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We consider the evolution of the gravitational wave spectrum for super-Hubble modes in interaction with
a relativistic fluid, which is regarded as an effective description of fluctuations in a light scalar minimally
coupled field, during the earliest epoch of the radiation dominated era after the end of inflation. We obtain
the initial conditions for gravitons and fluid from quantum fluctuations at the end of inflation, and assume
instantaneous reheating. We model the fluid by using relativistic causal hydrodynamics. There are two
dimensionful parameters, the relaxation time τ and temperature. In particular we study the interaction
between gravitational waves and the nontrivial tensor (spin 2) part of the fluid energy-momentum tensor.
Our main result is that the new dimensionful parameter τ introduces a new relevant scale which
distinguishes two kinds of super-Hubble modes. For modes with H−1 < λ < τ the fluid-graviton
interaction increases the amplitude of the primordial gravitational wave spectrum at the electroweak
transition by a factor of about 1.3 with respect to the usual scale invariant spectrum.

DOI: 10.1103/PhysRevD.97.023517

I. INTRODUCTION

In this paper we shall consider the evolution of the
primordial gravitational wave background during the early
radiation dominated era [1–3], from reheating after infla-
tion up to the cosmological electroweak transition. We will
use second order hydrodynamics [4,5] as an effective
theory for the matter fields, and obtain a linear theory
for gravitons consistently coupled to the spin-2 component
of the matter energy-momentum tensor.
Our motivation in using hydrodynamics as an effective

theory comes from the highly successful description of the
early evolution of the fireball created in relativistic heavy
ion collisions (RHICs) by these methods, even in early
stages where it is unlikely that local thermal equilibrium
has been established [6,7].
As a matter of fact, our problem bears a significant

similarity to RHICs [8]. Our main assumption is that
among the fundamental fields there is at least one that is
not conformally coupled; for simplicity we shall take this to
be a light (effectively massless), minimally coupled scalar
field with small coupling constants. These fields are
commonly related to “axionlike particles” (ALPs) [9,10].
Inflationary expansion brings this field to its de Sitter
invariant vacuum state. However, this state is highly
squeezed and its quantum fluctuations are much higher

than those of the local vacuum state of adiabatic observers.
Upon horizon exit, and particularly after reheating, these
fluctuations lose quantum coherence and may be treated as
classical particles [11–16]—thus resembling the quark-
gluon plasma generated in RHICs. These particles compose
our “fluid.”
As we have learned from RHICs, the proper treatment of

a real relativistic fluids on timescales not much larger than
the fluid relaxation time requires the use of “second order”
theories rather than the better known Eckart or Landau-
Lifshitz formulations [17–19]; one of the main points of
this paper is that this is the relevant framework for our
discussion. In second order theories, the viscous part of the
energy-momentum tensor, or some other equivalent vari-
able, is considered as an independent degree of freedom
(d.o.f.) following a Cattaneo-Maxwell type dynamical
equation [20]. This equation, together with the Einstein
equations and the relevant conservation laws, completes the
fully consistent dynamics we are looking for.
During reheating and afterwards, we must distinguish

between the physics of modes inside or outside the horizon.
Reheating is dominated by the most out of equilibrium
phenomenon in the history of our Universe, the sudden
conversion of the energy-momentum of the inflaton field
into radiation energy-momentum [21–25]. We do not
assume our scalar field is decoupled from the rest of
matter, and so it partakes of this essentially nonlinear
phenomenon. However, the nonlinearities are restricted by
causality and therefore they are strong only within the
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horizon. Outside the horizon the evolution of the graviton-
effective fluid system may be described accurately enough
by linearized equations.
At the most basic level, a gravitational wave presents

itself through an anisotropy in the rest frame of the fluid.
Ideal hydrodynamics is restricted by the Pascal principle,
namely, the state of the ideal fluid is defined solely by the
chemical potentials associated to conserved charges (which
moreover vanish for a conformal theory) and by the inverse
temperature four-vector, and so it is locally isotropic on
surfaces perpendicular to this vector. Moreover, for a true
equilibrium state, the inverse temperature four-vector must
be a (conformal) Killing vector [4], and it may happen that
for a given spacetime there are no such vectors. However, in
that case hydrodynamics is not built on true equilibria, but
only on approximated local equilibria. Any space time will
allow for the construction of coordinate systems, such as
Riemann normal coordinates [14,26], which look locally
isotropic. Therefore, in the usual approach to hydrody-
namics, temperature will be isotropic in the rest frame. The
shear tensor, on the other hand, may be anisotropic, but
because it is built from derivatives of a vector, it cannot
have the symmetry of a spin-2 field. To account for the kind
of anisotropy associated to a gravitational wave it is
necessary to go beyond the usual framework by consider-
ing higher orders or else including from scratch a new spin-
2 d.o.f., as we shall do in the following. For further
discussion we refer to [27].
Unlike ideal and first order hydrodynamics, there is no

universally accepted approach to second order hydrody-
namics. However, in the linearized regime we are interested
in, most formalisms converge. For simplicity, we shall
adopt a divergence-type theory scheme [28–37] where the
conformally invariant fluid is described by a dimensionful
parameter T (which becomes the temperature when in
equilibrium), the fluid four-velocity uμ (which obeys
uμuμ ¼ −1, we adopt MTW conventions) and a dimension-
less, symmetric, traceless and transverse tensor ζμν

(ζμμ ¼ ζμνuν ¼ 0). We scale this tensor so that in the
linearized theory ζμν ¼ Πμν=ρ, where Πμν is the viscous
energy-momentum tensor and ρ the energy density.
For simplicity we shall not consider an explicit coupling

of the fluid to other matter fields, the self and gauge
interactions of the fluid will appear through the constitutive
relations for the fluid, that is its relaxation time τ (to be
discussed in Sec. VI), and its temperature. Under this
approximation the equations of the model are the Einstein
equations, energy-momentum conservation, and a
Cattaneo-Maxwell equation for ζμν to be provided below.
In summary, we assume that at the end of reheating

super-Hubble modes are in a state determined by their state
at the end of inflation (namely, that reheating is so fast that
no significant processing occurs during reheating itself),
and then thermalize to the state determined by the dominant
cosmic radiation background [38]; this thermalization is

well described by linearized hydrodynamics. Moreover, at
the relevant temperature scales the fluid may be regarded as
composed of massless particles, whereby hydrodynamics
becomes conformally invariant [39]. The tensor field ζμν

may be decomposed into scalar (spin 0), vector (spin 1) and
tensor (spin 2) parts which are decoupled from each other at
linear order. Our interest lies in the spin 2 part, which
couples directly to the graviton field; for simplicity we shall
disregard the scalar and vector sectors, and focus on the
spin-2 sector alone. The spin 1 is relevant in scenarios
including gauge fields, since it is related to magnetic field
generation [40–44].
It is well known that the spin 2 part of the matter energy-

momentum tensor may seed a primordial gravitational field
[45–53]. In the literature there are several estimates of the
gravitational background created by different fields, such as
the inflaton [54,55], the Higgs field [56–58], primordial
density fluctuations [59], scalars and non-Abelian charged
scalars [60], and Fermi fields [61]. In principle, the effect
on the gravitational wave background may be observed
through its impact on the CMB [62]. The present work is
closest to [63,64] which considers the gravitational field
created out of a spectator field. However, three differences
stand out, namely we put the emphasis in achieving a
self-consistent dynamics, including the backreaction of
the gravitons on the spectator field, we incorporate the
thermalization to the dominant radiation background into
this picture, and we read the initial conditions for field
and gravitons directly off quantum fluctuations of super-
Hubble modes just before inflation ends, rather than the
Starobinsky-Yokohama equation [65].
Let us elaborate on this last point. Under the assumption

of instantaneous reheating we may obtain the initial
conditions for these equations from the analysis of quantum
fluctuations just before reheating. For the graviton field this
is conventional, for completeness the main necessary
results will be summarized below. For the effective fluid
we shall treat ζμν as a stochastic Gaussian field whose self-
correlation is derived from the energy-momentum self
correlation of a quantum minimally coupled scalar field
during inflation. Of course this is a divergent quantity, but
the divergence is associated to short wavelength modes
within the horizon; we shall assume a local observer will
subtract the correlations corresponding to the instantaneous
vacuum state (as defined by adiabatic modes), and associate
the remainder with the effective fluid [14,66,67].
The new dimensionful quantity τ [Eq. (2)] splits the

range of super-horizon modes k ≤ H, where H is Hubble’s
constant during inflation, in two. For modes where k ≤ τ−1

as well, the fluid relaxation is efficient and there is no
substantial effect of the fluid on the gravitons; the energy
associated with the spin 2 field is just dissipated into heat.
However, when τ−1 ≤ k ≤ H there is some amplification of
the primordial gravitational spectrum due to the decay of
the spin 2 part of the fluid into gravitons. This means that
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this mechanism may be the source of a local feature (a step)
in the graviton spectrum around k ∼ τ−1 ≪ H. We quantify
the height of this step by solving the linearized equations
from reheating up to the time of the electroweak transition,
after which the primordial gravitational wave spectrum is
subject to further processing [1]. We shall show that given
appropriate values of the coupling constant (similar to some
axionlike particle models) this step may fall in an obser-
vationally relevant range. This is the main result of
this paper.
The paper is organized as follows. In Sec. II we introduce

the framework of divergence type theories from which we
extract the causal hydrodynamic equations for the fluid,
particularly we derive to linearized order the expression for
the energy-momentum tensor and the dynamic equation for
the nonequilibrium tensor. In order to deduce the system
of fluid-gravitons coupled equations we gather the closure
and linearized Einstein’s equations in Sec. III. Section IV
provides the initial conditions for gravitons and nonequili-
brium variable from quantum fluctuations during inflation.
Section V is the main part of this paper; here we analyze
the solutions of the previous system. We compute the
evolution of the primordial gravitational wave spectrum
for super-Hubble modes up to the electroweak transition and
show that some amplification occurs for modes with H−1 <
λ < τ. Then we study the values of the relaxation time τ in
Sec. VI from quantum field theory for a scalar field with
gauge coupling constant g. Finally we conclude with some
brief final remarks summarizing the most important results.
We add two appendices. Appendix A discusses the

conformal invariance of fluid equations in the limit of
massless particles, and Appendix B clarifies some technical
tools to calculate the Fourier transform of the noise kernel
for scalar fields.

II. FLUID DYNAMICS FROM
DIVERGENCE-TYPE THEORY

We assume inflation brings every nonconformally
coupled matter field into its de Sitter invariant vacuum
state, except the inflaton which is slowly-rolling down
through its potential. We also assume an instantaneous
reheating, so the universe goes from inflation to radiation
domination in essentially no time [38]. When inflation
ends, quantum fluctuations of nonconformally coupled
fields become much higher than those of the local vacuum
state of adiabatic observers. After inflation, these fluctua-
tions enter in the nonlinear regime and decohere. It
therefore becomes adequate to treat them like an effective
fluid. In other words, the end of inflation sets the initial
conditions for the later evolution of every field in a
radiation dominated universe. The proper theoretical frame-
work for the discussion of the further evolution is given by
causal relativistic hydrodynamics. We shall follow a dis-
sipative-type theory scheme as derived from kinetic theory
for massless scalar particles obeying Bose-Einstein

statistics [68]. To linearized order we may consider any
other relevant approach, such as viscous anisotropic
hydrodynamics [7,69–73] [74] or theories based on the
so-called “entropy production variational principle” [75]
with equivalent results.
This approach consists in formulating an ansatz for the

one-particle distribution function (1pdf), parametrized by
the hydrodynamic variables. Later on the hydrodynamic
currents such as the particle number current and the
energy-momentum tensor are derived as moments of the
parametrized 1pdf, and the corresponding equations as
moments of the Boltzmann equation.
We assume a perturbed Friedmann-Robertson-Walker

Universe with metric gμν ¼ a2ðηÞḡμν with aðηÞ the scale
factor depending only on conformal time η, and ḡμν ¼
ημν þ hμν, where ημν is the Minkowsky metric (with
signature ð−;þ;þ;þÞ) and hμν represents the primordial
gravitational waves. Upon reheating the inflaton decays
into radiation which is left in a state of thermal equilibrium,
namely its four-velocity Uμ

rad ¼ a−1Uμ follows the con-
formal Killing field of the Friedmann-Robertson-Walker
background (Uμ ¼ ð1; 0; 0; 0Þ), and its temperature Trad ¼
a−1T decays as the inverse radius of the Universe. The
spectator field, which is not decoupled from radiation,
thermalizes into this state, a process which may be
described by linear relaxation equations. Moreover as
pμpμ ¼ m2 ≪ T2

rad this theory is effectively conformally
invariant. This implies the energy-momentum and non-
equilibrium tensor [Eq. (5)] are traceless. Further the
Boltzmann equation for massless particles also is confor-
mally invariant and since the procedure of taking moments
does not spoil this symmetry every conservation equation is
conformally invariant as well. See Appendix A for details.
Through conformal invariance we are able to eliminate the
scale factor a from all equations.
As we are interested in the equilibration process of this

scalar fluid to the dominant radiation, we analyze linear
perturbations around a state thermalized to the dominant
radiation equilibrium state. In consequence we consider a
linear deviation from a Bose-Einstein equilibrium distri-
bution f0 ¼ 1=ðexp ðβμpμÞ − 1Þ where βμ ¼ Uμ=T. To
introduce fluctuations we define the complete 1pdf as

f ¼ 1

exp ð− uμpμ

T − κ ζμν

T2 pμpνÞ − 1
; ð1Þ

where uμ, T and ζμν are velocity, temperature and dimen-
sionless nonequilibrium variable of the fluid respectively.
The constant in front of ζμν is chosen so that later on we
shall obtain ζμν ¼ Πμν=ρ, where Πμν is the viscous part of
the energy-momentum tensor and ρ the energy density, to
linear order. It has the value κ ¼ π4=ð25!ζð5ÞÞwith ζðnÞ the
Riemann function. For the collision integral we take an
Anderson-Witting linear ansatz [76–78]
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Icol ¼
uμpμ

τ
ðf − f0Þ; ð2Þ

where τ is the relaxation time of the fluid. This is an
external parameter of the theory, which must be derived
from consideration of the fluid particles interactions
between themselves and with radiation. We shall discuss
this parameter in Sec. VI.
The idea is to decompose all fields into an (homo-

geneous) average and a fluctuation, and obtain linearized
equations for the fluctuations. From the cosmological
principle we assume the background quantities have the
FRW symmetry, in particular ζμν vanishes in the back-
ground. Since our purpose is to analyze interactions
between the fluid and the gravitons we consider only
tensor perturbations. The linearized 1pdf reads

f ≃ f0

�
1þ ð1þ f0Þκ

ζμν
T2

pμpν

�
: ð3Þ

We choose a gauge where hμνUν ¼ 0, due to the tensor
character of perturbations also hμμ ¼ 0. Since ζμν is
transverse to the four-velocity to linear order we
find Uμζ

μν ¼ ζμμ ¼ 0.

A. Hydrodynamic equations

To deduce the hydrodynamic equations we define the
comoving energy-momentum tensor and nonequilibrium
tensor as usual [28–37,68,79]. The fluid energy-momentum
tensor reads

T̄μν ¼
Z

D̄ppμpνf; ð4Þ

and the nonequilibrium current

Āμνλ ¼
Z

D̄ppμpνpλf: ð5Þ

We also need the second moment of the collision integral

Īμν ¼
Z

D̄ppμpνĪcol: ð6Þ

In Eqs. (4)–(6) the invariant relativistic measure is

D̄p ¼ 2
Q

4
μ¼0 dpμδðp2Þ
ð2πÞ3 ffiffiffiffiffiffi

−ḡ
p Θðp0Þ: ð7Þ

The equations are the conservation equation for energy-
momentum tensor

T̄μν
;μ ¼ 0 ð8Þ

and the closure equation for nonequilibrium current

�
SαμSβν −

1

3
SαβSμν

�
Āμνλ

;λ

¼
�
SαμSβν −

1

3
SαβSμν

�
Īμν ð9Þ

where Sμν ¼ δμν þ UμUν. The relevant integrals were com-
puted in [79]. Here we summarize the final expressions

T̄μ
ν ¼

π2

30
T4

�
UμUν þ

1

3
Sμν þ ζμν

�
; ð10Þ

Īμν ¼ −
3π2

15

ζð6Þ
ζð5Þ

1

τ
T5ζμν ð11Þ

and

Āμνλ ¼ 12ζð5Þ
π2

T5

�
UμUνUλ

þ 1

3
ðSμνUλ þ SμλUν þ SλνUμÞ

�

−
4ζð5Þ
π2

T5ðUμhνλ þUνhμλ þUλhμνÞ

þ 3π2

15

ζð6Þ
ζð5ÞT

5ðζμνUλ þ ζλνUμ þ ζμλUνÞ: ð12Þ

In order to derive the linearized equations in the
following section, we consider a purely spin-2 perturbation
(TT) of the energy-momentum tensor (10) in mixed
components and closure Eq. (9) to first order. These
expressions are

T̄ð1Þμ
ν
TT ¼ π2

30
T4ζμν; ð13Þ

bhαβ ;0 þ ζαβ ;0 þ
1

τ
ζαβ ¼ 0: ð14Þ

respectively, with b ¼ 20ζ2ð5Þ=ðπ4ζð6ÞÞ. If we had used a
Maxwell-Juttner equilibrium distribution, we would have
derived the same equation but with b ¼ 2=9. Note the ratio
of both bMJ=bBE ≃ 1.024.
In order to relate τ with the usual transport coefficients

we compute the energy-momentum tensor up to first order
in τ. For this purpose we may discard the interaction with
gravitons taking hμν ¼ 0. However it is need to introduce
perturbations in temperature δT and velocity vμ, in addition
to the tensor one ζμν. Then the energy-momentum tensor
reads

T̄ð1Þμ
ν ¼

π2

30
T4

�
4
δT
T

�
UμUν þ

1

3
Sμν

�

þ 4

3
ðUμvν þ UνvμÞ þ ζμν

�
: ð15Þ
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Including the velocity perturbation Eq. (14) becomes

ζαβ ;0 þ
1

τ
ζαβ þ bσαβ ¼ 0 ð16Þ

which implies, to first order in τ, ζαβ ¼ −τbσαβ. In
consequence by simple comparison with the usual viscous
energy-momentum tensor, the well-known kinematic
viscosity coefficient ν ¼ bτ.

III. FLUID-GRAVITONS COUPLED EQUATIONS

From now on we normalize Hη → η, Hr → r, where H
is the Hubble constant at the moment of reheating; we also
define η ¼ 0 there and að0Þ ¼ 1.
From the linearized Einstein’s equation in mixed com-

ponents we get

Gð1Þμ
ν ¼

1

a2ðηÞM2
pl

T̄ð1Þμ
ν; ð17Þ

with Mpl the reduced Planck mass. We apply tensor
projectors to Eq. (17) in spatial indexes. It reads

Gð1Þi
j
TT ¼ H2

2

�
−ηρσ∂ρ∂σ þ 2

a0ðηÞ
aðηÞ ∂η

�
hij; ð18Þ

and for T̄ð1Þi
j
TT we use Eq. (13). Since hij and ζij are tensor

d.o.f. we write the following Fourier decomposition for
both

hijðr; ηÞ ¼
X
λ¼þ;×

Z
d3k

ð2πÞ3=2 ϵ
λ
ijðk̂ÞhλkðηÞeikr; ð19Þ

where the conformal wave number is k̄phys ¼ Hk, λ ¼ þ;×

indicates polarization and the polarization tensors ϵλijðk̂Þ
satisfy ϵλijðk̂Þδij ¼ kiϵλijðk̂Þ ¼ 0 and ϵλijðk̂Þϵijλ0 ðk̂Þ ¼ δλλ0 .
Gathering the expressions above we derive similar equa-
tions for either polarization. Dropping the λ index in hk and
ζk, together with Eq. (14), we get the system of equations to
linear order for hk and ζk

8<
:

h
∂2
η þ k2 þ 2

a0ðηÞ
aðηÞ ∂η

i
hkðηÞ ¼ 1

a2ðηÞK0ζkðηÞ
∂ηζkðηÞ þ 1

τ0
ζkðηÞ ¼ −b∂ηhkðηÞ;

ð20Þ

where K0 ¼ π2T4=ð15H2M2
plÞ and τ0 ¼ Hτ. In the radia-

tion dominated era aðηÞ ¼ 1þ η and HðηÞ ¼ ð1þ ηÞ−2.
We change variables η → zðηÞ ¼ kð1þ ηÞ and hkðzÞ ¼
χkðzÞ=z, therefore

8<
:

∂2
zχkðzÞ þ χkðzÞ ¼ K0ζkðzÞ

z

∂zζkðzÞ þ ζkðzÞ
kτ0

¼ −b∂z

�
χkðzÞ
z

�
:

ð21Þ

To solve our problem we need the solution of (21) with
the appropriate initial conditions for hk and ζk, to be
discussed in next section. The magnitude of the parameter
K0 measures the interaction strength between the tensor
d.o.f. ζk and hk. Using instantaneous and effective reheat-
ing H2 ≃ g� π2

30
T4=3M2

pl where g� is the number of rela-
tivistic d.o.f. at temperature T. Since Oð102 GeVÞ ≪
T ≤ Mpl, then g� ≳ 102 and

K0 ≃ 6
ρS
ργ

¼ 6

g�
≲ 10−2: ð22Þ

IV. INITIAL CONDITIONS

The purpose of this section is to compute the initial
conditions for hk and ζk at the beginning of the radiation
dominated era. To do this we regard them as classical
stochastic Gaussian variables with zero mean, whose self-
correlation matches the Hadamard propagator of the
corresponding quantum operators in the Bunch-Davies
vacuum at the end of inflation.

A. Gravitons h

Gravitons are tensor metric perturbations. As we have
seen before there are two polarizations hþ and h×. As it is
well known [80], the amplitude for both can be treated as
massless real scalar fields. As usual, to quantize them we
use decomposition (19) and apply canonical quantization to
the auxiliary field χ defined by hkðηÞ ¼ χkðηÞ=aðηÞ.
Explicitly

hijðr; ηÞ ¼
χijðr; ηÞ
aðηÞ

¼
X
λ¼þ;×

Z
d3k

ð2πÞ3=2
ϵλijðk̂Þ
aðηÞ ½χλkðηÞâk þ χλk

�ðηÞâ†−k�eikr:

ð23Þ

This field χ must be dimensionless as well as h. As before
we obtain the same equation for both polarizations of χk.
During inflation

χ00k þ
�
k2 −

a00

a

�
χk ¼ 0: ð24Þ

During inflation η ≤ 0 and aðηÞ ¼ 1=ð1 − ηÞ. We adopt the
Bunch-Davies positive frequency solution [81] of (24)
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χIkðηÞ ¼
H
Mpl

e−ikηffiffiffiffiffi
2k

p
�
1þ i

1

kð1 − ηÞ
�
: ð25Þ

Under the scheme of instantaneous reheating our initial
conditions for the evolution of Fourier components hk
during radiation dominated Universe η ≥ 0 are

hkðη ¼ 0Þ ¼ i
H
Mpl

1ffiffiffiffiffiffiffi
2k3

p ek þ
H
Mpl

1ffiffiffiffiffi
2k

p bk ð26Þ

and

h0kðη ¼ 0Þ ¼ −i
H
Mpl

ffiffiffi
k
2

r
ek; ð27Þ

where ek ¼ âk − â†−k and bk ¼ âk þ â†−k. Next we assume
the Landau prescription hABiS ¼ 1=2h0jfA;Bgj0i to con-
vert quantum expectation values into stochastic ensemble
averages [82,83]. In consequence

heke�k0 iS ¼
1

2
h0jfðak − a†−kÞ; ða†k0 − a−k0 Þgj0iQ ¼ δðk − k0Þ;

ð28Þ

hbkb�k0 iS ¼
1

2
h0jfðak þ a†−kÞ; ða†k0 þ a−k0 Þgj0iQ ¼ δðk− k0Þ;

ð29Þ

hekb�k0 iS ¼
1

2
h0jfðak − a†−kÞ; ða†k0 þ a−k0 Þgj0iQ ¼ 0: ð30Þ

For instance, initial correlation for modes outside the
horizon (k ≪ 1) at η ¼ 0 develop a scale invariant spec-
trum, namely

hhkðηÞh�k0 ðη0Þi ¼ δðk − k0Þ H2

2M2
plk

3
: ð31Þ

B. Nonequilibrium tensor ζ

This case is more complicated because there is no
immediate relation between the stochastic nonequilibrium
variable ζ and some canonical quantum field during
inflation. Instead, we write the tensor part of the energy-
momentum tensor self correlation for a minimally coupled
scalar field during inflation, namely the so-called noise
kernel Nμ

ν
ρ
σ. Then we match it at η ¼ 0 to the stochastic

self correlation function of ζ calculated during the radiation
dominated era.
The noise kernel is defined as

Nμ
ν
ρ
σ ¼

1

2
½hfTμ

νðxÞ; Tρ
σðyÞgi − 2hTμ

νðxÞihTρ
σðyÞi�:

ð32Þ

Since we will take the tensor part of the noise kernel, the
only possible contribution comes from the kinetic term of
the energy-momentum tensor [84]. Nμ

ν
ρ
σ was computed in

[85]. For the massless (m=H ≪ 1) and large scales (r ≫ 1)
limit at the end of inflation (η ¼ 0), which is our case of
interest, [85] obtains the following result for the kinetic
term contribution

Nijklðr; η ¼ 0Þ

≃ H8

16π4r4
½δilδjk − 2ðδilr̂jr̂k þ δjkr̂ir̂lÞ þ 4r̂ir̂jr̂kr̂l�

þ ðk ↔ lÞ: ð33Þ

We disregard a term which becomes constant at large
separations, since it does not contribute to the tensor part.
In Fourier space we define the projector Λa

i
b
j into tensor

part (divergenceless and traceless) like

Λa
i
b
j ¼ Ma

iMb
j −

1

2
MabMij; ð34Þ

with

Ma
i ¼ δai −

kaki
k2

: ð35Þ

Recalling that r ¼ jx − x0j, when Fourier transforming we
get two different momenta for each spatial point x and x0.
Due to homogeneity and isotropy, the tensor part of the
Fourier transformed noise kernel Nabcd

T results

NT
abcdðk; k0Þ

¼ Λa
i
b
jΛc

k
d
l

	
1

2
fTk

i
j − hTk

i
ji;T�

k0
k
l − hT�

k0
k
lig



¼ Λa

i
b
jΛc

k
d
lNi

j
k
lðk; k0Þ

¼ δðk − k0ÞFðkÞ½Λadbc þ Λacbd�; ð36Þ

with

FðkÞ ¼ cH8kþOðk2Þ; ð37Þ

and c ¼ 6911=ð12π2Þ (see Appendix B). This result
provides us the quantum fluctuations from inflation. In
order to match it with our fluid nonequilibrium correlation
we must to subtract the local vacuum fluctuations. It is
possible to show that the pathological behavior of (33) at
short distance is caused entirely by the mentioned local
vacuum fluctuations. In fact if we calculate the noise kernel
using the local fourth order adiabatic vacua at time η ¼ 0
we obtain the same terms as in (33). However computations
also show that these vacuum fluctuations are only valid for
small scales (k > 1). In consequence, after the subtraction
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of the local vacuum, the quantum noise kernel for large
scales (k ≪ 1) is (36).
On the other hand, we analyze the stochastic fluctuations

of the fluid energy-momentum tensor in momentum space.
We know that the energy-momentum tensor satisfies
Tμ

νðη ¼ 0Þ ¼ a−2ðη ¼ 0ÞT̄μ
ν ¼ T̄μ

ν. From (13) and using
decomposition (19), we arrive

T̄ð1Þ
k

i
j
TT ¼ π2

30
T4

X
λ¼þ;×

ϵλijðk̂ÞζλkðηÞ: ð38Þ

Setting k ¼ kẑ and ζλkðη ¼ 0Þ ¼ ζλk, the most general
choice is

T̄ð1Þ
k

i
j
TT ¼ π2

30
T4

0
B@

ζþk ζ×k 0

ζ×k −ζþk 0

0 0 0

1
CA

ij

: ð39Þ

The projected correlation at time zero is

Λa
i
b
jΛc

k
d
lhTð1Þ

k
i
jT

ð1Þ�
k0

k
li ¼ Λa

i
b
jΛc

k
d
lhT̄ð1Þ

k
i
jT̄

ð1Þ�
k0

k
li

¼ δðk − k0ÞT8π4

302

*0
B@

ζþk ζ×k 0

ζ×k −ζþk 0

0 0 0

1
CA

ab
0
B@

ζþ�
k0 ζ×�k0 0

ζ×�k0 −ζþ�
k0 0

0 0 0

1
CA

cd+
ð40Þ

Terms like hTi
jihTk

li are zero to first order. Just like in the
quantum case a δ-function appears due to homogeneity.
We match stochastic and quantum tensor correlation

comparing Eqs. (36) and (40) in the frame where k ¼ kẑ
and the initial time η ¼ 0. It results

hζ×k ζ×�k0 i ¼ hζþk ζþ�
k0 i ¼ δðk − k0Þ

�
d

�
H
T

�
8

kþOðk2Þ
�

ð41Þ

and

hζ×k ζþ�
k0 i ¼ 0; ð42Þ

with d ¼ ð30=π2Þ2c [cf. Eq. (37)].
As we see both polarizations follow identical equations

decoupled from each other. Henceforth we shall drop the
polarization label.

V. TENSOR MODE EVOLUTION

To study the solutions of the system (21) we make
a distinction between subhorizon (k=aðηÞ > HðηÞ) and
super-horizon (k=aðηÞ < HðηÞ) modes. Recalling z ¼
kð1þ ηÞ the former involve z > 1 and the latter z < 1.
Since we only concentrate in superhorizon modes, our

analysis would be valid until modes reenter in the horizon
at z ¼ 1. Further we consider our model to be valid up to
the electroweak transition, where new effects must be
considered due to the change in the number of relativistic
d.o.f.
In consequence we will analyze solutions in the limit

k → 0 and η bounded by the condition z ¼ kð1þ ηÞ < 1 or
by the electroweak time, whatever happens first. We only
keep the dominant terms in the power series expansion for

k ≪ 1 valid for superhorizon modes until the electroweak
transition.
We interpret K0 [Eq. (20)] as an interaction parameter

between gravitons and tensor fluid modes. If K0 ¼ 0
gravitons decouple from the fluid. We determine its
evolution by solving the first equation of (21) with the
initial conditions (26)–(30). The dominant terms in the
limit k ≪ 1 are

hkðηÞ ¼ i
H
Mpl

1ffiffiffiffiffiffiffi
2k3

p ek þ
H
Mpl

1ffiffiffiffiffi
2k

p bk þOð
ffiffiffi
k

p
Þ: ð43Þ

So

hhkðηÞh�k0 ðηÞi ¼ δðk − k0Þ
�

H2

2M2
plk

3
þ H2

2M2
plk

þ � � �
�
: ð44Þ

Neglecting the second term in (44) we obtain the
so-called scale invariant spectrum, hhkðηÞh�k0 ðηÞi ∝
δðk − k0Þ=k3.
In the general case with K0 ≠ 0 it is enough to consider

the two limiting cases of (21), namely kτ0 ≪ 1 and
kτ0 ≫ 1. Hereafter we assume 1=τ ≪ H; we shall discuss
in the Sec. VI whether this is a realistic hypothesis.
We solve the system (21) with initial conditions (26)–

(30) for gravitons and (41)–(42) for tensor fluid modes.
When kτ0 ≪ 1 (k ≪ 1=τ ≪ H in unnormalized units)

the fluid modes decay before they can interact mean-
ingfully with gravitons. For these modes with very large
wavelengths we recover to leading order the usual scale
invariant spectrum, namely the first term in Eq. (44).
The most interesting case is when kτ0 ≫ 1. It means

1=τ ≪ k ≪ H and enables us to neglect the term ζk=ðkτ0Þ
in Eq. (21). The system takes the form
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8<
:

∂2
zχkðzÞ þ χkðzÞ ¼ K0ζkðzÞ

z

∂zζkðzÞ ¼ −b∂z

�
χkðzÞ
z

�
:

ð45Þ

Then,

ζkðzÞ ¼ −bhkðzÞ þ Ck; ð46Þ

Ck will be set by matching the quantum noise kernel
spectrum to the correlation hζkðηÞζ�k0 ðηÞi at initial time
η ¼ 0. We assume null cross correlation hζkh�k0 i ¼ 0,
because both variables have different physical origin. In
consequence

hCkC�
k0 i ¼ hζkζ�k0 ijη¼0

þ b2hhkh�k0 ijη¼0
: ð47Þ

Using hζkh�k0 i ¼ 0 explicitly, we get

hCkh�k0 ijη¼0
¼ hhkC�

k0 ijη¼0
¼ bhhkh�k0 ijη¼0

; ð48Þ

so, considering initial conditions (26)–(30) and (41)–(42)
we derive

hCkC�
k0 i ¼ δðk − k0Þ

�
d

�
H
T

�
8

kþ b2
H2

2M2
plk

3
þ b2

H2

2M2
plk

�
;

ð49Þ

and

hCkh�k0 ijη¼0
¼ hhkC�

k0 ijη¼0

¼ δðk − k0Þ
�
b

H2

2M2
plk

3
þ b

H2

2M2
plk

�
: ð50Þ

The equation for χkðzÞ reads

∂2
zχkðzÞ þ χkðzÞ þ K0b

χkðzÞ
z2

¼ K0

Ck

z
: ð51Þ

Let χk ¼
ffiffiffi
z

p
ψk and so hk ¼ ψk=

ffiffiffi
z

p
, therefore

z2ψ 00
kðzÞ þ zψ 0

kðzÞ þ
�
z2 −

�
1

4
− bK0

��
ψkðzÞ ¼ K0Ck

ffiffiffi
z

p
;

ð52Þ

whose solution is

ψkðzÞ ¼ C̄1kJνðzÞ þ C̄2kYνðzÞ

þ π

2
YνðzÞ

Z
z

z0

Jνðz0Þ
z0

K0C
ffiffiffiffi
z0

p
dz0

−
π

2
JνðzÞ

Z
z

z0

Yνðz0Þ
z0

K0Ck

ffiffiffiffi
z0

p
dz0; ð53Þ

where ν2 ¼ 1=4 − bK0, and JνðzÞ (jνðzÞ) and YνðzÞ (yνðzÞ)
are (spherical) Bessel’s functions of first and second kind
respectively. The expression for hkðzÞ is

hkðzÞ ¼ C1kjν−1=2ðzÞ þ C2kyν−1=2ðzÞ

þ π

2
K0Ck

�
yν−1=2ðzÞ

Z
z

z0

jν−1=2ðz0Þdz0

− jν−1=2ðzÞ
Z

z

z0

yν−1=2ðz0Þdz0
�
; ð54Þ

Our solution in the limit k ≪ 1 is

hkðηÞ ¼ hkð0ÞG1ðη; νÞ þ
π

2
K0CkG2ðη; νÞ; ð55Þ

where

G1ðη; νÞ ¼
ð1þ ηÞ−ν−1=2ð−1þ 2νþ ð1þ ηÞ2νð1þ 2νÞÞ

4ν
;

ð56Þ

G2ðη; νÞ ¼
ð1þ ηÞ−ν−1=2
νð4ν2 − 1Þ ½−1þ 2ν − 4νð1þ ηÞνþ1=2

þ ð1þ ηÞ2νð1þ 2νÞ�: ð57Þ

Thus, equal time self correlation for gravitons reads

hhkðηÞh�k0 ðηÞi ¼ hhkð0Þh�k0 ð0Þi
�
G1ðη; νÞ þ b

π

2
K0G2ðη; νÞ

�
2

þ hζkð0Þζ�k0 ð0Þi
�
π

2
K0

�
2

G2
2ðη; νÞ: ð58Þ

Let us make an ascending series expansion in K0 around
zero, recalling ν ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=4 − bK0

p
, and replace the initial

correlations. In that case we obtain to leading order in k
and K0

hhkðηÞh�k0 ðηÞi

¼ δðk − k0Þ H2

2M2
plk

3

×

�
1þ bK0

�
π

2
− 1

��
log ð1þ ηÞ − η

1þ η

��
2

: ð59Þ

Our description of the spectrum evolution holds up to a
certain time ηk;max, depending on k, at which either the
modes re-enter in the horizon or the electroweak transition
takes place. To estimate the electroweak time ηEW we use
the ratio of the scale factor between the end of inflation
and the electroweak transition, which is aEW=aEOI ¼
TEOI=TEW. The typical energy of electroweak transition
is TEW≃102GeV and TEOI¼Tγ¼T¼10nGeV. Therefore
aEW ¼ 1þ ηEW ¼ 10n−2 and ηEW ≃ 10n−2.
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On the other hand we may find the conformal time at
the reentry in the horizon ηk;re-entry, which depends explic-
itly on k, from the relation λphysðηÞ ¼ λcaðηÞ. It results
ηk;re-entry ≃ 1=k.
In Fig. 1 we show a scheme to study the evolution of

physical wavelengths while the Universe expands and the
horizon (Hubble radius) changes. Physical wavelengths
evolve proportionally to the scale factor a. Modes re-enter
in the horizon when λphysðηÞ¼H−1ðηÞ→ kHðηÞ=aðηÞ≃1,
so the smaller the wave number the later its entry.
In particular at η ¼ ηEW one mode with comoving

wave number k ¼ kEW reenters the horizon. Therefore
the evolution of modes with k < kEW is bounded by
ηEW. Conversely the time bound for modes whose k >
kEW is ηk;re-entry.

To finish it is relevant to know what happens with
k ¼ 1=τ. We consider fields whose relaxation time τ
produces perturbations of cosmological interest, namely
perturbations whose wavelength today is at least as long as
1 kpc. In comparison, the mode k ¼ kEW has a wavelength
today λEW;0 ≲ 1 pc, so we get λτ;0 ≫ λEW;0, as it is shown in
Fig. 1. Therefore 1=τ0 ≪ kEW.
Summarizing, we derive the following time bounds

ηk;max ¼ minkfηEW; ηk;re-entryg

¼
(
ηk;re-entry ¼ 1

k − 1 if kEW < k < 1

ηEW ¼ 10n−2 − 1 if 1
τ0
< k < kEW:

ð60Þ

Finally, using these bounds in Eq. (59) within the range
of comoving unnormalized units 1=τ < k < kEW, we
obtain at η ¼ ηEW the gravitational wave spectrum for
each polarization

hhkðηÞh�k0 ðηÞi≃ 1.35

�
δðk − k0Þ H2

2M2
plk

3

�
: ð61Þ

VI. ESTIMATES OF τ

The main goal of this section is to estimate the relaxation
time τ of the field we have considered throughout the paper.
First we get a feature (step) in the spectrum at comoving

wave number kτ ¼ 1=τ and comoving wavelength λτ ¼
2π=kτ ∼ τ. We have set aðηÞ ¼ 1þ η and η ¼ 0 at the end
of inflation. For instantaneous reheating, it coincides with
the onset of the radiation dominated epoch where
aγ ¼ aðη ¼ 0Þ ¼ 1. The evolution of physical perturbation
wavelengths from the end of inflation until today may be
calculated as

λτ;0 ¼ λτ
a0
aγ

¼ 2πτ
a0
aγ

; ð62Þ

with a0 the scale factor today (subscript 0 means today). To
compute the ratio a0=aγ we consider a nearly adiabatic
expansion of the Universe in which aðηÞ ∝ 1=Trad. In
consequence

a0
aγ

≃Oð1Þ Tγ

T0

≃ 10nþ14; ð63Þ

where Tγ ¼ Tradðη ¼ 0Þ ¼ 10n GeV is the reheating tem-
perature. Therefore

λτ;0 ¼ λτ10
nþ14: ð64Þ

Recall that physical wavelengths of cosmological inter-
est are in the range λ0 ≳ 1 kpc. In particular we would like
to concentrate on λ0 ≳ 1 Mpc which implies λτ;0 ≳ 1 Mpc.

FIG. 1. Physical wavelength vs. scale factor. This is a typical
scheme to study evolution of perturbations during the expansion
of the Universe. We show distinct events: the end of inflation
(EOI), electroweak transition (EW), matter-radiation equality
(Eq), recombination (Rec) and today. The Hubble radius H−1

is represented by the black solid line and its evolution depends on
the epoch of domination. λ represents the physical wavelength of
the perturbations and it scales λ ∝ a. We show different wave-
lengths for the distinct values of the Hubble radius at the
moments said. These scales are related with multipoles in the
CMB correlation spectrum, for instance lRec ∼ 100. Usually H−1

is the only relevant scale that distinguishes the evolution of
perturbations between super-Hubble (λ > H−1) and sub-Hubble
(λ < H−1) modes. We always concentrate in the former, but here
it is important to note that the presence of the new dimensionful
parameter τ [Eq. (2)] introduces another scale which splits the
evolution of super-Hubble modes in two. First, for modes with
λ > λτ ≃ τ we recover the usual invariant spectrum. However for
modes withH−1 < λ < λτ the fluid-graviton interaction produces
an energy transfer from the fluid to gravitons and increases the
amplitude of the spectrum. We are able to extend our description
until the electroweak transition. Thus, shaded zone represents the
modes which are amplified with respect to the usual invariant
spectrum by a factor of about 1.3 at the electroweak time
according to Eq. (61).
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Let us consider a scalar field with a gauge coupling
constant g. [14,86] show that it is possible to compute the
relaxation time τ in the Boltzmann equation from quantum
field theory. Basically it is given by

1

τ
∼
Im½Σ�
T

; ð65Þ

where Σ is the self-energy of the field we are considering
and Im½x� takes the imaginary part of x. We could expand
Im½Σ� in Feynman diagrams and prove that the first non-
null contribution appears at the two-loop order. We con-
clude on dimensional grounds that

Im½Σ� ∼ g4T2 ¼ α2gT2; ð66Þ

where α2g ¼ g4 represents the fine structure constant of this
theory.
If we take the reheating temperature Tγ ∼ 1016 −

1015 GeV and values of g ∼ 10−6 we find that λτ;0 ∼
10 Mpc which lies in the range of cosmological interest.
The characteristic multipole l for this scale reads
l ∼ πRLSS=x ∼ 103, where RLSS ≃ 14 Gpc is the distance
to the last scattering surface (LSS) and x≃ 10 Mpc
represents the perturbation wavelength. In addition from
the range of reheating temperature Tγ ∼ 1016 − 1015 GeV
we consider, we estimate a tensor to scalar ratio about
r ∼ 10−1 − 10−5 respectively [1].
The values of τ we are regarding here are consistent with

the values for its analogous Γ−1
a→γγ (axion lifetime) in known

ALP-models in the literature [87–90].
We assume that the relaxation time τ and the thermal-

ization time are of the same order and that hydrodynamics
is already valid for earlier times. The validity of applying
hydrodynamics in this regime has been discussed by
[91–95] who argue that the hydrodynamic framework is
valid at time scales shorter than the corresponding for
isotropization and thermalization, driven by a novel
dynamical attractor whose details vary according to the
theory under consideration.
Such attractor solutions show that hydrodynamics dis-

plays a new degree of universality far-from-equilibrium
regardless of the details of the initial state of the system. In
fact, the approach to the dynamical attractor effectively
wipes out information about the specific initial condition
used for the evolution, before the true equilibrium state and
consequently, thermalization, is reached. This process is
described as hydrodynamization to distinguish it from
ordinary thermalization, and it has been shown by those
authors that it develops on shorter time scales than
thermalization.
In the context of kinetic theory and standard statistical

mechanics, thermalization is understood as the develop-
ment of an isotropic thermal one-particle distribution
function. In some particular cases, it is possible to show

that even with relative anisotropies of about 50% the hydro-
dynamic description matches the full solution [96,97].

VII. FINAL REMARKS

When studying the early Universe, particularly just
after inflation, it is important to include full interactions
between all fields in our description. This may be a
daunting challenge. In that way, we propose to treat the
fields and its interactions with effective relativistic hydro-
dynamic theories. Nonetheless we discard ideal fluids in
order to incorporate dissipative effects, as we have learned
from relativistic heavy ions collisions. Further we go
beyond covariant Navier-Stokes theory to avoid known
causality and stability issues. Thus our main hypothesis lies
in using causal hydrodynamics to obtain an adequate
description of the phenomena we are interested in, specially
during the very early Universe when almost all the matter
fields could be described as a hot plasma.
Incorporating these causal theories to model the fields as

effective fluids during the very early Universe may bring
forth new effects [79]. Throughout the paper we have
analyzed a simplified case of interaction between a spec-
tator minimally coupled scalar field and the tensor metric
perturbations after inflation. Unlike ideal or Navier-Stokes
hydrodynamics, this interaction may be present in any
causal theory because the tensor part of the dissipative
energy-momentum tensor is regarded as a new variable
with non-trivial dynamics.
Covariant Navier-Stokes equations has no proper tensor

d.o.f., in spite of the fact that the energy-momentum tensor
of a quantum scalar field has such a part [49,83]. Causal
theories allow us to keep this component of the energy-
momentum tensor and thus follow its interaction with the
gravitational field. In consequence causal hydrodynamics
enables the description of effects that are lost in covariant
Navier-Stokes theory. Its importance would be estimated by
considering the constitutive parameters. To be concrete we
analyze the evolution of gravitational wave spectrum.
Usually H−1 is the only relevant scale that distinguishes

the evolution of perturbations between super-Hubble
(λ > H−1) and sub-Hubble (λ < H−1) modes, where λ
represents the physical wavelength. We always concentrate
in the former, but here it is important to note that the
presence of the new dimensionful parameter τ which
provides us the characteristic relaxation time of the fluid
dynamics [Eq. (2)] introduces another scale which splits the
evolution of super-Hubble modes in two, as it is shown in
Fig. 1. Considering the values of the parameters on
previous sections we get that for modes with λ > λτ ≃ τ
we recover the usual invariant spectrum. However for
modes with H−1 < λ < λτ the fluid-graviton interaction
produces an energy transfer from the fluid to gravitons and
increases the amplitude of the spectrum. We are able to
extend our description until the electroweak transition.
Thus, shaded zone in Fig. 1 represents the modes which are
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amplified with respect to the usual invariant spectrum by a
factor of about 1.3 at the electroweak time according
to Eq. (61).
Fields at extreme conditions, like highly energetic colli-

sions or very large temperatures in the early Universe,
evidence the need for new schemes of description which
incorporate interactions and nonideal processes such as
dissipation and thermalization. Causal relativistic hydro-
dynamic theories are promising candidates to include
characteristic effects of these regimes in a consistent
framework.
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APPENDIX A: CONFORMAL INVARIANCE

We shall show that the Boltzmann equation for massless
particles is conformally invariant, and that conformal
invariance is not broken by taking moments.
The Boltzmann equation in curved space is

pμ

� ∂
∂xμ þ Γν

μρpν
∂

∂pρ

�
f ¼ Icol ðA1Þ

We write gμν ¼ a2ðηÞḡμν. So we split the metric connection

Γν
μρ ¼ Γ̄ν

μρ þ
a0

a
γνμρ; ðA2Þ

where

γνμρ ¼ δνρδ
0
μ þ δνμδ

0
ρ − ḡν0ḡμρ: ðA3Þ

We also assume that fðxμ; pνÞ is invariant and Icol ¼
a−2Īcol. Thus Boltzmann equation reads

ḡμσpσ

� ∂
∂xμ þ Γ̄ν

μρpν
∂

∂pρ
þ a0

a
γνμρpν

∂
∂pρ

�
f ¼ Īcol: ðA4Þ

Conformal invariance follows if we show that

ḡμσγνμρpσpν ¼ 0 ðA5Þ

for a massless theory, namely when ḡμσpσpμ ¼ 0. Indeed,
using (A3) it is straightforward to show that

ḡμσγνμρpσpν ¼ ḡμσpσpμδ
0
ρ ¼ 0: ðA6Þ

We define the covariant moments of the distribution
function as

Aμ1;…;μn ¼
Z

Dppμ1…pμnf ðA7Þ

where

Dp ¼ 2dp0

Q
idpi

ð2πÞ3 ffiffiffiffiffiffi−gp δðp2ÞΘðp0Þ ¼ a−2D̄p; ðA8Þ

D̄p is defined in Eq. (7). Then the moments transform as

Aμ1;…;μn ¼ a−2ðnþ1ÞĀμ1;…;μn ðA9Þ

and

Iμ1;…;μn ¼
Z

Dppμ1…pμnIcol ¼ a−2ðnþ2ÞĪμ1;…;μn : ðA10Þ

The covariant equation for the moments reads

Aμμ1;…;μn
;μ ¼ Iμ1;…;μn ðA11Þ

and becomes

Āμμ1;…;μn
;μ þ Γ̄μ

μρĀρμ1;…;μn þ
Xn
i¼1

Āμρμ1;…ðμiÞ…;μn

þ a0

a

�
−2nĀ0μ1;…;μn þ

Xn
i¼1

γμiμρĀμρμ1;…ðμiÞ…;μn

�

¼ Īμ1;…;μn ; ðA12Þ

where ðμiÞ means that μi index is excluded. Following we
need to show

Xn
i¼1

γμiμρĀμρμ1;…ðμiÞ…;μn ¼ 2nĀ0μ1;…;μn ðA13Þ

given that the moments are totally symmetric and traceless
on any pair of indexes. Actually, for each term we have

γμiμρĀμρμ1;…ðμiÞ…;μn ¼ 2Ā0μ1;…;μn ðA14Þ

because if μi ¼ 0 this gives

γ0μρĀμρμ1;…ðμiÞ…;μn

¼ 2Ā00μ1;…ðμiÞ…;μn − ḡ00Āμ
μ
μ1;…ðμiÞ…;μn

¼ 2Ā0μ1;…;μi¼0;…;μn ðA15Þ

and if μi ¼ j ≠ 0 then we get

γjμρĀμρμ1;…ðμiÞ…;μn

¼ Ā0jμ1;…ðμiÞ…;μn þ Āj0μ1;…ðμiÞ…;μn

− ḡj0Āμ
μ
μ1;…ðμiÞ…;μn ¼ 2Ā0μ1;…;μi¼j;…;μn ; ðA16Þ

which ends up proving (A13). We now show that our ansatz
for the distribution function and the collision integral is
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consistent with conformal invariance. Indeed, we take the
one-particle distribution function given in (1)

f ¼ 1

exp ð−βμpμ − κζμνpμpν=T2Þ − 1
: ðA17Þ

Since pμ is invariant we require transformation laws which
implies invariance of βμ and ζμν=T2. Index disposition
matters. From T ¼ T=a we arrive to βμ ¼ a2β̄μ, uμ ¼
a−1ūμ and ζμν ¼ a2ζ̄μν. In addition as τ is a scale dimen-
sional parameter we assume that τ ¼ aτ̄, thus

Icol ¼
uμpμ

τ
ðf − f0Þ ðA18Þ

also has the required transformation law.

APPENDIX B: TENSOR PART OF
THE NOISE KERNEL

In this appendix we clarify the calculation of tensor part
of noise kernel in Fourier space. From Eq. (33) we write

Ni
j
k
lðx; x0Þ ¼ ½rirjrkrlF1ðrÞ þ ðδilrjrk þ δjkrirlÞF2ðrÞ

þ δilδjkF3ðrÞ� þ ðk ↔ lÞ; ðB1Þ

with

F1ðrÞ ¼
H8

4π4r8
; F2ðrÞ ¼ −

H8

8π4r6
and F3ðrÞ ¼

H8

16π4r4
:

ðB2Þ

Thus applying tensor projectors (34) to (33) in Fourier
space we get

NT
abcdðk; k0Þ ¼ Λa

i
b
jΛc

k
d
lNi

j
k
lðk; k0Þ

¼ δðk − k0ÞFðkÞ½Λadbc þ Λacbd�; ðB3Þ

where

FðkÞ ¼
�
2F00

1ðkÞ
k2

−
2F0

1ðkÞ
k3

−
2F0

2ðkÞ
k

þ F3ðkÞ
�
: ðB4Þ

To compute Fourier transforms FiðkÞ we use the following
relation

Z
r−2ne−ik·rd3r ¼ π3=2

Γð3=2 − nÞ
ΓðnÞ

�
k2

4

�
n−3=2

; ðB5Þ

and finally it results

FðkÞ ¼ 6911

12

H8

π2
kþOðk2Þ: ðB6Þ
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