses for fluctuations in
the adiabatic and isocurvature directions, leading to distinct
behavior depending on whether the nonminimal couplings
are small [ξI < Oð1Þ], intermediate [ξI ∼Oð1–10Þ], or
large [ξI ≥ Oð100Þ].
In Sec. II we review the doubly covariant formalism with

which we study the dynamics of background fields and
fluctuations. In Sec. III we examine the background
dynamics for a two-field model during and after inflation,
highlighting distinctions between oscillations during pre-
heating with and without nonminimal couplings. The
behavior of the background fields during the oscillating
phase is critical for understanding the resonant production
of particles during preheating. In Sec. IV we introduce a
covariant mode expansion for the fluctuations and derive
multifield generalizations of the “adiabatic parameter” with
which to characterize the resonant, nonperturbative growth
of fluctuations. Concluding remarks follow in Sec. V.

II. DOUBLY COVARIANT FORMALISM

When studying multifield models with nonminimal cou-
plings, one must consider two types of gauge transforma-
tions: the usual spacetime coordinate transformations,
xμ → xμ0, as well as transformations of the field-space
coordinates, ϕI → ϕI0. To address the first type of trans-
formation, we adopt the usual (spacetime) gauge-invariant
perturbation formalism [68–70]; see Refs. [4,71,72] for
reviews. To address the multifield aspects, we build on
the methods of Refs. [31,73–83]. Together, these yield a
doubly covariant formalism for studying fluctuations in these
multifield models [44].
We follow closely the notation and parametrization of

[44–47]. We work in (3þ 1) spacetime dimensions and
adopt the spacetime metric signature ð−;þ;þ;þÞ. We
consider models with N real-valued scalar fields, each of
which is coupled to the Ricci spacetime curvature scalar.
In the Jordan frame, the action takes the form

S ¼
Z

d4x
ffiffiffiffiffiffi
−~g

p �
fðϕIÞ ~R −

1

2
δIJ ~gμν∂μϕ

I∂νϕ
J − ~VðϕIÞ

�
;

ð1Þ

where uppercase Latin letters label field-space indices,
I; J ¼ 1; 2;…; N, Greek letters label spacetime indices, μ,
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ν ¼ 0, 1, 2, 3, and tildes denote Jordan-frame quantities.
We will use lowercase Latin letters for spatial indices,
i, j ¼ 1, 2, 3.
We may perform a conformal transformation to bring the

gravitational portion of the action into canonical Einstein-
Hilbert form, by rescaling ~gμνðxÞ → gμνðxÞ ¼ Ω2ðxÞ~gμνðxÞ.
The conformal factor Ω2ðxÞ is related to the nonminimal-
coupling function,

gμνðxÞ ¼
2

M2
pl

fðϕIðxÞÞ~gμνðxÞ; ð2Þ

where Mpl ≡ 1=
ffiffiffiffiffiffiffiffiffi
8πG

p ¼ 2.43 × 1018 GeV is the reduced
Planck mass. The action may then be rewritten [84]

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

pl

2
R −

1

2
GIJðϕKÞgμν∂μϕ

I∂νϕ
J − VðϕIÞ

�
:

ð3Þ

(See also Ref. [85].) The potential in the Einstein frame is
stretched by the conformal factor,

VðϕIÞ ¼ M4
pl

4f2ðϕIÞ
~VðϕIÞ: ð4Þ

In addition, the nonminimal couplings induce a curved
field-space manifold in the Einstein frame, with associated
field-space metric GIJðϕKÞ. Because the induced field-
space manifold is not conformal to flat for N ≥ 2, no
combination of rescalings of gμν and ϕI can retain the
Einstein-Hilbert form for the gravitational portion of the
action while also bringing the fields’ kinetic terms into
canonical form [84]. The components of GIJ take the form

GIJðϕKÞ ¼ M2
pl

2fðϕKÞ
�
δIJ þ

3

fðϕKÞ f;If;J
�
; ð5Þ

where f;I ¼ ∂f=∂ϕI . The field-space metric satisfies
GIJGJK ¼ δIK , and field-space indices are raised and
lowered with GIJ.
Varying the action of Eq. (3) with respect to gμν yields

the field equations

Rμν −
1

2
gμνR ¼ 1

M2
pl

Tμν; ð6Þ

with the energy-momentum tensor given by [44]

Tμν ¼ GIJ∂μϕ
I∂νϕ

J − gμν

�
1

2
GIJgαβ∂αϕ

I∂βϕ
J þ VðϕIÞ

�
:

ð7Þ

Varying Eq. (3) with respect to ϕI yields the equation of
motion

□ϕI þ gμνΓI
JK∂μϕ

J∂νϕ
K − GIJV;J ¼ 0; ð8Þ

where □ϕI ≡ gμνϕI
;μν and ΓI

JKðϕLÞ is the Christoffel
symbol constructed from the field-space metric GIJ.
We expand the scalar fields and the spacetime metric to

first order in perturbations. We are interested in the behavior
of the fields at the end of inflation, so we consider scalar
metric perturbations around a spatially flat Friedmann-
Lemaître-Robertson-Walker (FLRW) line element,

ds2 ¼ gμνðxÞdxμdxν
¼ −ð1þ 2AÞdt2 þ 2að∂iBÞdxidt
þ a2½ð1 − 2ψÞδij þ 2∂i∂jE�dxidxj; ð9Þ

where aðtÞ is the scale factor. We also expand the fields,

ϕIðxμÞ ¼ φIðtÞ þ δϕIðxμÞ: ð10Þ

The fluctuations δϕI represent finite displacements from the
fields’ classical trajectory through field space; the fluctua-
tions δϕI are gauge dependent with respect to both xμ → xμ0

and φI → φI0. We therefore proceed in two steps. First,
followingRef. [82], we introduce a vectorQI to represent the
field fluctuations covariantly with respect to the field-space
metric, GIJ. (See also Ref. [83].) The field-space vectors
ϕIðxμÞ and φIðtÞ may be connected by a geodesic along the
field-space manifold with some affine parameter λ. We take
ϕIðλ ¼ 0Þ ¼ φI and ϕIðλ ¼ ϵÞ ¼ φI þ δϕI. (We may take
ϵ ¼ 1 at the end.) These boundary conditions uniquely
specify the vector QI that connects ϕI and φI , such that
ϕIjλ¼0 ¼ φI andDλϕ

Ijλ¼0 ¼ ðdϕI=dλÞjλ¼0 ¼ QI , whereDλ

is a covariant derivative with respect to the affine parameter.
Then [82]

δϕI ¼ QI −
1

2!
ΓI

JKQJQK þ 1

3!
½ΓI

LMΓM
JK − ΓI

JK;L�
×QJQKQL þ � � � ð11Þ

where the ΓI
JK are evaluated at background order, as

functions of φI . Note that δϕI → QI to first order in
fluctuations, but one must take care to distinguish the two
when working to higher order, as we will do in Sec. IVA
when we expand the action to second order inQI . Next, we
follow Ref. [44] and define a linear combination of QI and
the metric perturbation ψ to form a generalization of the
gauge-invariant Mukhanov-Sasaki variable:

QI ≡QI þ _φI

H
ψ : ð12Þ

The vectorQI is doubly covariant, with respect to spacetime
gauge transformations (to first order in metric perturbations)
as well as transformations of the field-space coordinates φI .
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To first order in perturbations, QI → QI → δϕI in the
spatially flat gauge.
For an arbitrary vector in the field space, AI, we may

define the usual covariant derivative with respect to the
field-space metric,

DJAI ¼ ∂JAI þ ΓI
JKAK; ð13Þ

and a (covariant) directional derivative with respect to the
affine parameter, cosmic time, t,

DtAI ≡ _φJDJAI ¼ _AI þ ΓI
JK _φJAK; ð14Þ

where overdots denote partial derivatives with respect to t.
To background order, we may then write the equation of
motion for the fields φI from Eq. (8),

Dt _φ
I þ 3H _φI þ GIJV;J ¼ 0; ð15Þ

while Eqs. (6) and (7) yield the usual dynamical equations
at background order,

H2 ¼ 1

3M2
pl

�
1

2
GIJ _φ

I _φJ þ VðφIÞ
�
;

_H ¼ −
1

2M2
pl

GIJ _φ
I _φJ: ð16Þ

In Eqs. (15) and (16), H ≡ _a=a is the Hubble parameter,
and the field-space metric is evaluated at background
order, GIJðφKÞ.
To first order in QI , Eqs. (6)–(8) may be combined to

yield the equation of motion for the gauge-invariant
perturbations [44,80,86]

D2
t QI þ 3HDtQI þ

�
k2

a2
δIJ þMI

J

�
QJ ¼ 0; ð17Þ

where the mass-squared tensor takes the form

MI
J ≡ GIKðDJDKVÞ −RI

LMJ _φ
L _φM

−
1

M2
pla

3
Dt

�
a3

H
_φI _φJ

�
ð18Þ

and RI
LMJ is the Riemann tensor for the field-space

manifold. All expressions in Eqs. (17) and (18) involving
GIJ, V, and their derivatives are evaluated at background
order in the fields, φI . The term in Eq. (18) that is
proportional to 1=M2

pl arises from the coupled metric
perturbations.

III. COUPLINGS AND BACKGROUND DYNAMICS

Renormalization of models with self-coupled scalar
fields in curved spacetime requires counter-terms of the

form ξϕ2R for each nonminimally coupled field [35–41].
Here we consider a two-field model, ϕI ¼ fϕ; χgT ,
and take fðϕIÞ to be of the form

fðϕ; χÞ ¼ 1

2
½M2

pl þ ξϕϕ
2 þ ξχχ

2�: ð19Þ

Each scalar field ϕI couples to the Ricci scalar with its
own nonminimal-coupling constant, ξI; conformal cou-
pling corresponds to ξI ¼ −1=6. The field-space metric,
GIJðφKÞ, is determined by the form of fðϕIÞ and its
derivatives, as in Eq. (5). Explicit expressions for GIJ
and related quantities for this model may be found in
Appendix A.
We consider a simple, renormalizable form for the

potential in the Jordan frame,

~Vðϕ; χÞ ¼ λϕ
4
ϕ4 þ g

2
ϕ2χ2 þ λχ

4
χ4: ð20Þ

We take λI > 0 and neglect bare masses m2
I , in order to

focus on effects from the quartic self-couplings and direct
interaction terms within a parameter space of manageable
size. The effects from nonzero m2

I may be incorporated
using the methods developed here.
Several types of considerations may be used to bound

the range of ξI of interest. Perhaps most fundamentally,
vacuum stability (under renormalization-group flow)
requires ξI ≥ −0.03 [87]. Meanwhile, earlier studies of
single-field models had found that jξj ≤ 10−3 for ξ < 0 in
order to yield sufficient inflation [88–92]. These constraints
leave a very narrow window of parameter space for ξI < 0
that could still be viable. Moreover, as we will see below,
the behavior of such models with jξIj ≪ 1 tends to show
only modest departures from the well-studied minimally
coupled case, whereas qualitatively new behavior arises for
jξIj ≫ 1. Hence we restrict our attention here to positive
couplings, ξI > 0.
Next we may consider observational constraints, such as

the present bound on the primordial tensor-to-scalar ratio,
r ≤ 0.1 [93], which corresponds to the bound H� ≤
3.4 × 10−5Mpl. (Asterisks indicate values of quantities at
the time during inflation when observationally relevant
perturbations first crossed outside the Hubble radius.)
Models in our class predict [44–47]

r ¼ 16ϵ

1þ T2
RS

; ð21Þ

where ϵ is the usual slow-roll parameter,

ϵ≡ −
_H
H2

; ð22Þ

and T2
RS is the transfer function for long-wavelength modes

between the adiabatic ðRÞ and isocurvature ðSÞ directions.
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As analyzed in Refs. [44–47] and discussed further in the
next subsection, models in this class generically display
strong single-field attractor behavior. Within an attractor
the background fields’ trajectory does not turn, and hence
T2
RS → 0. Furthermore, given our covariant framework, we

may consider the case in which the fields move along the
direction χ ¼ 0 during inflation without loss of generality.
In the limit ξϕ ≫ 1, we find to good approximation [46]

H� ≃
ffiffiffiffiffiffiffiffiffiffi
λϕ

12ξ2ϕ

s
Mpl; N� ≃ 3

4
δ2�; ϵ≃ 3

4N2�
; ð23Þ

where

δ2 ≡ ξϕϕ
2

M2
pl

; ð24Þ

and N� is the number of efolds before the end of inflation
when relevant scales crossed outside the Hubble radius.
(See also Ref. [94].) Assuming 50 ≤ N� ≤ 60, we find
r ∼Oð10−3Þ in the limit ξϕ ≫ 1, and H� ≤ 3.4 × 10−5Mpl

for λϕ=ξ2ϕ ≤ 1.4 × 10−8. In models like Higgs inflation [48],
one typically finds λϕ ∼Oð10−2–10−4Þ at the energy scales
of inflation (the range stemming from uncertainty in the
value of the top-quark mass, which affects the running of λϕ
under renormalization-group flow) [95–97]. The range of
λϕ, in turn, requires ξϕ ∼Oð102–103Þ at high energies—a
reasonable range, given that ξϕ typically rises with energy
scale under renormalization-group flow with no UV fixed
point [38]. Even for such large values of ξI , the inflationary
dynamics occur at energy scales well below any nontrivial
unitarity cutoff scale. (See Ref. [47] and references therein
for further discussion.)
For the opposite limit, with 0 < ξϕ ≪ 1, a similar

analysis yields [92,94]

H� ≃
ffiffiffiffiffiffiffiffiffiffi
λϕ
12ξ2ϕ

s
δ4�

ð1þ δ2�Þ2
Mpl; N� ≃ 1

8ξϕ
δ2�;

ϵ≃ 1

N�ð1þ 8ξϕN�Þ
; ð25Þ

where δ2 is again defined as in Eq. (24). In this limit, the
bound r ≤ 0.1 requires ξϕ ≥ 0.006 (for N� ¼ 50) or ξϕ ≥
0.004 (for N� ¼ 60), which in turn yields a constraint on λϕ
typical of minimally coupled models: λϕ ∼Oð10−12Þ in
order to keep H� ≤ 3.4 × 10−5Mpl [98,99]. Thus in the
remainder of this analysis, we focus our attention on the
range 10−3 ≤ ξI ≤ 104.

A. Single-field attractor

Inflation begins in a regime in which ξJðϕJÞ2 > M2
pl for

at least one component, J. The potential in the Einstein
frame becomes asymptotically flat along each direction of
field space, as each field ϕI becomes arbitrarily large:

VðϕIÞ → M4
pl

4

λI
ξ2I

�
1þO

�
M2

pl

ξIðϕIÞ2
��

ð26Þ

(no sum on I). Unless some explicit symmetry constrains
all coupling constants in the model to be identical
(λϕ ¼ g ¼ λχ , ξϕ ¼ ξχ), then the potential in the Einstein
frame will develop ridges and valleys. Both the ridges and
the valleys satisfy V > 0, and hence the system will inflate
(albeit at different rates) whether the fields evolve along a
ridge or a valley toward the global minimum of the
potential. As seen in Fig. 1, even in the case of ξI ≪ 1,
in which inflation can occur for field values ϕI for which
the potential has not reached its asymptotically flat form,

FIG. 1. Potential in the Einstein frame, VðϕIÞ, for a two-field model with ξχ=ξϕ ¼ 0.8; λχ=λϕ ¼ 1.25, and g=λϕ ¼ 1, for ξϕ ¼ 102

(left) and ξϕ ¼ 10−2 (right). Field values are in units of Mpl.
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the potential still exhibits ridges and valleys, all of which
are capable of supporting inflation.
Given the distinct ridge-valley structure of the effective

potential in the Einstein frame, these models display strong
single-field attractor behavior during inflation, across a
wide range of couplings and initial conditions [46]. If the
fields happen to begin evolving along the top of a ridge,
they will eventually fall into a neighboring valley at a rate
that depends on the local curvature of the potential [44,47].
Once the fields fall into a valley, Hubble drag quickly
damps out any transverse motions in field space within a
few efolds, after which the system evolves with virtually no
turning in field space for the remainder of inflation [44–47].
As shown in Fig. 2, the single-field attractor behavior is as
generic in the limit ξI < 1 as it is for ξI ≫ 1. For all of the
trajectories shown, the fields settle into a single-field
attractor prior to the last 65 efolds of inflation.
Within a single-field attractor, these models predict

values for spectral observables such as the primordial
spectral index and its running (ns and α), the ratio of
power in tensor-to-scalar modes (r), primordial non-
Gaussianity (fNL), and the fraction of power in isocurvature
rather than adiabatic scalar modes (βiso) all in excellent
agreement with the latest observations [44–47]. Figure 3
shows the tensor-to-scalar ratio r and the isocurvature
fraction βiso as a function of the nonminimal coupling. The
approach to a constant ξI-independent value for large ξI is
evident. The fields will only fail to settle into a single-field

attractor during inflation if both the ratios of certain
coupling constants and the fields’ initial conditions are
fine-tuned. If the fields happen to begin very close to the top
of a ridge, for example, and if the local curvature of the
potential in the vicinity of that ridge has been fine-tuned to
be small (DIJV=H2 ≪ 1), then the system can exhibit
significant turning in field space late in inflation [44,46,47].
In such fine-tuned cases, the system’s evolution during the
last 65 efolds of inflation can amplify non-Gaussianities
and isocurvature perturbations, which could potentially be
observable [44,47,86].
In Ref. [47] we analyzed the geometric structure of the

attractor in the limit ξI ≫ 1; here we generalize that
analysis for arbitrary positive ξI. As in Ref. [47], we define
convenient combinations of couplings,

Λϕ ≡ λϕξχ − gξϕ; Λχ ≡ λχξϕ − gξχ ; ε≡ ξϕ − ξχ
ξϕ

;

ð27Þ

along with the new rescaled quantities

~Λϕ ≡ Λϕ

λϕξϕ
¼ ξχ

ξϕ
−

g
λϕ

; ~Λχ ≡ Λχ

λχξχ
¼ ξϕ

ξχ
−

g
λχ

: ð28Þ

For arbitrary ξI > 0, we find

FIG. 2. Field trajectories for different couplings and initial conditions. Open circles indicate fields’ initial values (in units of Mpl).
We set the fields’ initial velocities to zero and vary the initial angle in field space, θ0 ≡ arctanðχ0=ϕ0Þ. For the figure on the left,
we set ξϕ ¼ 103 and λϕ ¼ 10−2; for the figure on the right, we set ξϕ ¼ 10−1 and λϕ ¼ 10−10. In both figures, the other parameters
fξχ ; λχ ; g; θ0g are f1.2ξϕ; 0.75λϕ; λϕ; π=4g (red); f0.8ξϕ; λϕ; λϕ; π=4g (blue); f0.8ξϕ; λϕ; 0.75λϕ; π=3g (green); f0.8ξϕ; 1.2λϕ;
0.75λϕ; π=6g (black). In each case, the initial transient motion damps out within a few efolds, yielding effectively single-field
evolution for (at least) the final 65 efolds of inflation. Moreover, as demonstrated in Refs. [45,46], large field velocities at the start of
inflation redshift away very quickly and do not significantly alter the single-field attractor behavior during inflation. Such large initial
field velocities therefore have no impact on conditions at the start of preheating.
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DχχVjχ¼0 ¼
λϕϕ

2

½1þ δ2�3½1þ ð1þ 6ξϕÞδ2�

×

�
− ~Λϕð1þ 6ξϕÞðδ2 þ δ4Þ

− ð ~Λϕ þ εÞδ2 þ g
λϕ

�
; ð29Þ

where δ2 ≡ ξϕϕ
2=M2

pl as in Eq. (24). In the limit ξI ≫ 1,
the quantity δ2 ≫ 1 during inflation, and we find
DχχVjχ¼0 ∝ −Λϕ [47]. In that limit, whenever Λϕ < 0

the direction χ ¼ 0 remains a local minimum of the
potential and the background dynamics will obey strong
attractor behavior along the direction χ ¼ 0. For ξI ≪ 1, on
the other hand, δ2 ≳ 2 during inflation, as may be seen from
the scaling relationships in Eq. (25), and the orientation
θ ¼ arctanðχ=ϕÞ of the local minimum depends on the
ellipticity, ε, and the ratio g=λϕ in addition to the sign ofΛϕ.
Even in these cases, the existence of attractor solutions
remains generic (as shown in Fig. 2); only the orientation of
the attractor in field space changes. For ξI ≪ 1 there are
special regions of parameter space for the coupling values
where the topography of the potential can change during
inflation, meaning that a ridge can turn into a valley as the
inflaton rolls. Depending on the curvature, a waterfall-type
transition may occur [100].
The orientation of the valley of the potential in field

space, θ ¼ arctanðχ=ϕÞ, depends on combinations of cou-
plings λI , g, and ξI [47]. When studying inflationary
dynamics in multifield models, one typically projects
physical quantities into adiabatic and isocurvature direc-
tions based on the motion of the background fields, φI

[4,31,74–77,81]. For our two-field model, we may define
the orthogonal unit vectors [44–47]

σ̂I ≡ _φI

_σ
; ŝI ≡ ωI

ω
ð30Þ

in terms of the magnitude of the background fields’
velocity, _σ, and their (covariant) turn rate,

_σ ≡ j _φIj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GIJ _φ

I _φJ
q

; ωI ≡Dtσ̂
I: ð31Þ

We may then project any field-space vector into adiabatic
(σ) and isocurvature (s) components,

Aσ ≡ σ̂IAI; As ≡ ŝIAI: ð32Þ

Within a single-field attractor, ωI → 0, so that a vector in
field space that lies along the adiabatic direction at one time
will continue to point along the adiabatic direction at later
times. In that case, we may exploit the covariant nature of
our framework to perform a rotation in field space,
φI → φI0, such that the valley of the potential lies along
the direction χ0 ¼ 0. Then the attractor will keep
χ0 ∼ _χ0 ∼ 0, and only ϕ0ðtÞ will evolve. With respect to
the new field-space coordinates fϕ0; χ0g, the adiabatic
direction points along ϕ0 and the isocurvature direction
along χ0.
We may quantify the strength of the attractor by

examining the amount of fine-tuning needed to evade it.
We will concentrate on the large-ξI regime, as it is enough
to show the trend in the attractor’s strength as a function of
ξI. Following the analysis of Ref. [47] for the case where
the fields φI start exponentially close to the top of a ridge,
we use the linearized equations of motion to study the
strength of the attractor. Apart from the fine-tuned curva-
ture of the ridge ( ~Λϕ), the dynamics of the inflaton field,
which is translated into the attractor strength, depend very
sensitively on the initial proximity to the top of the ridge.
One obvious way to parametrize proximity to the top of the
ridge is with the angle in field space, θ. The initial angle is
θ0 ≈ χ0=ϕ0 for χ0 ≪ ϕ0. Our criterion will be the follow-
ing: for the same dimensionless ridge curvature ~Λϕ and the
same initial proximity to the ridge θ0, the strength of the
attractor is defined through the number of efolds N ≤ 60 it
takes for the inflaton field to develop a large angle in field
space, θ≃ 1.
Following the linearized analysis of Ref. [47], we take

the dominant field ϕ to follow the single-field slow-roll
solution, which is consistent to linear order in χ

FIG. 3. The tensor-to-scalar ratio (left) and the fraction of isocurvature modes (right) as a function of the nonminimal coupling ξϕ. The
isocurvature fraction is calculated for the symmetric (Higgs-like) case λϕ ¼ g ¼ λχ and ξϕ ¼ ξχ .
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_ϕSR ¼ −
ffiffiffiffiffi
λϕ

p
M3

pl

3
ffiffiffi
3

p
ξ2ϕϕ

; ð33Þ

which can be trivially solved to give

ϕ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ2
0 −

4

3

M2
pl

ξϕ
N

s
; ð34Þ

where ϕðN ¼ 0Þ ¼ ϕ0 at the start of inflation and we take
the Hubble term to be constant during slow roll,

H ≃
ffiffiffiffiffiffiffiffiffiffi
λϕ
12ξ2ϕ

s
Mpl: ð35Þ

The linearized equation of motion for the secondary
field χ, when starting near the top of a smooth ridge
(θ0 ≪ 1; ~Λϕ ≪ 1), is

χ̈ þ 3H _χ −
~ΛϕM2

pl

ξϕ
χ ≃ 0; ð36Þ

and the solution (for H ¼ constant) is

χðNÞ≃ χ0 exp

��
−
3

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9

4
þ 12 ~Λϕξϕ

r �
N

�
: ð37Þ

The evolution of the field-space angle θ follows immedi-
ately as

θðNÞ¼ arctan

0
BB@θ0

exp ½ð−3
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9
4
þ12 ~Λϕξϕ

q
ÞN�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1− 4
3

M2
pl

ξϕϕ
2
0

N

r
1
CCA: ð38Þ

As we can easily see from Fig. 4, for the same amount of
fine-tuning of the couplings ~Λϕ and initial position θ0, the

attractor gets stronger as ξϕ increases. We only consider this

fine-tuned regime, since for ~Λ ¼ Oð1Þ or θ0 ¼ Oð1Þ, the
approach to the attractor is too fast for the extraction of any
reasonable conclusion. In Fig. 4 we also plot the turn rate
jωj≡ jωIj as a function of time. For ξϕ ¼ 10 and fine-tuned
initial conditions, the attractor is too weak and the field
remains on the ridge for the duration of the inflationary
epoch, leading to a suppressed turn rate jωj ≲ 10−7. For
larger values of ξϕ we see that the turn rate spikes at the
time when θ≃ 1, as expected. The turn rate spikes earlier
for larger couplings, indicating again a stronger attractor
behavior. In the cases of ξϕ ¼ 103, 104, the attractor is
strong enough (meaning that the ridge is steep enough) that
the field reaches the valley of the potential while having a
significant velocity, which leads it to oscillate around the
minimum before settling down to single-field motion.
These oscillations perpendicular to the dominant motion
of the inflaton can be seen as “primordial clocks” with
possibly interesting observational consequences [101].
Equation (29) shows that for asymptotically large field

values (δ ≫ 1) the ridge-valley nature of the potential is
only defined by the sign of ~Λϕ, whereas after inflation
has ended and the fields have settled into an oscillation
pattern close to their minimum, in the limit of δ≲ 1, the
nature of the extremum is defined by the sign of g=λϕ.
There is of course a lot of parameter space between these
two extremes, where for example the ellipticity ε can
significantly affect the potential curvature. We will disen-
tangle these effects one by one.
We start with the case of zero ellipticity, ε ¼ 0, or

ξϕ ¼ ξχ , which corresponds to ~Λϕ ¼ 1 − ðg=λϕÞ. Figure 5
shows how the nature of the extremum at χ ¼ 0 varies with
all relevant parameters, g=λϕ, ξϕ and ϕ. A field rolling
along an attractor remains along this attractor throughout
inflation and preheating. Furthermore, for ξϕ ≳ 1, the
condition g=λϕ > 1 for the existence of an attractor remains
quite accurate. For smaller ξϕ, we see that even smaller

FIG. 4. Left: evolution of the angle θ as a function of number of efolds from the beginning of inflation for ~Λϕ ¼ 0.001, θ0 ¼ 10−4,
ξχ ¼ ξϕ and λϕ ¼ λχ . The values of the nonminimal coupling are ξϕ ¼ 10; 102; 103; 104 (from bottom to top: brown, blue, red, and
green, respectively). The black dotted lines show the analytic results from Eq. (38). Right: evolution of the turn rate jωj≡ jωIj as a
function of the number of efolds from the beginning of inflation for the same parameters and color coding. The turn rate for ξϕ ¼ 10 is
too small (jωj ≲ 10−7) to be visible on this plot.

MATTHEW P. DECROSS et al. PHYS. REV. D 97, 023526 (2018)

023526-8



values of g=λϕ can provide an attractor along χ ¼ 0. Even
more interestingly, there are cases in which the extremum
can change its nature during inflation. For example, for
ξϕ ¼ 10−3 and g=λϕ ¼ 0.2, we see that the direction χ ¼ 0

switches from a ridge to a valley around ϕ ≈ 12 (in units
of Mpl).
Next we consider the effect of an arbitrary ellipticity

ε ≠ 0. For simplicity, we choose two values of the
ellipticity with opposite sign, ε ¼ 0.5 and ε ¼ −1, and
compare them to the previous case ε ¼ 0. The results are
shown in Fig. 6. As expected, the values of g=λϕ are shifted
according to the ellipticity, since we can rewrite the
parameter ~Λϕ as

~Λϕ ¼ 1 − ε −
g
λϕ

: ð39Þ

This means that in the limit where ~Λϕ defines the nature of
the extremum (for large δ), the extremum is a minimum for
g=λϕ > 1 − ε. An interesting phenomenon occurs for
positive ellipticity and g=λϕ ≳ 1 − ε. In this case, the
critical value of g=λϕ is a nonmonotonic function of ϕ.
This means that for a value of g=λϕ slightly above the

critical value, the valley, in which the field is rolling, can
turn into a ridge and then into a valley again. This can
trigger some genuinely multifield behavior, such as a
waterfall transition, similar to hybrid inflation. Density
perturbations during a waterfall transition require special-
ized treatment, due to the lack of a classical field trajectory
around which to perturb, and can have interesting obser-
vational consequences such as seeding primordial black
holes [100]. However, in the context of the family of
models that we consider here, such waterfall transitions are
rather fine-tuned cases, and wewill not pursue them further.
In sum, these models include five coupling constants: λϕ,

λχ , g, ξϕ, and ξχ . The Hubble scale during inflation is fixed
by the combination λϕ=ξ2ϕ ≃ 12H2=M2

Pl (assuming the field
is rolling along χ ¼ 0). We may reorganize the couplings in
terms of the three nontrivial combinations Λϕ, Λχ , ε,
introduced in Eq. (27). Except for exponentially fine-tuned
cases—fine-tuned in both parameter space and the fields’
initial conditions—the predictions for cosmic microwave
background (CMB) observables from these models follow
the Starobinsky attractor for ξϕ ≳ 10 and essentially any
values of the remaining parameter combinations, Λϕ, Λχ , ε,
as discussed in detail in Refs. [44,46,47].
Inflation ends when the scale factor stops accelerating,

äðtendÞ ¼ 0, which is equivalent to ϵðtendÞ ¼ 1. (As a
reminder, ϵ≡ − _H=H2 should not be confused with the
ellipticity parameter, ε≡ ðξϕ − ξχÞ=ξϕ.) After tend, the
background fields φIðtÞ oscillate around the global mini-
mum of the potential, governed by Eq. (15). If (as is
generic) the system settles into the single-field attractor
before the end of inflation, then the motion of φIðtÞ in the
direction of the potential’s valley remains suppressed even
after inflation. For example, if the system evolves along a
valley in the χ ¼ 0 direction during inflation, then χ ∼ _χ ∼
0 at tend and Eq. (15) will maintain χ ∼ _χ ∼ 0 for times
t > tend, as shown in Fig. 7. Such attractor behavior after
tend persists for at least as long as backreaction from
perturbations may be neglected, consistent with the linear-
ized treatment of Eq. (10). Thus the strong attractor

FIG. 5. Left: value of g=λϕ for which DχχVjχ¼0 ¼ 0 versus ϕ (in units ofMpl) for ξϕ ¼ ξχ and ξϕ ¼ 10−3, 10−2, 10−1, 1 (from bottom
to top). Right: same quantity versus δ ¼ ffiffiffiffiffi

ξϕ
p

ϕ=Mpl for ξϕ ¼ 1, 10, 100, 103, 104 (from bottom to top). For values of g=λϕ above each
curve, the potential exhibits a valley along χ ¼ 0.

FIG. 6. The value of g=λϕ for which DχχVjχ¼0 ¼ 0 versus ϕ (in
units of Mpl) for ξϕ ¼ 10−1 (blue) and ξϕ ¼ 10−2 (red). For each
value of ξϕ, the ellipticity varies as ε ¼ −0.5, 1, 2 (from top to
bottom). For values of g=λϕ above each curve, the potential
exhibits a valley along χ ¼ 0.
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behavior that was identified in Refs. [44–47] is character-
istic of the preheating phase as well.
The persistence of the attractor behavior after the end

of inflation has important implications for preheating. In
particular, although the unit vectors σ̂I and ŝI may become
ill defined when the motion of φIðtÞ is no longer
monotonic, the orientation of the attractor in field space,
θ ¼ arctanðχ=ϕÞ, remains unchanged after inflation. Upon
performing a rotation φI → φI0 such that χ0 ¼ 0 lies along
the direction of the attractor, then only one field, ϕ0ðtÞ,
oscillates after tend. With only one background field
oscillating, there is no “dephasing” of the background fields’
oscillations, as is typical for multifield models with minimal
couplings [24,66,67]. As shown in Refs. [1,2], these attractor
models therefore predict robust, resonant amplification of
fluctuations across wide regions of parameter space.
Within a single-field attractor, both the field-space

metric, GIJ, and the mass-squared tensor, MIJ of
Eq. (18), become effectively diagonal. Upon rotating φI →
φI0 as needed so that the attractor lies along the direction
χ0 ¼ 0, then Gϕ0χ0 ∼ Gϕ0χ0 ∼ 0 andMϕ0

χ0∼Mχ0
ϕ0 ∼ 0. As we

will see in Sec. IV, this feature greatly simplifies the
analysis of the fluctuations. Given that we may always
perform such a field-space rotation, for most of the
following analysis we restrict our attention to cases in
which the attractor lies along the direction χ ¼ 0, with no
loss of generality. In Sec. IV C we demonstrate that our
results remain robust even for cases in which the attractor
lies along some other direction θ in field space.

B. End of inflation and effective equation of state

Within the single-field attractor, wemay readily study how
ϕðtendÞ depends on the coupling constants. First we note that
in the single-field attractor (assumed to lie along a χ ¼ 0
valley), the evolution of ϕðtÞ becomes independent of
λχ , g, and ξχ . Furthermore, we may rescale t → τ≡ ffiffiffiffiffi

λϕ
p

t
without affecting the dynamics: N ¼ R

Hdt ¼ R
Hdτ

remains unchanged, as does ϵ ¼ −H0=H2 ¼ − _H=H2

(where H≡ a0=a and primes denote d=dτ). Therefore
ϕðτendÞ ¼ ϕðtendÞ. Thus in the single-field attractor, the
value of ϕ at the end of inflation depends only on ξϕ.
In the limit ξϕ ≫ 1, we expect inflation to end when
ξϕϕ

2ðtendÞ≃M2
pl, which is indeed the behavior we observe.

As shown in Fig. 8, ϕðtendÞ is very well fit by ϕðtendÞ ¼
0.8Mpl=

ffiffiffiffiffi
ξϕ

p
for ξϕ ≥ 1, whereas ϕðtendÞ → 2.1Mpl in the

limit ξϕ ≪ 1, approaching the result of a minimally coupled
ϕ4 model. The value ϕðtendÞ sets the initial amplitude of
oscillations at the start of preheating.
We may estimate the effective equation of state during the

preheating phase by using the virial theorem [102]. The total
kinetic energy for the system (to background order) is [44]

1

2
_σ2 ≡ 1

2
GIJ _φ

I _φJ; ð40Þ

and the energy density and pressure are given by

ρ ¼ 1

2
_σ2 þ VðφIÞ;

p ¼ 1

2
_σ2 − VðφIÞ: ð41Þ

If we assume an equation of state of the form p ¼ wρ, then
we find

w ¼ _σ2 − 2V
_σ2 þ 2V

ð42Þ

FIG. 7. The evolution of HðtÞ (black dashed line), ϕðtÞ (red
solid line), and χðtÞ (blue dotted line) during and after inflation, in
units of Mpl. The evolution shown here is for ξχ ¼ 0.8ξϕ,
λχ ¼ 1.25λϕ, and g ¼ λϕ, with ξϕ ¼ 102, λϕ ¼ 10−4, and initial

conditions ϕðt0Þ ¼ 1, χðt0Þ ¼ 0.8, _ϕðt0Þ ¼ _χðt0Þ ¼ 0. (We plot
5 × 104 H so its magnitude is comparable to ϕ.) With these
parameters and initial conditions, inflation lasts for Ntot ¼ 111.6
efolds until tend ¼ 3.99 × 106. The system rapidly falls into a
valley along χ ¼ 0 within the first 3 efolds of inflation, after
which χðtÞ remains fixed at χ ∼ 0. After tend, ϕðtÞ oscillates
around the global minimum of the potential.

FIG. 8. Within the single-field attractor, the value of ϕðtendÞ
depends only on ξϕ. The blue curve shows the numerical
evaluation of ϕðtendÞ (in units of Mpl), while the red dashed
curve shows 0.8=

ffiffiffiffiffi
ξϕ

p
.
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to background order. Using Eqs. (16), (40), and (41), wemay
rewrite Eq. (22) as ϵ ¼ 3_σ2=ð _σ2 þ 2VÞ. At tend, before the
oscillations have begun, we have ϵ ¼ 1 and therefore
w ¼ −1=3, independent of couplings.
To estimate w once the background fields begin to

oscillate, we define a covariant expression for the virial, q,

q≡ GIJ _φ
IφJ: ð43Þ

Upon using ∂GIJ=∂t ¼ ð∂KGIJÞ _φK and the usual relations
among the Christoffel symbols ΓI

JK , we find

_q ¼ _σ2 − V;Jφ
J þ 1

2
ð∂KGIJÞ _φI _φJφK: ð44Þ

Equation (44) is analogous to applications of the virial
theorem in general relativity, in which corrections to the
Newtonian result enter as gradients of the metric compo-
nents [103]. For trajectories within the single-field attractor
(with χ ∼ _χ ∼ 0), we have _σ2 ≃ Gϕϕ

_ϕ2 and Eq. (44)
becomes

_q≃ _σ2
�
1þ 1

2
ϕ∂ϕ lnGϕϕ

�
− V;Jφ

J: ð45Þ

From Eqs. (4) and (20), we further find

V;Jφ
J ¼ 2M2

pl
V
f
; ð46Þ

where f is the nonminimal-coupling function of Eq. (19).
Upon time averaging over several oscillations we have
h _qi ¼ 0, and hence

h _σ2i þ 1

2
h _σ2 · ϕ∂ϕ lnGϕϕi ¼ 2M2

plhV=fi; ð47Þ

where the second term on the left-hand side is the
contribution of the stretched field-space manifold. The
equation of state can be calculated by noting that energy
conservation requires (if one neglects Hubble friction)

_σ2 þ 2V ¼ 2Vmax; ð48Þ

which allows Eq. (42) to be written solely in terms of ϕ and
not _ϕ.
After tend, ϕðtÞ begins to oscillate with an initial

amplitude ϕðtendÞ ∼Mpl=
ffiffiffiffiffi
ξϕ

p
for ξϕ ≳ 1; at later times,

its amplitude falls due to both the expansion of the Universe
and the transfer of energy to decay products. Figure 9
shows the equation of state wavg calculated by solving the
background evolution and averaging Eq. (42) over several
oscillations of ϕðtÞ, starting at the end of inflation, when
w ¼ −1=3. We see that for large nonminimal couplings, the
equation of state spends more time around wavg ≈ 0, as the

Universe continues to expand, while eventually reaching
wavg ¼ 1=3 at late times. Early in the oscillation phase, in
other words, the conformal stretching of the Einstein-frame
potential makes the background field behave more like a
minimally coupled field in a quadratic potential, VðϕÞ ¼
1
2
m2ϕ2, than a quartic potential, VðϕÞ ¼ λ

4
ϕ4. At late times,

however, the system behaves like radiation, as in the
minimally coupled case. Calculated to background order,
wavg reaches 1=3 within several efolds after the end of
inflation across the range 10−1 ≤ ξϕ ≤ 104.

C. Background-field oscillations

To facilitate comparison with the well-studied case of a
minimally coupled field with quartic self-coupling, in this
subsection we neglect Hubble expansion during the oscil-
lating phase. This approximation becomes more reliable as
the frequency of oscillation ω grows significantly larger
than H; in our case, we find a modest separation of time
scales, with ω=H > 1 across a wide range of ξϕ. (One may
incorporate effects from the expansion of the Universe
perturbatively [104], though the H ∼ 0 limit will suffice for
our purposes here.)
Within the single-field attractor, in the limit H → 0 and

neglecting backreaction from produced particles, Eq. (15)
becomes

ϕ̈þ Γϕ
ϕϕ

_ϕ2 þ GϕϕV;ϕ ≃ 0: ð49Þ
We rescale τ≡ ffiffiffiffiffi

λϕ
p

t, so that the dynamics depend only
on ξϕ. After τend, ϕðτÞ oscillates periodically with period
given by

T ¼ 2

Z
ϕ0

−ϕ0

dϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gϕϕ

2Vðϕ0Þ − 2VðϕÞ

s
: ð50Þ

FIG. 9. The equation of state, w from Eq. (42), averaged over
several oscillations of ϕðtÞ, as a function of efolds, N, after the
end of inflation. From bottom to top: ξϕ ¼ 104 (orange dotted
line), ξϕ ¼ 103 (brown dashed line), ξϕ ¼ 102 (black line),
ξϕ ¼ 10 (red dashed line), ξϕ ¼ 1 (blue short-dashed line),
and ξϕ ¼ 0.1 (green dotted line). All simulations used
ξχ ¼ 0.8ξϕ, λχ ¼ 1.25λϕ, and g ¼ λϕ. Initial conditions at the
start of inflation were set as θ0 ¼ arctanðχ0=ϕ0Þ ¼ π=6; in each
case, the fields settled into the single-field attractor along χ ∼ 0
before the end of inflation.
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[In this subsection we label ϕ0 ¼ ϕðτendÞ as the amplitude
of the field at the start of preheating, rather than the start of
inflation.] As shown in Fig. 10, the period scales approx-
imately linearly with ξϕ for ξϕ > 1, and hence the fre-
quency of oscillations ω ¼ 2π=T scales like 1=ξϕ. The
Hubble scale at the end of inflation HðtendÞ also scales like
1=ξϕ in the limit of large ξϕ. We find ω=HðtendÞ > 1 across
the entire range 10−3 ≤ ξϕ ≤ 103, with ω=HðtendÞ ∼ 3 at
ξϕ ¼ 1 and ω=HðtendÞ → 4 for ξϕ ≫ 1.
In the limit ξϕ ≫ 1, the integral for T in Eq. (50) may be

calculated analytically. For initial data of the form ϕ0 ¼
ϕðτendÞ ¼ αMpl=

ffiffiffiffiffi
ξϕ

p
for some constant α, and working in

the regime α > 1=
ffiffiffiffiffiffiffi
6ξϕ

p
, we find

T →
4

ffiffiffi
3

p
ξϕ

Mpl

�
π − arctan

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2α2

p

α2

��
1þ α2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2α2

p : ð51Þ

Details of the derivation may be found in Appendix B.
Using the best-fit value α ¼ 0.8 (see Fig. 8) yields T →
14.8ξϕ=Mpl in the limit ξϕ ≫ 1. Meanwhile, in the opposite
limit, ξϕ → 0, Eq. (49) may be solved analytically as a
Jacobian elliptic cosine, given the Jordan-frame potential of
Eq. (20): ϕðtÞ ¼ ϕ0cnðϕ0τ; 1=

ffiffiffi
2

p Þ [105–107]. The func-
tion cnðx; κÞ is periodic with period 4KðκÞ, where KðκÞ
is the complete elliptic integral of the first kind [108].
Given κ ¼ 1=

ffiffiffi
2

p
and ϕ0 ¼ 2.1Mpl for ξϕ ¼ 0, we find

T → 4Kð1= ffiffiffi
2

p Þ=ϕ0 ¼ 3.9=Mpl, a good match to the ξϕ≪1

behavior of Fig. 10.
More generally, the terms in Eq. (49) that arise from the

nontrivial field-space metric produce a richer structure
for ϕ’s oscillations, with greater numbers of non-negligible
harmonics, compared to the ξϕ ¼ 0 case. In Ref. [1] we
study this nontrivial harmonic structure and analyze its
impact on the structure of the resonances for the coupled
fluctuations.

IV. EVOLUTION OF THE FLUCTUATIONS

In order to study the evolution of the fluctuations QI

during preheating, we expand the action to second order in
both field and metric perturbations, calculate the energy
density, and perform a (covariant) mode expansion. These
steps enable us to relate the number density of particles for
each species to an adiabatic parameter, generalizing the
usual single-field expression. The adiabatic parameters
may be used to identify regions of parameter space in
which the system departs strongly from adiabatic evolution,
indicating explosive particle production. We identify
important differences in the behavior of the system for
three distinct regimes: ξI < Oð1Þ, ξI ∼Oð1 − 10Þ, and
ξI ≥ Oð100Þ, which we explore further in Refs. [1,2].
These three regimes correspond to what one might expect,
a priori, on perturbative grounds: ξI → 0 (semiclassical
analysis), ξI ∼ 1 (nontrivial quantum corrections), and
ξI → ∞ (nonperturbative regime).

A. Mode expansion and adiabatic parameters

Following the method of Ref. [82] applied to the action
in Eq. (3), we may expand the action to second order in
the doubly covariant fluctuation QI . We find (see also
Refs. [44,80,86])

SðQÞ
2 ¼

Z
d3xdta3ðtÞ

�
−
1

2
ḡμνGIJDμQIDνQJ

−
1

2
MIJQIQJ

�
; ð52Þ

where ḡμν is the background spacetime metric, MIJ is
given in Eq. (18), and GIJ and MIJ are evaluated to
background order in the fields, φI. Next we rescale the
fluctuations, QIðxμÞ → XIðxμÞ=aðtÞ and introduce con-
formal time, dη ¼ dt=aðtÞ, so that the background space-
time line element may be written ds2 ¼ a2ðηÞημνdxμdxν, in

FIG. 10. Left: period of ϕðτÞ’s oscillations, T [in units of ð ffiffiffiffiffi
λϕ

p
MplÞ−1], as a function of ξϕ, within the single-field attractor. For large

ξϕ, T grows linearly with ξϕ, asymptoting to T → 14.8ξϕ=Mpl (red dashed line). Right: ratio of the frequency of ϕ’s oscillations,
ω ¼ 2π=T, to the Hubble scale at the end of inflation, HðtendÞ. For large ξϕ, both ω and HðtendÞ scale as 1=ξϕ, yielding ω=HðtendÞ≃ 4.
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terms of the Minkowski spacetime metric ημν. Upon
integrating by parts, we may rewrite Eq. (52) in the form

SðXÞ2 ¼
Z

d3xdη

�
−
1

2
ημνGIJDμXIDνXJ −

1

2
MIJXIXJ

�
ð53Þ

where

MIJ ≡ a2
�
MIJ −

1

6
GIJR

�
ð54Þ

and R is the spacetime Ricci scalar. We have used the
relation R ¼ 6a00=a3, and in this section we will use primes
to denote d=dη. Note that for an equation of state wavg ≃ 0

then aðtÞ ∼ t2=3 and aðηÞ ∼ η2, while for wavg ¼ 1=3 then
aðtÞ ∼ t1=2 and aðηÞ ∼ η.
From Eq. (53) we may construct an energy-momentum

tensor for the fluctuations,

TðXÞ
μν ¼ GIJDμXIDνXJ −

1

2
ημν½ηαβGIJDαXIDβXJ

þMIJXIXJ�: ð55Þ
The energy density is given by the 00 component of TðXÞ

μν .
The background spacetime metric is spatially flat, so we
may easily perform a Fourier transform of a given quantity,
FðxμÞ ¼ ð2πÞ−3=2 R d3kFkðηÞeik·x. The energy density of
the fluctuations per Fourier mode then takes the form

ρðXÞk ¼ 1

2
GIJDηXI

kDηXJ
k þ

1

2
½ω2

kðηÞ�IJXI
kX

J
k þOðX3Þ;

ð56Þ
where we have defined

½ω2
kðηÞ�IJ ≡ k2GIJ þMIJ: ð57Þ

Upon using the equation of motion forQI, Eq. (17), and the
relation QI ¼ XI=a, we may rewrite Eq. (56) in the form

ρðXÞk ¼ 1

2
GIJ½ðDηXIÞðDηXJÞ − ðD2

ηXIÞXJ�: ð58Þ

Next we quantize the fluctuations, XI → X̂I , and expand
them in a series of creation and annihilation operators in a
way that respects the nontrivial field-space manifold
[24,109],

X̂IðxμÞ ¼
Z

d3k

ð2πÞ3=2
×
X
b

½uIbðk; ηÞâkbeik·x þ uI�b ðk; ηÞâ†kbe−ik·x�;

ð59Þ
where the index b ¼ 1; 2;…; N. The operators obey

âkbj0i ¼ 0; h0jâ†kb ¼ 0 ð60Þ

for all k and b, and

½âkb; âqc� ¼ ½â†kb; â†qc� ¼ 0;

½âkb; â†qc� ¼ δð3Þðk − qÞδbc: ð61Þ

Each of the mode functions satisfies the equation of motion,

D2
ηuIb þ ½ω2

kðηÞ�IJuJb ¼ 0: ð62Þ

As discussed in Ref. [24], we have N linear, second-order
differential equations (one for each X̂I), which yield 2N
linearly independent solutions. By parametrizing the fluc-
tuations as in Eq. (59), we have introduced N2 complex
mode functions ubIðk; ηÞ, and hence 2N2 real-valued scalar
functions, ubI ¼ Re½ubI� þ Im½ubI�. But N-tuples of the
complex mode functions are coupled to each other by
Eq. (62), which yields 2NðN − 1Þ constraints, leaving
exactly 2N2 − 2NðN − 1Þ ¼ 2N independent solutions.
We parametrize the mode functions as [24,109]

uIbðk; ηÞ ¼ hðb;IÞðk; ηÞebIðηÞ; ð63Þ

where the hðb;IÞ are complex scalar functions and the ebIðηÞ
are vielbeins of the field-space metric,

δbcebIðηÞecJðηÞ ¼ GIJðηÞ: ð64Þ

Note that the components of the vielbeins are purely real,
and, unlike the unit vectors σ̂I; ŝI defined in Eq. (30), the
ebI are well behaved during preheating. (Explicit expres-
sions for the ebI for our two-field model may be found in
Appendix A.) The subscripts ðb; IÞ on h are labels only, not
vector indices. We then find

h0jX̂IðxÞX̂JðxÞj0i ¼
Z

d3k
ð2πÞ3 δ

bcubIucJ�; ð65Þ

upon using Eqs. (60), (61), and (64). As emphasized in
Refs. [24,29], the cross products, with I ≠ J, need not
vanish.
The vielbeins “absorb” most of the added structure from

the nontrivial field-space manifold, enabling us to manipu-
late (mostly) ordinary scalar functions. As usual, we raise
and lower field-space indices I, J with GIJ, and we raise and
lower internal indices b, c with δbc. We may also use the
vielbeins to “trade” between field-space indices and inter-
nal indices. For an arbitrary vector AI we may write

Ab ¼ ebIAI; AI ¼ ebIAb; ð66Þ

while Eq. (64) implies
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ebIecI ¼ δbc;

ebIebJ ¼ δIJ: ð67Þ

The covariant derivative of the vielbein with respect to GIJ

is given in terms of the spin connection, ωbc
I ,

DIebJ ¼ −ωbc
IecJ; ð68Þ

where ωbc
I is antisymmetric in its internal indices, ωbc

I ¼
−ωcb

I [110]. Because of the antisymmetry of the spin
connection, the (covariant) directional derivative with
respect to conformal time vanishes,

DηebJ ¼ 0 ð69Þ

for all b and J [109].
For our two-field model, with fI; Jg ¼ f1; 2g, we may

write out the mode expansions more explicitly. We assign
the field-space indices 1 ¼ ϕ and 2 ¼ χ and write âkb ¼
b̂k for b ¼ 1, âkb ¼ ĉk for b ¼ 2. We also label hð1;ϕÞ ¼
vkðηÞ, hð2;ϕÞ ¼ wkðηÞ, hð1;χÞ ¼ ykðηÞ, and hð2;χÞ ¼ zkðηÞ, so
that Eq. (59) becomes

X̂ϕðxμÞ ¼
Z

d3k

ð2πÞ3=2 ½ðvke1
ϕb̂k þ wke

ϕ
2 ĉkÞeik·x

þ ðv�ke1ϕb̂†k þ w�
ke2

ϕĉ†kÞe−ik·x�;

X̂χðxμÞ ¼
Z

d3k

ð2πÞ3=2 ½ðyke1
χ b̂k þ zke

χ
2ĉkÞeik·x

þ ðy�ke1χ b̂†k þ z�ke2
χ ĉ†kÞe−ik·x�: ð70Þ

Equation (62) couples vk with yk and wk with zk:

ðv00k þ Ω2
ðϕÞvkÞeϕ1 ¼ −a2Mϕ

χyke
χ
1;

ðw00
k þ Ω2

ðϕÞwkÞeϕ2 ¼ −a2Mϕ
χzke

χ
2;

ðy00k þΩ2
ðχÞykÞeχ1 ¼ −a2Mχ

ϕvke
ϕ
1 ;

ðz00k þ Ω2
ðχÞzkÞeχ2 ¼ −a2Mχ

ϕwke
ϕ
2 ; ð71Þ

where for convenience we have labeled the diagonal
components of ½ω2

kðηÞ�IJ as

Ω2
ðϕÞðk; ηÞ≡ k2 þ a2m2

eff;ϕðηÞ;
Ω2

ðχÞðk; ηÞ≡ k2 þ a2m2
effχðηÞ; ð72Þ

in terms of the effective masses

m2
eff;ϕ ≡Mϕ

ϕ −
1

6
R;

m2
eff;χ ≡Mχ

χ −
1

6
R: ð73Þ

We are interested in the energy density per mode k of the
quantized fluctuations, which we parametrize as

hρ̂ðXÞðxμÞi ¼
Z

d3k
ð2πÞ3 ρ

ðXÞvev
k ðηÞ: ð74Þ

Upon using Eqs. (58), (65), and (69) we find

ρðXÞvevk ¼ 1

2
GIJ

X
b

X
c

fδbc½h0ðb;IÞh�0ðc;JÞ − h00ðb;IÞh
�
ðc;JÞ�ebIecJg

¼ ρðϕÞk þ ρðχÞk þ ρðintÞk ; ð75Þ

with

ρðϕÞk ¼ 1

2
Gϕϕfðjv0kj2 − v00kv

�
kÞeϕ1eϕ1 þ ðjw0

kj2 − w00
kw

�
kÞeϕ2eχ2g;

ρðχÞk ¼ 1

2
Gχχfðjy0kj2 − y00ky

�
kÞeχ1eχ1 þ ðjz0kj2 − z00kz

�
kÞeχ2eχ2g;

ρðintÞk ¼ Gϕχfðv0ky�0k − v00ky
�
kÞeϕ1eχ1 þ ðy0kv�0k − y00kv

�
kÞeχ1eϕ1

þ ðw0
kz

�0
k − w00

kz
�
kÞeϕ2eχ2 þ ðz0kw�0

k − z00kw
�
kÞeχ2eϕ2g:

ð76Þ

One may use the equations of motion in Eq. (71) to
demonstrate that the expressions in Eq. (76) are purely real.
The number density per mode of quanta of a given field I (ϕ
or χ) may be related to the energy density by

nðIÞk ¼ ρðIÞk

ΩðIÞ
−
1

2
: ð77Þ

The number density per mode for each species I ¼ ϕ; χ will

be well defined in the limit ρðintÞk ≪ ρðIÞk .
We noted in Sec. III A that within a single-field attractor

(along the direction χ ¼ 0), the cross-terms in both GIJ

and MI
J vanish. In that case, the vielbeins also become

diagonal,

eIb →

�
eϕ1 0

0 eχ2

�
; ð78Þ

with eϕ2 ∼ eχ1 ∼ 0, eϕ1e
ϕ
1 ≃ Gϕϕ, eχ2e

χ
2 ≃ Gχχ , and GϕϕGϕϕ ¼

GχχGχχ ¼ 1þOðχ2Þ. Then the fluctuations X̂I simplify
considerably: X̂ϕ is expanded only in the b̂k; b̂

†
k operators,

and X̂χ only in the ĉk; ĉ
†
k operators. Given both

Mϕ
χ∼Mχ

ϕ ∼ 0 and eϕ2 ∼ eχ1 ∼ 0, moreover, the scalar
mode functions decouple: the functions vkðηÞ and zkðηÞ
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satisfy source-free equations of motion, while wkðηÞ∼
ykðηÞ ∼ 0. Within the attractor, the expressions in Eq. (76)
simplify as well:

ρðϕÞk →
1

2
ðjv0kj2 − v00kv

�
kÞ þOðχ2Þ;

ρðχÞk →
1

2
ðjz0kj2 − z00kz

�
kÞ þOðχ2Þ;

ρðintÞk → Oðχ2Þ ∼ 0: ð79Þ

Since ρðintÞk remains subdominant within the single-field
attractor, the notion of particle number for each species is

well defined in that limit, and we may relate ρðϕÞk and ρðχÞk to
the corresponding number densities of produced particles.
To calculate the number density of created particles

and relate those expressions to adiabatic parameters, we
generalize the familiar result from studies of single-field
models with minimal couplings. (See also Refs. [66,
111–113].) Within the single-field attractor, the coupled
equations of motion in Eq. (71) reduce to

v00k þ Ω2
ðϕÞðk; ηÞvk ≃ 0;

z00k þ Ω2
ðχÞðk; ηÞzk ≃ 0: ð80Þ

We are interested in how efficiently the background fields
φI transfer energy to the fluctuations after the end of
inflation, so we quantize the fluctuations with respect to the
adiabatic vacuum j0ðtendÞi, that is, the state that instanta-
neously minimizes the system’s energy density at tend
[24,37,39]. We then posit solutions to Eq. (80) of the form

vkðηÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2WðϕÞðk; ηÞ
q exp

�
−i

Z
η
dη0WðϕÞðk; η0Þ

�
;

zkðηÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2WðχÞðk; ηÞ
q exp

�
−i

Z
η
dη0WðχÞðk; η0Þ

�
; ð81Þ

in terms of the (as yet unspecified) real-valued functions
WðIÞðk; ηÞ. The choice of adiabatic vacuum corresponds to
the boundary conditions WðϕÞðk; ηendÞ ¼ ΩðϕÞðk; ηendÞ and
WðχÞðk; ηendÞ ¼ ΩðχÞðk; ηendÞ. Given the ansatz in Eq. (81),
the expressions in Eq. (76) for the energy density per mode
take the form

ρðϕÞk ¼ 1

2

�
WðϕÞ þ

W00
ðϕÞ

4W2
ðϕÞ

−
W02

ðϕÞ
4W3

ðϕÞ

�
þOðχ2Þ; ð82Þ

and likewise for ρðχÞk in terms of WðχÞ and its derivatives.
Within the single-field attractor, when ρðintÞk ∼ 0 and ρðϕÞk

and ρðχÞk assume the simple forms in Eq. (79), the number
densities in Eq. (77) likewise simplify. We may also use
Eq. (80) to relate WðϕÞðk; ηÞ to ΩðϕÞðk; ηÞ, which yields

W2
ðϕÞ ¼ Ω2

ðϕÞ −
1

2

�W00
ðϕÞ

WðϕÞ
−
3

2

W0
ðϕÞ

W2
ðϕÞ

�
: ð83Þ

Away from resonance bands we expect the modes to
evolve adiabatically, for which WðϕÞðk; ηÞ → ΩðϕÞðk; ηÞ þ
OðA2

ðϕÞÞ, where

AðϕÞðk; ηÞ≡
Ω0

ðϕÞðk; ηÞ
Ω2

ðϕÞðk; ηÞ
: ð84Þ

As in Ref. [37], we may then solve Eq. (83) iteratively, in
increasing powers of AðϕÞ. Combining Eqs. (82)–(84), we
find

nðϕÞk ¼ 1

16
A2

ðϕÞ þOðχ2Þ þOðA3
ðϕÞÞ; ð85Þ

with a comparable expression for nðχÞk . Much as in familiar
cases with minimally coupled fields [24,66,111,112],
regions of parameter space in which AðIÞðk; ηÞ ≫ 1 corre-
spond to strong departures from adiabatic evolution, and
hence to bursts of particle production.

B. Resonant amplification within the attractor

The behavior of the adiabatic parameters, AðIÞðk; ηÞ,
depends upon the effective frequencies,ΩðIÞðk; ηÞ, which in
turn depend upon the effective masses, m2

eff;I , defined in
Eq. (73). After the end of inflation, as φIðtÞ oscillates, one
or more of the m2

eff;I will oscillate as well, which can drive

resonant amplification of the coupled fluctuations, Q̂I . We
may rewrite Eq. (84) in terms of cosmic time rather than
conformal time,

AðIÞ ¼
H−3∂tm2

eff;I þ 2ðmeff;I=HÞ2
2½l2 þ ðmeff;I=HÞ2�3=2 ; ð86Þ

where l≡ kphys=H ¼ k=ðaHÞ. In the limit l ≪ 1, we find

AðIÞ ¼
∂tm2

eff;I

2m3
eff;I

þ H
meff;I

þOðl2Þ: ð87Þ

In the limit k ≪ aH, we expect jAðIÞj ≫ 1 whenever
∂tm2

eff;I spikes and/or m
2
eff;I passes through zero.

Given the form of Eq. (73), we may distinguish four
separate contributions to m2

eff;ϕ:

m2
eff;ϕ ¼ m2

1;ϕ þm2
2;ϕ þm3

3;ϕ þm2
4;ϕ; ð88Þ

where
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m2
1;ϕ ≡ GϕKðDϕDKVÞ;

m2
2;ϕ ≡ −Rϕ

LMϕ _φ
L _φM;

m2
3;ϕ ≡ −

1

M2
pla

3
δϕIδ

J
ϕDt

�
a3

H
_φI _φJ

�
;

m2
4;ϕ ≡ −

1

6
R; ð89Þ

with comparable expressions for the contributions to m2
eff;χ .

Note that m2
1;I arises from the gradient of the potential; m2

2;I

from the nontrivial field-space manifold; m2
3;I from the

coupled metric perturbations; and m2
4;I from the expansion

of thebackground spacetime. The termm2
2;I, in particular, has

no analog in models with minimally coupled fields and
canonical kinetic terms, and can play important roles in the
dynamics during and after inflation [44–47,78–83,114,115].
We first note that

m2
4;I ¼ −

1

6
R ¼ −ð _H þ 2H2Þ ¼ ðϵ − 2ÞH2: ð90Þ

We observed in Sec. III B that ϵ ¼ 3_σ2=ð _σ2 þ 2VÞ, so
0 ≤ ϵ ≤ 3, and hence m2

4;I=H
2 ¼ Oð1Þ regardless of the

couplings and of the motion of the background fields φI .
Within the single-field attractor (with χ ∼ _χ ∼ 0), many of
the other terms in Eq. (89) also become negligible. In
particular,

Gϕχ ∼ Gϕχ ∼OðχÞ ∼ 0;

Γϕ
ϕχ ∼ Γχ

ϕϕ ∼ Γχ
χχ ∼OðχÞ ∼ 0;

V;χ ∼ V;ϕχ ∼OðχÞ ∼ 0: ð91Þ

Upon using the expressions for GIJ, ΓI
JK , and RILMJ in

Appendix A, we then find

m2
1;ϕ ¼ Gϕϕ½V;ϕϕ − Γϕ

ϕϕV;ϕ� þOðχ2Þ;
m2

2;ϕ ¼ Oðχ _χÞ ∼ 0;

m2
3;ϕ ¼ −

Gϕϕ

M2
pl

�
ð3þ ϵÞ _ϕ2 þ 2

H
_ϕ ϕ̈

�
þOðχ _χÞ;

m2
1;χ ¼ Gχχ ½V;χχ − Γϕ

χχV;ϕ� þOðχ2Þ;

m2
2;χ ¼

1

2
RGϕϕ

_ϕ2 þOðχ _χÞ;
m2

3;χ ¼ Oðχ _χÞ ∼ 0: ð92Þ

TheR inm2
2;χ is the Ricci curvature scalar of the field-space

manifold, an explicit expression for which may be found in
Eq. (A6) in Appendix A.
As shown in Fig. 11, there exist three distinct regimes of

interest, depending on whether ξI < Oð1Þ, ξI ∼Oð1–10Þ,
or ξI ≥ Oð100Þ. Bothm2

eff;ϕ andm
2
eff;χ develop increasingly

sharp features with increasing ξI , an effect studied in
Ref. [56] and further explored in Refs. [1,2]. These sharp
features lead to spikes in ∂tm2

eff;I (and hence in AðIÞ) for
both adiabatic and isocurvature modes for ξI ≥ Oð100Þ,
yielding efficient particle production in that limit. Other
effects are notable in Fig. 11. For example, for the adiabatic
modes, the term arising from the coupled metric perturba-
tions, m2

3;ϕ, becomes increasingly important as ξI becomes
large, periodically driving m2

eff;ϕ < 0 and hence yielding
brief, tachyonic bursts of particle production, an effect we
study in more detail in Ref. [2].
On the other hand, for intermediate values of the non-

minimal couplings, ξI ∼Oð10Þ, we see that m2
eff;χ neither

becomes sharply peaked nor oscillates to zero. In the
intermediate regime, therefore, we expect suppressed
amplification of the isocurvature modes. We may under-
stand this suppression analytically. Along the isocurvature
direction, m2

2;χ ∝ _ϕ2 may become comparable in magni-
tude, but opposite in phase, to m2

1;χ ∝ ϕ2 depending on the
magnitude of ξI . For ξI < 1, we may expand

m2
1;χ ¼

gM2
pl

ξϕ
δ2
�
1 − δ2

�
1þ λϕ

g
ð2 − εÞ

��
þOðξ2I Þ; ð93Þ

where δ2 is defined in Eq. (24) and the eccentricity ε is
defined in Eq. (27). In the same limit, we have

m2
2;χ ¼

�
_ϕ2

M4
pl

�
½ξϕ þ ξχ � þOðξ2I Þ: ð94Þ

For an order-of-magnitude estimate in this limit, we may
approximate _ϕ2 ∼ ω2ϕ2 and use our results from Sec. III C.
For ξI ∼ 0.1, we have ω ¼ 2π=T → ð2π=3.9Þ ffiffiffiffiffi

λϕ
p

Mpl and
hence

m2
2;χ

m2
1;χ

∼
λϕ
g
ðξϕ þ ξχÞ þOðξ2I Þ: ð95Þ

For ξI < 1, we therefore find a clear separation of scales,
m2

2;χ ≪ m2
1;χ . In that limit, m2

eff;χ passes near zero as the
background field ϕðtÞ oscillates, as shown in Fig. 11(b).
For ξI ∼ 10, however, we find

m2
1;χ ¼ −

Λϕ

ξ2ϕ
M2

pl

�
δ2

1þ δ2

�
þOðξ−2I Þ; ð96Þ

where Λϕ is defined in Eq. (27). For ξI ∼ 10, the parameter
δ2 ∼Oð1Þ at the end of inflation. Upon using Eq. (A6), we
find

m2
2;χ ¼

6ξϕξχ
M2

pl

_ϕ2 þOðξIÞ: ð97Þ
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Again making use of our results in Sec. III C to replace
_ϕ2 ∼ ω2ϕ2, now with ξI ∼ 10, we have ω ¼ 2π=T →
ð2π=14.8Þ ffiffiffiffiffi

λϕ
p

Mpl=ξϕ, which yields

m2
2;χ

m2
1;χ

∼
λϕξχ
jΛϕj

∼Oð1Þ: ð98Þ

Therefore we do indeed expect m2
1;χ and m2

2;χ to remain
comparable in magnitude but opposite in phase for
ξI ∼Oð10Þ. In that case, m2

eff;χ never passes through zero,
as shown in Fig. 11(d). Meanwhile, for ξI ≥ Oð100Þ, the

oscillations of ϕðtÞ become sufficiently different from the
near-harmonic case that _ϕ2 ≫ ω2ϕ2 [1,2,56], and we find
thatm2

2;χ ≫ m2
1;χ , as shown in Fig. 11(f). The intermediate-ξI

regime is thus characterized by efficient growth of adiabatic
perturbations, with jAðϕÞj > 1, but suppression of isocurva-
ture perturbations, with jAðχÞj < 1, as shown in Fig. 12.

C. Rotating the field-space coordinates

Now consider what happens when we change the
couplings so that the single-field attractor lies along some

FIG. 11. The contributions tom2
eff;ϕ (left) andm

2
eff;χ (right) as functions of t; inflation ends and preheating begins at t ¼ 0. In each plot,

we show the individual contributions to m2
eff;I : m

2
1;I (blue) arising from the potential; m2

2;I (gold) arising from the curved field-space
manifold; m2

3;I (green) arising from the coupled metric perturbations. The contribution m2
4;I is not plotted (since it remains so small),

though it is included numerically in our solutions for m2
eff;I=H

2 (red dashed). For each plot, we fix
ffiffiffiffiffi
λϕ

p
=ξϕ ¼ 10−4, ξχ=ξϕ ¼ 0.8,

λχ=λϕ ¼ 1.25, and g=λϕ ¼ 2, and vary ξϕ: ξϕ ¼ 0.1 (top); ξϕ ¼ 10 (middle); ξϕ ¼ 100 (bottom). The quantity m2
eff;I=H

2 grows over
time because HðtÞ falls after the end of inflation.
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distinct direction in field space. For example, we may select
the couplings

λχ
λϕ

¼ 1.25;
g
λϕ

¼ −1=2;
ξχ
ξϕ

¼ 0.8: ð99Þ

For minimally coupled models, g < 0 leads to an explosive
“negative coupling instability” for long-wavelength modes
[116,117]. In the presence of nonminimal couplings,
however, at least for jgj ∼OðλϕÞ, the effect of the negative
coupling is to rotate the orientation of the valley of the
potential away from the direction χ ¼ 0. See Fig. 13. With
the fields’ motion “misaligned” with respect to the original
axes of our field-space coordinate system, we find sup-
pression of the resonances along both of the original axes,
since in this case m2

2;I remains comparable in magnitude
(but opposite in phase) with m2

1;I for both m2
eff;ϕ and m2

eff;χ .
See Fig. 14. Therefore both AðϕÞ and AðχÞ remain Oð1Þ, as
shown in Fig. 15.

FIG. 12. The adiabatic parameters AðϕÞ (blue) and AðχÞ (gold)
for k ≪ aH and ξϕ ¼ 10, with the ratios of couplings as in
Fig. 11. In the intermediate regime, with ξI ∼Oð10Þ, adiabatic
perturbations are amplified while isocurvature modes are
suppressed.

FIG. 13. For some choices of the coupling constants, the
background fields evolve along a single-field trajectory at some
angle θ that does not coincide with either the ϕ or χ axes. Shown
here is the case for ξχ=ξϕ ¼ 0.8, λχ=λϕ ¼ 1.25, g=λϕ ¼ −1=2,
with ξϕ ¼ 10, λϕ ¼ 10−6. The angle, θ ¼ arctanðχ=ϕÞ, is inde-
pendent of time during as well as after inflation.

FIG. 14. Left: terms m2
1;ϕ (blue) andm2

2;ϕ (gold) compared to m2
eff;ϕ (red dashed) for ξϕ ¼ 10, g ¼ −1=2, and the other couplings as in

Eq. (99). When plotted with respect to the original coordinate bases, m2
eff;ϕ no longer oscillates through zero. Right: terms m2

1;χ (blue)
and m2

2;χ (gold) compared to m2
eff;χ (red dashed) for ξϕ ¼ 10, g ¼ −1=2, and the other couplings as in Eq. (99).

FIG. 15. The adiabatic parametersAðϕÞ andAðχÞ for the original
coordinate bases, with ξϕ ¼ 10, g ¼ −1=2, and the other cou-
plings as in Eq. (99). Because m2

2;I remains comparable in
magnitude but opposite in phase to m2

1;I , neither AðϕÞ nor AðχÞ
grows much larger than 1.
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However, as Fig. 13 makes clear, in this case the fields
still evolve within a single-field attractor. We may para-
metrize the motion by a single angle, θ≡ arctanðχ=ϕÞ,
which, following an initial transient, does not vary over
time (even after the end of inflation). That is, when plotted
in the original coordinate system, the background fields’
motion obeys

ϕðtÞ ¼ rðtÞ cos θ; χðtÞ ¼ rðtÞ sin θ: ð100Þ
We may then perform a rotation of our coordinates in field
space so that the single-field attractor lies along the χ̄
direction, with all motion of the background fields along
the ϕ̄ axis. (In this subsection we denote the rotated
coordinate system with an overbar rather than a prime, to
avoid confusionwith derivatives,d=dη.)Hencewemaywrite

ϕ̄ ¼ ϕ cos θ þ χ sin θ;

χ̄ ¼ χ cos θ − ϕ sin θ: ð101Þ

Components of the tensor ½ω2
k�IJ transform in the usual way

under this coordinate transformation:

½ω̄2
k�IJ ¼

�∂φ̄I

∂φK

��∂φL

∂φ̄J

�
½ω2

k�KL: ð102Þ

In particular, we find

½ω̄2
k�ϕϕ ¼ cos2θ½ω2

k�ϕϕ þ sin θ cos θð½ω2
k�χϕ þ ½ω2

k�ϕχÞ
þ sin2θ½ω2

k�χχ ;
½ω̄2

k�χχ ¼ cos2θ½ω2
k�χχ − sin θ cos θð½ω2

k�ϕχ þ ½ω2
k�χϕÞ

þ sin2θ½ω2
k�ϕϕ: ð103Þ

When plotted with respect to the rotated coordinate system,
we recover the type of behaviorwehad found inSec. IV B for

a single-field attractor along the direction χ ¼ 0. Figure 16
shows the dominant contributions to m̄2

eff;ϕ, revealing that in
the rotated coordinate system, the contributions from the
field-space manifold become negligible, just as they do for
m2

eff;ϕ when the single-field attractor lies along the χ ¼ 0

direction (as in Fig. 11). On the other hand, in the rotated
coordinate basis, m̄2

2;χ remains comparable in magnitude to
m̄2

1;χ but with opposite phase, so that m̄2
eff;χ never oscillates

through zero (again like the behavior in Fig. 11).Moreover, if
we compute

ĀðIÞ ¼
∂tm̄2

eff;I

2ðm̄2
eff;IÞ3=2

þ H
m̄eff;I

; ð104Þ

FIG. 16. Left: contributions m̄2
1;ϕ (blue) and m̄2

2;ϕ (gold) to m̄2
eff;ϕ (red dashed), upon making the rotation in field space, for ξϕ ¼ 10,

g ¼ −1=2, and the other couplings as in Eq. (99). Unlike in Fig. 14, here we find the contribution from the field-space manifold, m̄2
2;ϕ,

negligible, and hence m̄2
eff;ϕ ∼ m̄2

1;ϕ oscillates through zero. Right: contributions m̄2
1;χ (blue) and m̄

2
2;χ (gold) to m̄

2
eff;χ (red dashed), upon

making the rotation in field space, for ξϕ ¼ 10, g ¼ −1=2, and the other couplings as in Eq. (99). Just as in the case when the single-field
attractor lay along the direction χ ¼ 0, in this case we find m̄2

1;χ ∼ m̄2
2;χ but out of phase with each other, so that m̄2

eff;χ never oscillates
through zero.

FIG. 17. The adiabatic parameters ĀðϕÞ (blue) and ĀðχÞ (gold)
with ξϕ ¼ 10, g ¼ −1=2, and the other couplings as in Eq. (99),
upon performing the rotation in field space. Here we recover
behavior akin to the original example, when the single-field
attractor lies along the direction χ ¼ 0: fluctuations along the
adiabatic direction become strongly amplified, but those in the
isocurvature direction do not.
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we find behavior akin to the original analysis for the χ ¼ 0
attractor, as shown in Fig. 17. Thus we surmise that within
any single-field attractor, in the intermediate regime with
ξI ∼Oð10Þ, we find suppression of the resonances for the
isocurvature direction and amplification of the fluctuations
along the adiabatic direction. This general result holds even
though the models we consider do not obey an OðNÞ
symmetry.

V. CONCLUSIONS

Realistic models of high-energy physics typically
include multiple scalar fields, each with its own non-
minimal coupling. In this paper we have demonstrated
that preheating after inflation in such models introduces
unique features that are distinct from other well-studied
models of preheating.
In particular, nonminimally coupled fields yield a

conformally stretched effective potential in the Einstein
frame. In previous work we had highlighted a generic
feature that arises from such conformal stretching,
namely, the existence of strong single-field attractor
behavior across a wide range of couplings and initial
conditions [44–47]. Here we have found two main effects
related to the conformal stretching and attractor behavior:
the effectively single-field evolution of the background
fields φIðtÞ persists during the oscillatory phase—thereby
avoiding the “dephasing” that is typical of preheating
with minimally coupled scalar fields—and the conformal
stretching of the potential alters the time evolution of
φIðtÞ as the background field(s) oscillate around the
global minimum of the potential.
The persistence of the single-field attractor during the

preheating phase leads to efficient transfer of energy from
the background fields to coupled fluctuations. The balance
of the transfer to fluctuations in the adiabatic versus
isocurvature directions depends on the nonminimal cou-
pling constants. We identify here, and study further in
Refs. [1,2], three distinct regimes, depending on whether
ξI < Oð1Þ, ξI ∼Oð1–10Þ, or ξI ≥ Oð100Þ. The growth of
long-wavelength isocurvature modes is suppressed for
intermediate couplings, ξI ∼Oð10Þ—a new effect arising
entirely from the nontrivial field-space manifold, which has
no analog in models with minimally coupled fields. In the
large-ξI regime, however, appropriate to such models as
Higgs inflation [48], the amplification of isocurvature
modes becomes very efficient [1,2,56]. (Naturally, the
efficient amplification of isocurvature perturbations after
the end of inflation is quite distinct from the amplification
of isocurvature perturbations during inflation, which is
generically suppressed in these models [47]. Modes ampli-
fied during inflation would have length scales today of tens
to thousands of Mpc, due to their exponential stretching
during inflation; modes amplified after the end of inflation
would have exponentially shorter length scales, and would
not affect observables such as βiso.)

The efficiency of the reheating stage can have observa-
tional consequences, both for the CMB and for the particle
content of the Universe. The values of the CMB observ-
ables ns and r may be related to the time N�, where N� is
the number of efolds before the end of inflation when
perturbations on CMB-relevant length scales crossed out-
side the Hubble radius. For models in the family we
consider here, these relations are given by ns ≃ 1–2=N� −
3=N2� and r≃ 12=N2� (see, e.g., Ref. [46]). Depending on
how quickly the Universe transitions to a radiation-domi-
nated phase after the end of inflation, the observationally
relevant N� may vary by as much as 10 efolds (see, e.g.,
Ref. [24]), shifting the predictions for r by as much as 30%
and for ns − 1 by as much as 10%. Furthermore, different
reheating scenarios can yield different reheat temperatures,
which can have other implications, such as washing out
lepton or baryon asymmetries that might have been
generated at the end of inflation. Such possibilities make
it critical to gain an understanding of the reheating process
following inflation.
In Refs. [1,2] we exploit the covariant formalism

developed here to more thoroughly explore the resonance
structure in this family of models as functions of wave
number, k, as well as coupling constants, ξI , λI , and g.
Other effects also deserve further attention. In particular,
the conformal stretching of the potential in the Einstein
frame could produce metastable oscillons after inflation.
The formation of such long-lived, topologically metastable
objects could become important after the earliest stages of
preheating, impacting the rate at which the system ulti-
mately reaches thermal equilibrium. These and related
nonlinear effects could therefore affect the final reheat
temperature and the expansion history of the Universe after
inflation [118–122]. These possibilities remain the subject
of further research.
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APPENDIX A: FIELD-SPACE METRIC AND
RELATED QUANTITIES

Given fðϕIÞ in Eq. (19) for a two-field model, the field-
space metric in the Einstein frame, Eq. (5), takes the form

Gϕϕ ¼
�
M2

pl

2f

��
1þ 3ξ2ϕϕ

2

f

�
;

Gϕχ ¼ Gχϕ ¼
�
M2

pl

2f

��
3ξϕξχϕχ

f

�
;

Gχχ ¼
�
M2

pl

2f

��
1þ 3ξ2χχ

2

f

�
: ðA1Þ

The components of the inverse metric are

Gϕϕ ¼
�
2f
M2

pl

��
2f þ 6ξ2χχ

2

C

�
;

Gϕχ ¼ Gχϕ ¼ −
�
2f
M2

pl

��
6ξϕξχϕχ

C

�
;

Gχχ ¼
�
2f
M2

pl

��
2f þ 6ξ2ϕϕ

2

C

�
; ðA2Þ

where CðϕIÞ is defined as

Cðϕ; χÞ≡M2
pl þ ξϕð1þ 6ξϕÞϕ2 þ ξχð1þ 6ξχÞχ2

¼ 2f þ 6ξ2ϕϕ
2 þ 6ξ2χχ

2: ðA3Þ

The Christoffel symbols for our field space take the form

Γϕ
ϕϕ ¼ ξϕð1þ 6ξϕÞϕ

C
−
ξϕϕ

f
;

Γϕ
χϕ ¼ Γϕ

ϕχ ¼ −
ξχχ

2f
;

Γϕ
χχ ¼

ξϕð1þ 6ξχÞϕ
C

;

Γχ
ϕϕ ¼ ξχð1þ 6ξϕÞχ

C
;

Γχ
ϕχ ¼ Γχ

χϕ ¼ −
ξϕϕ

2f
;

Γχ
χχ ¼

ξχð1þ 6ξχÞχ
C

−
ξχχ

f
: ðA4Þ

For two-dimensional manifolds we may always write the
Riemann tensor in the form

RABCD ¼ 1

2
RðϕIÞ½GACGBD − GADGBC�; ðA5Þ

where RðϕIÞ is the Ricci scalar. Given the field-space
metric of Eq. (A1), we find

RðϕIÞ ¼ 1

3M2
plC

2
½ð1þ 6ξϕÞð1þ 6ξχÞð4f2Þ − C2�: ðA6Þ

For the two-field model, we may also solve explicitly for
the vielbeins, eIb, of Eq. (64). Defining

A≡ C − 6ξ2ϕϕ
2;

B≡ C − 6ξ2χχ
2;

E≡ C − 3ξ2ϕϕ
2 − 3ξ2χχ

2;

F≡
ffiffiffiffiffiffiffiffiffi
2fC

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E −

ffiffiffiffiffiffiffiffiffi
2fC

pp
3

ffiffiffi
2

p
Mplðξ2χχ2 þ ξ2ϕϕ

2ÞC ; ðA7Þ

then we may satisfy Eq. (64) with

eϕ1 ¼ FðAþ
ffiffiffiffiffiffiffiffiffi
2fC

p
Þ;

eχ1 ¼ −6Fξϕξϕϕχ;

eϕ2 ¼ eχ1;

eχ2 ¼ FðBþ
ffiffiffiffiffiffiffiffiffi
2fC

p
Þ: ðA8Þ

We note that within the single-field attractor along the
direction χ ¼ 0, eϕ2 ∼ eχ1 ∼ 0, eϕ1e

ϕ
1 → Gϕϕ þOðχ2Þ, and

eχ2e
χ
2 → Gχχ þOðχ2Þ.

APPENDIX B: PERIOD OF SINGLE-FIELD
BACKGROUND OSCILLATIONS

Starting from Eq. (50) and inserting the values of Gϕϕ

and VðϕÞ the period becomes

T ¼ 4
ffiffiffiffiffiffiffi
2ξϕ

q Z
α

0

du

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 6ξϕu2

q
ð1þ u2Þ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α4

ð1þα2Þ2 −
u4

ð1þu2Þ2
q ðB1Þ

FIG. 18. Period of oscillation, T, rescaled by the nonminimal
coupling, in units of ð ffiffiffiffiffi

λϕ
p

MplÞ−1, as a function of α ¼ffiffiffiffiffi
ξϕ

p
ϕ0=Mpl for ξ ¼ 10; 102; 103; 104 (from top to bottom).

The solid black line shows the approximate analytic result of
Eq. (51), which is derived under the assumption that 6ξϕα2 ≫ 1.
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where we made a change of variables u ¼ ffiffiffiffiffi
ξϕ

p
ϕ,

and parametrized the maximum field amplitude as
ϕmax ¼ αMpl=

ffiffiffiffiffi
ξϕ

p
. By assuming a maximum field

amplitude such that 1 < 6ξϕα
2 and approximating

1þ 6ξϕu2 ≈ 6ξϕu2, the integral can be performed ana-
lytically and the resulting Eq. (51) shows the linear
scaling of the period with ξϕ. The limit of this

approximation is shown in Fig. 18, where it can be seen
that the agreement between Eq. (51) and the exact result
is excellent in the large-ξI limit for α not very small.
The region of validity in terms of α increases for larger
values of ξϕ, as expected from the condition α > 1=

ffiffiffiffiffiffiffi
6ξϕ

p
used in the derivation of Eq. (51). Figure 18 shows the
period of oscillation for different values of ξI and α.
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