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The problem of Jeans gravitational instability is investigated for static and expanding universes within
the context of the five and thirteen field theories which account for viscous and thermal effects. For the five-
field theory a general dispersion relation has been derived with the help of relevant linearized perturbation
equations, showing that the shear viscosity parameter alters the propagating modes for large and small
wavelengths. The behavior of density and temperature contrasts are analyzed for the hard-sphere model in
detail. In the small wavelengths regime, increasing the amount of shear viscosity into the system forces the
harmonic perturbations to damp faster, however, in the opposite limit larger values of shear viscosity lead to
smaller values of density and temperature contrasts. We also consider the hyperbolic case associated with
the thirteen-field theory which involves two related parameters, namely the shear viscosity and the collision
frequency, the last one is due to the production terms which appear in the Grad method. The dispersion
relation becomes a polynomial in the frequency with two orders higher in relation to the five-field theory,
indicating that the effects associated with the shear viscosity and heat flux are nontrivial. The profile of
Jeans mass in terms of the temperature and number density is explored by contrasting with several data of
molecular clouds. Regarding the dynamical evolution of the density, temperature, stress and heat flux
contrasts for a universe dominated by pressureless matter, we obtain also damped harmonic waves for small
wavelengths. In the case of large wavelengths, the density and temperature contrasts grow with time (due to
the Jeans mechanism) while the stress and heat flux contrasts heavily decay with time. For an expanding
universe, the Jeans mass and Jeans length are obtained and their physical consequences are explored.
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I. INTRODUCTION

The current view of the universe seems to indicate that it
is vastly uniform and homogeneous at large-scale for
redshifts larger than z≃ 103 [1,2]. However, the existence
of inhomogeneities such as galaxies and clusters of galaxies
requires a physical mechanism to account them for. One
way to address the study of structure formation is by
considering the process associated with the aggregation of
matter in a form of cosmic substratum (or fluid), which
permeate the whole universe. From some initial seeds,
possibly generated during a primordial inflationary era, one
must explore how gravity forces to grow into lumpy
structures on small scale that one observes today, namely
a clustered distribution of galaxies or super-cluster of
galaxies at low redshifts (z ≪ 1) [2].
First attempts to examine the existence of instability for a

fluid within the context of collapsing astrophysical bumps
were initiated by Sir Jeans in 1912 [3,4]. He started his

analysis by assuming a static universe and found that the
dispersion relation associated with the perturbed contrast
density could admit, apart from harmonic perturbations,
two kinds of propagating modes: a growing mode and a
decaying one. To be more precise, he noticed the existence
of a physical cutoff, called Jeans’ wavelength, such that
perturbations with wavelength shorter than Jeans scale will
not grow whereas in the opposite case perturbations may
grow exponentially in time. A useful manner to understand
the gravitational instability associated with the Jeans
mechanism is by using the following reasoning: consider
a given mass M enclosed in a spherical volume of radius λ
in which there exists a mass density inhomogeneity. This
inhomogeneity will grow if the gravity force FG per unit
mass is greater than the opposed pressure force FP per unit
of mass, i.e.,

FG ¼ GM
λ2

∝
Gρλ3

λ2
¼ Gρλ > FP ∝

pλ2

ρλ3
∝
v2s
λ
;

where one used v2s ∝ ðp=ρÞ. G stands for the Newton
gravitational constant, ρ represents the density, and λ is a
wavelength. From dimensional analysis, one shows that the
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Jeans wavelength can be written in terms of the Jeans wave-
number as λJ ¼ 2π=kJ ¼ 2πvs=

ffiffiffiffiffiffiffiffiffiffiffi
4πGρ

p
being λ ¼ 2π=k;

then instability arises if the condition k < kJ holds.
Equivalently, the Jeans instability can be stated as follows:
the timescale associated with the pressure exerted over a
region with matter must be bigger than the timescale needed
to start the gravitational collapse of the matter due to its own
weight, namely tpressure ¼ ðλ=vsÞ > tgravity ¼ ðGρÞ−1=2.
The situation of an expanding universe is considerably

different provided the expansion tries to counterbalance the
effect of gravity. As a positive density bump is trying to
collapse due to its self-gravity the expansion of the universe
is trying to pulling it apart [5]. In fact, there are two
elements which can help to prevent the formation of
structure, which are the usual pressure effects and the fast
background expansion. Therefore, the growth rate of matter
in an expanding universe tends to be slower than in one
with no expansion, evolving as power law in time in the
latter case. The Jeans treatment for exploring the evolution
of density contrast is just limited to the linear regime, so as
the amplitude of density fluctuations approach to the
nonlinear stage all the propagating modes do not evolve
independently. Nevertheless, Jeans stability analysis seems
to be the first method to understand the inclusion of
secondary effects in the agglomeration of matter for the
nonexpanding case and expanding scenario within the
framework of first-order Newtonian dynamics. Some
authors devoted several efforts to explore the Jeans insta-
bility mechanism within the context of Newtonian cosmol-
ogy where the universe is dominated by a pressureless
matter. For instance, the effect of including a nonvanishing
bulk viscosity along with the analysis of the top-down
fragmentation process were taken into account in Ref. [6].
In doing so, they compared one collapsing agglomerate
with M ≫ MJ and an internal noncollapsing substructure
with M < MJ, MJ being the Jeans mass [7].
The case of Jeans instability criterion for a compressible

fluid including viscosity and heat conduction was analyzed
many years ago [8]. At high redshifts associated with the
recombination epoch (z≃ 1000) the role played by the
shear viscosity would be negligible while the bulk viscosity
would be important [8]. In addition, the gravitational
instability for a fluid which supports viscoelastic stresses
was addressed by Janaki et al., showing that quadratic
corrections appear in the dispersion relation due to the
presence of both shear viscosity and bulk viscosity [9].
On the other hand, the analysis of Jeans instability from

the point of view of kinetic theory was also examined in the
literature. In such treatment, Trigger et al. obtained the
dispersion relation for the Boltzmann-Vlasov operator
coupled to Poisson equation. The authors showed that a
nonvanishing collisional term led to substantial modifica-
tions to the unstable propagating modes [10]. The gravi-
tational instability for a collisionless self-gravitating system
composed of one or two components described by the
coupled collisionless Boltzmann and Poisson equation
were analyzed as a first step to understand the cooperative

effects of baryons and dark matter in process of structure
formation [11,12]. For instance, a system composed of
baryons and dark matter lead to a total Jeans mass which is
smaller than the one associated with a single component,
pointing out that less amount of mass is needed to ignite
the collapsing process. One could expect that for bumps
with masses greater the Jeans mass initiate the collapsing
process but an overdense region in an expanding universe
eventually recollapses and virialises. In the case of a
single component with an expanding background it turned
out that the “swindle” proposal may be avoided while the
Jeans instability is expected to arise in the limit of large
wavelengths [11]. Leaving general relativity aside, some
authors devoted several efforts to explore the Jeans
instability within the framework of fðRÞ gravity or
modified gravity theories [13–17]. In particular,
Capozziello et al. studied the collapse of self-gravitating
system composed of neutral particles which is charac-
terized by a coupled of collisionless Boltzmann and
Poisson equations in the case of FðRÞ-gravity.
Perturbing a background solution and looking at linear-
ized regime (or in the case of weak field approximation) of
the aforesaid set of equations, they obtained a modified
dispersion relation along with a new kind of an unstable
mode. Such propagating mode turned to grow faster than
the standard one obtained in GR [16,17].
The aim of this work is to explore the Jeans instability for

a static and expanding backgrounds from the phenomeno-
logical point of view of a five-field and a thirteen-field
theory, so it can be considered as a complementary analysis
to the full kinetic theory approach mentioned above. First,
we are going to consider a proper fluid-description in terms
of a five-field model which is characterized by several
fields such as mass density, velocity field, temperature,
gravitational potential along with an equation of state to
close the coupled Poisson-balance system of equations. In
the thirteen-field theory, we are going to deal with a
hyperbolic system of equations which include mass den-
sity, velocity, pressure tensor, and heat flux vector. For an
ideal gas these balance equations can be obtained from the
Grad method of kinetic theory [18] or from the so-called
extended thermodynamic theory (see [19]). The main idea
of such approach is to analyze the evolution of plane waves
and obtained the modified dispersion relation for static
universe. Then, we are going to solve numerically the
dynamical set of equations for inspecting the evolution of
contrast density, contrast temperature, contrast heat flux,
and contrast shear tensor with time when the expanding
universe is dominated by dustlike matter. In doing so, we
will explore the impact and effect introduced by the shear
viscosity parameter in the evolution of contrast quantities
such as density, temperature, heat flux, and shear’s stress.
In the phenomenological side of our model, we will
examine two different kinds of constraints. We will explore
for static configurations how the Jeans mass varies with the
temperature and number density and compare such out-
comes with several data of molecular clouds. In addition,
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we will study the dynamical Jeans mass in terms of the
redshift.
The outline of this paper is as follows. Section II A is

dedicated to analyze the Jeans instability for static universe
along with the computation of the dispersion relation
(and growing mode) within the five-field theory while in
Sec. II B several constraints on the static Jeans mass
are obtained in the case of stellar molecular clouds.
Section II C is devoted to evaluate the evolution of contrast
quantities (namely, mass density, temperature) in terms of
the cosmic time. In Sec. II D the dynamical Jeans mass is
calculated to estimate the clustering properties of the
model. In Sec. III A, the thirteen-field theory is presented,
the dispersion relation in the presence of shear viscosity is
calculated. In Sec. III B, the dynamical evolution of thirteen
fields coupled to the Poisson equation is explored along
with the physical behavior of such quantities with the shear
viscosity. In Sec. IV, the conclusions are stated.

II. JEANS INSTABILITY FROM
A FIVE-FIELD THEORY

The aim of ordinary thermodynamics of fluids is the
determination of five fields of mass density ρ, velocity vi
and temperature T in space-time ðt; xiÞ. The equations
for the determination of these fields are based on the
balance equations of mass, momentum and energy which
in the presence of a gravitational potential ϕ read (see,
e.g., [18,19])

∂ρ
∂t þ

∂ρvi
∂xi ¼ 0;

∂vi
∂t þ vj

∂vi
∂xj þ

1

ρ

∂pij

∂xj þ ∂ϕ
∂xi ¼ 0;

∂ε
∂t þ vi

∂ε
∂xi þ

1

ρ

∂qi
∂xi þ

pij

ρ

∂vi
∂xj ¼ 0: ð1Þ

In the above equations pij denotes the pressure tensor, ε
stands for the specific internal energy, and qi is the heat flux
vector.
The gravitational potential is connected with the mass

density through Poisson’s equation, namely

∇2ϕ ¼ 4πGρ; ð2Þ

where G is the gravitational constant. In order to close the
system of equations (1) and (2) constitutive equations
for pij; ε; qi in terms of the basic fields ρ; vi; T must be
specified. Here we are interested in studying an ideal gas
where velocity and temperature gradients are present.
According to the thermodynamic theory the constitutive
equations for the pressure tensor and heat flux vector are
governed by the so-called Navier-Stokes and Fourier laws
and their expressions read

pij ¼ pδij − μv

�∂vi
∂xj þ

∂vj
∂xi −

2

3

∂vr
∂xr δij

�
; ð3Þ

qi ¼ −λc
∂T
∂xi ; ð4Þ

respectively. Above p ¼ ρkT=m is the pressure with k
denoting the Boltzmann constant and m the mass of a gas
particle, μv is the shear viscosity and λc the thermal
conductivity coefficients, respectively. According to the
kinetic theory for an ideal nonrelativistic gas [18] the bulk
viscosity vanishes and the coefficients of shear viscosity
and thermal conductivity are related by the following
expression:

λc
μv

¼ 15k
4m

: ð5Þ

Furthermore, for an ideal gas the specific internal energy is
given by ε ¼ 3kT=2m.
In the next subsections, we shall investigate the Jeans

instability for a static and expanding Universe by taking
into account the above equations.

A. Static Universe

Here we search for plane wave solutions of (1) and (2)
supplemented by the constitutive equations (4). At equi-
librium the density, temperature and gravitational potential
have constant values, namely ρ0, T0, ϕ0 while the velocity
vanishes. The equilibrium solution is subjected to pertur-
bations characterized by a Fourier expansion with fre-
quency ω, wavenumber vector k and small amplitudes
fδρ; δv; δT; δϕg in relation to unperturbed variables:

ρ ¼ ρ0 þ δρeiðkx−ωtÞ; vx ¼ δvxeiðkx−ωtÞ; ð6Þ

T ¼ T0 þ δTeiðkx−ωtÞ; ϕ ¼ ϕ0 þ δϕeiðkx−ωtÞ: ð7Þ

For simplicity, we have assumed that k̄ ¼ kx̂. Further, it is
import to remark the fact that the equilibrium values for the
fields satisfy the equations (1) but not Poisson equation (2).
This inconsistency is removed by considering Jeans “swin-
dle” approximation which states that the Poisson equation
is valid only for the perturbations.
Replacing the Fourier expansion modes (6) and (7)

together with the constitutive equations (4) into the balance
(1) and Poisson (2) equations, one obtains a system of
algebraic equations for the amplitudes. This system of
algebraic equations has a solution if the determinant
associated with the coefficients of the perturbations van-
ishes and consequently one gets the following dispersion
relation

ω

�
ωþ i

4μv
3ρ0

k2
��

ωþ i
5μv
2ρ0

k2
�
−

2k
3m

T0ωk2

−
�
ωþ i

5μv
2ρ0

k2
��

k
m
T0k2 − 4πGρ0

�
¼ 0; ð8Þ
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where μv stands for the viscosity coefficient which is a
function of the temperature [20]. Note that one has to use
the relationship between the coefficients of thermal con-
ductivity and shear viscosity (5) in order to recast (8) in its
current form.
Now we shall analyze the dispersion relation (8) and for

that end we introduce the adiabatic speed of sound vs, the
Jeans wave number kJ and the dimensionless parameters
associated with the shear viscosity coefficient μ�, frequency
ω�, and wave number k�:

vs ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
5k
3m

T0

r
; kJ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4πGρ0

p
vs

; ð9Þ

μ� ¼
μvkJ
ρ0vs

; k� ¼
k
kJ

¼ λJ
λ
; ω� ¼

ω

vskJ
; ð10Þ

where λJ ¼ 2π=kJ is the Jeans wavelength.
In terms of the dimensionless quantities (10) Eq. (8) can

be rewritten as

ω3� þ i
23

6
μ�k2�ω2� þ

�
1 − k2� −

10

3
μ2�k4�

�
ω�

þ i
5

2
μ�k2�

�
1 −

3

5
k2�

�
¼ 0: ð11Þ

At this point, one must look for an important consistency
check which corresponds to the case of a nonviscous and
nonthermal conducting gas or equivalently μ� ¼ 0. In that
limit (11) leads to

ω� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffi
λ2J
λ2

− 1

s
; ð12Þ

which is the well-known Jean’s solution. For small wave-
lengths λJ > λ, one finds that ω� remains a real quantity.
Due to the factor expð−iωtÞ this perturbations will propa-
gate as harmonic waves in time. For big wavelengths
λJ < λ, ω� becomes a pure imaginary quantity then the
perturbations will grow or decay in time, depending on the
� sign. Further, the one which grows in time is connected
with Jeans instability. Now it is essential to compare the
dispersion relations in the case μ� ¼ 0 and μ� ≠ 0. We
check that dimensionless dispersion relation in the presence
of dissipative effects is smaller than the dispersion relation
with μ� ¼ 0 [cf. Fig. (1)]. This is physically equivalent to
state that the time needed to collapse a mass configuration
is larger when the dissipative effects are included.
For large wavelengths λJ=λ < 1, we can obtain from (11)

three different values associated with the dimensionless
frequencies that read

ω�1 ¼ −i
�
5μ�
2

�
λJ
λ

�
2

þ � � �
�
; ð13Þ

ω�2 ¼ −i
�
1 −

3 − 4μ�
6

�
λJ
λ

�
2

− � � �
�
; ð14Þ

ω�3 ¼ i

�
1 −

3þ 4μ�
6

�
λJ
λ

�
2

− � � �
�
: ð15Þ

These dimensionless frequencies are pure imaginary. In
particular, ω�1 and ω�2 result in decaying perturbations in
time while ω�3 represents a growing mode. This last refers
to Jeans instability which shows a dependence on dis-
sipative phenomena through the dimensionless shear vis-
cosity coefficient μ�. For small wavelengths λJ=λ > 1, we
obtain two complex conjugate solutions for the dimension-
less frequencies which refer to harmonic waves in time and
a decaying mode.

B. Stellar structure formation

In this subsection, we are going to explore the impact of
viscosity within the context of stellar structure formation as
a useful application of the previous analysis. Galaxies have
different components such as stars and the interstellar
medium. In particular, the interstellar medium contains
clouds of cold and ionized gas and dust, like giant
molecular clouds, HII regions, Bok globules, etc. These
clouds are usually stable, with pressure (due to a finite
temperature) balancing self-gravity. In general, the physical
processes of a collapsing clouds are well described in the
fluid limit, however, it can not take into account some
effects due to the particle nature of the interstellar medium
that could much be larger if an alternative gravity theory is
selected [16]. In order to compare the standard Jeans mass
with the case of nonzero viscosity, we must begin by
obtaining the Jeans masses in both cases. In the standard
case with μ� ¼ 0, the Jeans mass can be visualized as the
minimum mass for an overdensity to collapse. It is defined
as the mass contained within a sphere of diameter λJ, so it
reads Ms

J ¼ ð4π=3ÞðλJ=2Þ3ρ0, where the mass density is
ρ0. We assume that the main component of these clouds is

FIG. 1. Behavior of the dimensionless dispersion relations in
terms of ξJ ¼ λJ=λ for two different cases, namely, μ� ¼ 0 and
μ� ¼ 10−5.
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hydrogen (H2), so the density is given by ρ0 ¼ μmpn, n
being the number density, mp stands for the proton mass
and μ ¼ 2.06 is the mean molecular weight for Hydrogen.
For an ideal gas, the squared thermal velocity is propor-
tional to the temperature of the cloud, v2s ∝ kT=mH2

, so
with the help of (10) the Jeans mass can be recast as

Ms
J ¼

π4

6ðμmpÞ2n1
2

�
5

12π

kT
G

�3
2

: ð16Þ

Equation (16) can be written in solar units as
Ms

J ≃ 3.31T
3
2n−

1
2M⊙, where T½K� is the numerical value

of temperature in Kelvin units and n½cm−3� the number
density in centimeters. At this point some comments are in
order. When we are dealing with the structure formation at
the astrophysical level there are several mechanisms which
we must take into account. For instance, we must include
the fragmentation/starvation process, the radiation pressure,
stellar winds and so on. Here we are studying an unstable
media which collapse gravitationally and how they produce
objects with a characteristic mass comparable to the Jeans
mass (see [21]). Given the fact that the great majority of
stars form via the collapse of cold, gravitationally-unstable,
molecular gas, and the subsequent accretion of cold gas
onto the protostellar seeds that the collapse produce, it is
quite natural to estimate the Jeans mass:

Ms
J ¼ 0.5

�
n

104 cm−3

�1
2

�
T

10 K

�3
2

M⊙: ð17Þ

Equation (17) shows the typical values of the temperature
and the number density associated with star-forming
regions. The general mechanism of how a gas does frag-
ment into numerous small stars rather than forming a single
large one is a really complex process. Nevertheless we can
mention the standard fragmentation mechanism. As can be
seen from (17), the critical mass is only a function of
temperature and density. Increasing density and decreasing
temperature lead to lower Jeans masses which, in turn,
will lead to fragmentation into smaller cores. For a given
initial mass, a molecular cloud (or other astrophysical
object) may be formed in spiral density waves and other
density perturbations (e.g., caused by the expansion of a
supernova remnant or superbubble). What exactly happens
during the collapse depends very much on the temperature
evolution of the cloud. Initially, the cooling processes
(due to molecular and dust radiation) are very efficient.
If the cooling time scale is much shorter than free fall time,
the collapse is approximately isothermal. AsMs

J decreases,
inhomogeneities with mass larger than the actual Ms

J
will collapse by themselves with their local free fall time.
This fragmentation process will continue as long as the
local cooling time is shorter than the local free fall
time, producing increasingly smaller collapsing subunits.

Eventually the density of subunits becomes so large that
they become optically thick and the evolution becomes
adiabatic. As the density has to increase, the evolution will
always reach a point when M ¼ Ms

J, when a subunit
reaches approximately hydrostatic equilibrium. We assume
that a stellar object is born [22]. At this point, we should
remark the main reason for studying molecular clouds. As
is well known, the primary sites for star formation are
molecular clouds. These are thought to form out of the
remnants of supernova explosions, outflows and winds
from stars, and the gas reservoirs in the interstellar and the
intergalactic medium. Besides, we should also stress that
from a giant molecular cloud it can form a group of stars
with their mass distribution being determined by the
fragmentation process. The process depends on the physi-
cal and chemical properties of the cloud (ambient pressure,
magnetic field, rotation, composition, dust fraction, stellar
feedback, etc.); that is, much of the fragmentation process
is still under study and is not completely understood.
Our aim is to compare the Jeans mass of the interstellar

gas with our without dissipative effects. Then, the study of
the ionization feedback, the radiation pressure, and stellar
wind in process of fragmentation/starvation are beyond the
scope of the present work. In the case of nonvanishing
viscosity, we use (10) along with the definition of Jeans
mass to exhibit how such quantity scales with the viscosity,
it reads

Mμ
J ¼

π4

3μ3�
ρ−20 μ3vv−3s : ð18Þ

To consider the viscosity effects as subleading ones we
must choose μ� considerably small, typically of order 10−6

or 10−7 otherwise we can obtain unrealistic scenarios. As is
well known, the viscosity depends on the temperature
of the gas, so we have to select a model for μvðTÞ.
We choose the toy model of Maxwell given by
μv ¼ 3.1 × 10−7T ½g cm−1 s−1 K−1�, where once again we
assumed that the gas is entirely composed of hydrogen (see
[20]). From the previous choice, we obtain that the Jeans
mass behaves as Mμ

J ≃ 3.79 × 10−17T
3
2n−2μ−3� M⊙. Before

embark us in the numerical analysis of the Jeans mass
in both scenarios, we begin by noting several points.
Eqs. (16)–(18) tell us that Jeans mass scales as T3=2 so
the MJ − T relation for the interstellar medium is the same
in both cases. Nevertheless, the behavior with the numeri-
cal density is different in both cases and in addition the
viscous case contains the parameter μ�. It is illustrative to
consider different astrophysical systems to compare the
Jeans mass in these two cases [16].

(i) Giant molecular clouds are composed of gas, dust
and different substructures extended over a region
of 10 pc. They exhibit a high number density
102–103 cm−3 and a very low-temperature, 10 [K].
Their masses vary between 104 M⊙ and 106 M⊙.
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(ii) Cold neutral medium is entirely composed of
neutral hydrogen and exhibits a low number density
30 cm−3 and a very low-temperature, 10–100 [K].

(iii) Warm neutral medium is composed of neutral
hydrogen HI with a temperature of 103–104 ½K�
and a low density n≃ 0.6 cm−3.

(iv) Warm ionized medium is a considerably large low-
density photo-ionized zone with a temperature of
8 × 103 ½K�, bigger than the Sun’s temperature at its
surface. It has a lower density than the warm neutral
medium, namely n≃ 0.1 cm−3.

(v) HII regions are interesting objects in the galaxy
provided they basically emit in the radio and IR part
of the visible spectrum, then they are easy to explore
observationally. They have an average temperature
around 104 ½K� and a typical density in the range
of 0.1–104 cm−3. The mass of HII regions varies
between 102 M⊙ and 104 M⊙.

(vi) Hot intercloud region is composed of ionized gas
HII with high temperatures,105–106 ½K�. Such re-
gion is extended over 20 pc with an extremely low
density of 0.004 cm−3.

(vii) Intracluster medium exhibits high temperatures,
107–108 ½K�, a very low density 10−3 cm−3 and is
extended over a a few Mpc.

(viii) Fermi bubbles are extended over 10 kpc with a
temperature that varies from 108 ½K� to 109 ½K�,
exhibiting a density of 0.01 cm−3. These con-
figurations are located above and below the galactic
plane.

As is expected the Jeans mass for a system with a
small viscosity gives always greater mass than the case
without viscosity. For instance, the smallest difference
corresponds to the case of giant molecular clouds, being
Mμ

J=M
s
J ≃ 11.45, while the largest disagreement appears

for the intracluster medium provided Mμ
J=M

s
J ≃ 3.6 × 105.

The previous result can be easily understood by taking into
account that the temperature factor is the same in both
cases, but the behavior with the number density is stronger
for the viscosity case. Further, we also have to add the μ−3�
term, which accounts for a 1021 factor in the Jeans mass
with viscosity [cf. Table I]. At this point, two comments are
in order regarding the high values associated with the
Jeans’ mass for HIR, ICM and FB [cf. Table I]. Clearly
these astrophysical objects are observed in the galaxy;
however, the fragmentation process that leads to such
configurations endowed with the small values of viscosity
seems to be very unlikely. So, we think that the small
viscosity condition breaks down for such objects and we
need to consider a scenario where the viscosity is extremely
high, for instance, recent numerical analysis showed that
FBs are well described in terms of high viscosity values
[23]. In addition to that, it is possible that we should change
the phenomenological law adopted for μvðTÞ [23].

In general, we expect that the system with viscosity leads
to less effective system regarding the aggregation of mass
and the posterior collapse of a gravitational cloud provided
the viscosity and conductive work against the structure
formation process. To reinforce such idea, we are going to
explore another kinds of molecular clouds which are
characterized by really low temperature, T ≤ 10 K and
slightly high number density, that is, n ≤ 102 cm−3

[cf. Table II]. In doing so, we will use some of the samples
mentioned in Capoziello et al. [16] which were extracted
from Ref. [24].
Interestingly enough, Table II tells us that the largest

difference appears in the case of T ¼ 6.48 K and
n ¼ 1.54 × 102 cm−3, which leads to a ratio Mμ

J=M
s
J ≃

5.99while the smallest disagreement givesMμ
J=M

s
J ≃ 1.21.

Notice that the last case is associated with larger values of
temperature (T ¼ 8.87 K) along with larger value in the
number density, n ¼ 4.99 × 102 cm−3.
Our analysis was focused on the collapse of overdense

region with mass near the Jeans mass which are associated
with an interstellar medium (forming molecular clouds or

TABLE I. Jeans mass measured in solar units for different
values of temperatures and number densities.

Object T [K] n ½cm−3� Mμ
J½M⊙� Ms

J½M⊙�
GMC 10 100 120.15 10.49
CNM 80 30 30 207 433.44
WNM 8000 0.6 7.55 × 1010 3.06 × 106

WIM 8000 0.1 2.71 × 109 7.51 × 106

HII 104 0.1 3.79 × 109 1.04 × 107

HIR 104 4 × 10−3 2.37 × 1015 5.24 × 1010

ICM 107 10−3 1.20 × 1018 3.31 × 1012

FB 108 10−2 3.79 × 1017 3.31 × 1013

TABLE II. Temperature, number density and Jeans masses with
and without the dissipative effects for some molecular clouds
reported in [24]. For the sake of brevity, we shortened the name of
the above objects.

Object T [K] n 102 ½cm−3� Mμ
J½M⊙� Ms

J½M⊙�
GRSMC G053.59 5.97 1.489 25.30 3.97
GRSMC G049.49 6.48 1.54 26.42 4.41
GRSMC G018.89 6.61 1.58 25.86 4.48
GRSMC G030.49 7.05 1.66 25.81 4.82
GRSMC G035.14 7.11 1.89 25.81 4.82
GRSMC G034.24 7.15 2.04 20.16 4.57
GRSMC G019.94 7.17 2.43 17.45 4.41
GRSMC G038.94 7.35 2.61 12.35 4.08
GRSMC G053.14 7.78 2.67 11.11 4.09
GRSMC G023.24 8.57 3.75 11.56 4.40
GRSMC G019.89 8.64 3.87 6.77 4.29
GRSMC G022.04 8.69 4.41 6.44 4.28
GRSMC G018.89 8.79 4.46 4.96 4.04
GRSMC G023.34 8.87 4.99 4.97 4.09
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similar compact objects) and how the viscosity effect
can reduce the agglomeration of such matter within the
extended thermodynamic framework [19]. Any way, as a
general rule we can say that a large collapsing cloud has
the tendency to fragment. Gas above the critical mass
(M > Ms

J) will go into a free fall when there is no
significant counterpressure. This is likely, at least ini-
tially, since molecular clouds are optically thin so that
radiation can easily escape, cooling the cloud, and
releasing any pressure. The overdensities will therefore
contract at different rates. As the molecular cloud
collapses, it will break into smaller and smaller pieces
in a hierarchical manner, until the fragments reach their
Jeans mass. As the density increases, each of these
fragments will become increasingly more opaque and
are thus less efficient at radiating away the gravitational
potential energy. This raises the temperature of the cloud
and inhibits further fragmentation. The fragments might
merge with one another if the increasing angular momen-
tum did not prevent such aggregation. Then, compact
objects with smaller masses can be formed in the
fragmentation process provided other important effects
such the ionization feedback, the radiation pressure, and
stellar wind must be taken into consideration along with
their numerical analysis [22]. Interestingly enough, there
are several numerical simulations which show that a
massive molecular cloud can be fragmented into several
pieces with masses lower than the original Jean mass
leading to the creation of stars and other objects [25].
Some authors pointed out that the fragmentation process
may stop when the mass of the subunit is nearly M⊙
[22]. However, this criterion is not absolute and there is a
debate about the possibility of having compact objects
with very low-mass. For instance, it was reported with
the help of the microlensing technique the detection
of objects in the globular cluster M22 with very low-
masses (a fraction of the solar mass), namely M ¼
0.13þ0.03

−0.02M⊙ [26].

C. Expanding universe

So far we have handled the case of static universe
and analyzed the classical Jeans condition for different
astrophysical configurations (mostly stellar clouds) when
dissipative effects (such as conduction and viscosity) are
included. However, the aforesaid analysis cannot be appli-
cable to cosmology provided the expansion of the universe
was not considered; such key element is essential for
examining the evolution of density inhomogeneities.
Then, let us consider a homogeneous and isotropic spatially
flat Universe described by the Friedmann-Lamaître-
Robertson-Walker metric ds2 ¼ ðdtÞ2 − aðtÞ2ðdx2 þ dy2þ
dz2Þ, where aðtÞ denotes the cosmic scale factor. From
Einstein’s field equation it follows the so-called Friedmann
and acceleration equations, which for a pressureless fluid
(p ¼ 0) read

�
_a
a

�
2

¼ 8πG
3

ρ;
ä
a
¼ −

4πG
3

ρ: ð19Þ

The solution of these equations for the mass density ρ and
cosmic scale factor a read:

ρ ¼ ρi0

�
ai0
a

�
3

; a ¼ ai0ð6πGρi0t2Þ13; ρ ¼ 1

6πGt2
:

ð20Þ

We will now see what happens to the density perturbation
with time. To do so, we write equations of motion for the
cosmological fluid. We will consider only one fluid and
volumes of the Universe that are small compared with the
Hubble distance, jrj ≪ H−1 (subhorizon scales in a linear
regime), so that the Hubble velocities are small, v ≪ c. For
the above background, we take that the unperturbed fields
are given by

ρ0 ¼ ρi0

�
ai0
a

�
3

; T0 ¼ Ti0

�
ai0
a

�
2

; ð21Þ

vi0 ¼
_a
a
xi; ϕ0 ¼

2π

3
Gρ0r2: ð22Þ

These equations satisfy (1) and (2) with the constitutive
equations (4) identically without the necessity of invok-
ing Jeans swindle approximation. Note that here the
subscripts 0 denote the zeroth order (i.e., homogeneous)
solution, not the necessarily values today. On the other
hand, the subscripts i0 stand for some reference values
that we can choose upon our needs. In dealing with the
perturbations some cautions must be taken. For instance,
the operator ∇r in r coordinates must be replaced
somehow by a ∇x operator in x coordinates. To do
so, we use that the comoving coordinates and the
physical one are related by the law xi ¼ ri=aðtÞ, implying
that ∇r ¼ a−1∇x. Besides, the physical time derivative
involves the comoving time derivative plus a contribu-
tion that accounts for Hubble flow: ∂tjr¼cte ¼ ∂tjx¼cte −
ðvi0=aÞ∂i. The physical reason for pointing out the later
fact is the slight subtlety of the noncommutation of
∂tjr¼cte and ∂r, which it will be essential in arriving at
the perturbed field equations. In summary, the time and
space derivatives defined from t and r were independent
in a static spacetime, however, this is not the case
anymore for an expanding spacetime.
At this point, we introduce small perturbations by

writing vi ¼ vi0 þ δvi, ρ ¼ ρ0 þ δρ, p ¼ p0 þ δp, and
ϕ ¼ ϕ0 þ δϕ, where the perturbations are assumed to
be small compared with the zeroth order quantities.
Furthermore, it is customary to define the symbol δX as
a contrast density of a physical quantity, that is, δX=X0.
The perturbed continuity equation (1) and perturbed
Poisson equation (2) can be recast as
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_δρ þ∇iui ¼ 0; ð23Þ

∇2δϕ ¼ 4πGρ0a2δρ; ð24Þ

where δρ ≡ δρ=ρ0. We have introduced a new perturbed

velocity ui ¼ δvi=a, used the relation ∂iv
j
0 ¼ Hδji along

with the fact that at zeroth order in fluctuations (i.e.,
dropping all perturbations), the usual continuity equation
and Poisson equation for unperturbed fields are recovered.
Notice that the Laplacian operator refers to derivatives with
respect to the comoving coordinates from now on.
Carrying on, we need to calculate the perturbed balance

equation (1) and due to the presence of the pressure tensor
term, it seems useful to obtain first its perturbed counter-
part. The perturbed pressure tensor then is given by

pij ¼ ðp0 þ δpÞδij − μv

�
∂jui þ ∂iuj −

2

3
δij∂kuk

�
: ð25Þ

Leaving aside the viscous contribution in (25), we can
express the perturbed pressure term associated with the
isotropic contribution by using the equation of state of an
ideal gas. We immediately see that pressure perturbations
come with two contributions: δp ¼ p0ðδρ þ δTÞ. We rec-
ognize the adiabatic term provided it is proportional to
density perturbation, as result it reads δpadiab ≡ c2sδρ,
where c2s ¼ ð3=5Þv2thermal. Nevertheless, there is an
additional nonadiabatic term given by δpnon−adiab≡
ðδp=δTÞδT ¼ ðkρ0=mÞδT . As we said before, we are
working on subhorizon scales in a linear regime within
the context of Newtonian cosmology which means that
we only have one gravitational potential. But, the use
of the pressure tensor with the viscosity term (25) within
the context of a full relativistic perturbation theory would
imply that there are two different gravitational potentials
[2], namely Ψ and Φ.
Now, we are in position to compare our approach with

previous articles reported in the literature [27,28]. First, we
are considering not only nonadiabatic contribution in the
perturbed pressure but also the explicit contribution of
μv-viscosity term (25). On the other hand, some authors
introduced viscosity for exploring the behavior of viscous
dark matter in neo-Newtonian cosmology in a completely
different way. They added a bulk viscous (nonadiabatic)
term by hand, namely p → pþ Πv [27]. The lack of a
microscopy theory for selecting Πv allowed them to choose
a useful parametrization of the bulk viscosity in terms of the
density. Of course, such approach led to nonadiabatic
perturbation terms quite differently to the one presented
in this work. But most importantly, we preferred to rely on a
truncated hierarchy of the full Boltzmann equation pro-
vided is a well accepted approach within the context of
mechanical statistics (for further detail see Appendix).
Probably, our line of work is similar to the one employed
by Acquaviva et al. because they worked within the

framework of Newtonian cosmology and they considered
the presence of dissipative effects by including a bulk
viscosity term which corrects the standard pressure term of
Euler equation. Moreover, they added a transport equation
for Πv based on the Israel and Steward causal theory [28].
This is equivalent to promoteΠv to the rank of another field
of the theory which must be determined dynamically.
Coming back to (25), the perturbed balance equation

becomes

_ui þ 2Hui þ
1

a2

�
∂iδϕþ ∂iδp

ρ0
−
μv
ρ0

δWi

�
¼ 0; ð26Þ

where the extra term is

δWi ¼ ∂jjui þ ∂jiuj −
2

3
∂ikuk: ð27Þ

We derive the general evolution equation for the
perturbation in temperature. Our starting point is to con-
sider ϵ ¼ ϵ0 þ δϵ, being the thermal energy density
ϵ ¼ ð3k=2mÞT, so it is possible to express δϵ ¼
ð3k=2mÞδT. The evolution equation for δϵ or δT has the
gradient term in the heat flux and the contraction of
the pressure tensor with the ∂jvi term. For the gradient
term, the perturbations are easy to compute, it yields
ρ−1∇iqi ¼ −λca−2ðT0=ρ0Þ∂iiδT . For the latter case,
we need to combine (25) along with the relation
∂jvi ¼ a−1ð∂jv0i þ ∂jδviÞ. Putting all these facts together
leads us

_δT −
5

2

μðaÞ
ρ0a2

∂iiδT þ 2

3
∂iui ¼ 0: ð28Þ

To obtain (28), we used that _T0 ¼ −2HT0, _δT ≡ _T0δT þ
T0

_δT , and the relation (5).
Combining the time derivative of (23) with the diver-

gence of (26), we find

δ̈ρ þ 2H _δρ −
4μv
3a2ρ0

∇2 _δρ ¼
∇2

a2
ðδϕþ δpÞ: ð29Þ

Expanding the perturbations in Fourier modes as δY ¼P
qδYðqÞe

iqx the Laplacian transforms as ∇2 → −q2,
which in turn implies that the master equation (29) can
be written as

δ̈ρðqÞ þ
�
2H þ 4μvq2

3a2ρ0

�
_δρðqÞ

þ
�
q2p0

a2ρ0
− 4πGρ0

�
δρðqÞ ¼ Sq: ð30Þ

Here the source term corresponds to temperature perturba-
tion, Sq ¼ ðq2p0=a2ρ0ÞδTðqÞ. Equation (30) tells us that
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dissipative effects enters into different ways. The viscosity
alters the usual friction term proportional to 2H and the
nonadiabaticity pressure term appears as a source for
the master equation above. We must emphasize that the
physical Jeans scale (length or wave-length) is obtained by
demanding that the term ∝ δρðqÞ vanishes. Such scale seems
to be sensitive to the equation of state of the gas and
consequently it will depend on the thermal velocity of the
gas particles.
Before presenting the results of our numerical simula-

tions, we would like to summarize all the master equations
expanded in Fourier modes. Using Eqs. (4), (23), (24), and
(26), we can arrange the whole five-field system of
equations as

_δρðqÞ ¼ −iquðqÞ; ð31Þ

_δTðqÞ þ
5

2

μvðaÞq2
ρ0a2

δTðqÞ ¼
2

3
_δρðqÞ; ð32Þ

δϕðqÞ ¼ −
4πGρ0a2

q2
δρðqÞ; ð33Þ

_uðqÞ þ 2HuðqÞ þ
4q2μv
3ρ0a2

uðqÞ þ
iq
a2

δϕðqÞ

þ iq
a2

p0

ρ0
½δTðqÞ þ δρðqÞ� ¼ 0. ð34Þ

For practical purposes, we must distinguish between two
kinds of (physical) perturbed fields. On the one hand, we
have dynamical perturbed fields denoted by δρðqÞ and δTðqÞ
and other derived variables which are associated with some
constraint equations, in our model they are represented by
uðqÞ and δϕðqÞ. The reason for performing such observation
is that δϕðqÞ can be obtained by simply knowing δρðqÞ
through Eq. (33). The same goes for uðqÞ provided it can be
obtained from (31) by calculating the time derivative of
δρðqÞ. Taking into account the remaining equations, we
obtained the following system of equations for the deter-
mination of δρðqÞ and δTðqÞ:

δ̈ρðqÞ þ
�
2
_a
a
þ 4μv

3ρ0

q2

a2

�
_δρðqÞ þ ω2

qδρðqÞ ¼ SðqÞ; ð35Þ

_δTðqÞ þ
5μv
2ρ0

q2

a2
δTðqÞ ¼

2

3
_δρðqÞ: ð36Þ

The squared frequency is recast as ω2
q ¼ ½kT0q2=ma2 −

4πGρ0� and the source term yields SðqÞ ¼ −ðkT0q2=
ma2ÞδTðqÞ. The next step is to select a consistent law for
the shear viscosity. To do so, we have to recall that
according to the kinetic theory of gases the shear viscosity
coefficient for an ideal gas is a function only of the

temperature, i.e., μv ∝ Tα, where the exponent of the
temperature may range from 1=2 ≤ α ≤ 1; the value 1=2
is for hard spheres and 1 for soft spheres (Maxwellian
molecules) (see, e.g., [18]). Hence, from (22) we may write
the shear viscosity coefficient in terms of the cosmic scale
factor as

μv
μi0

¼
�
T0

Ti0

�
α

¼
�
ai0
a

�
2α

: ð37Þ

We introduce the adiabatic sound speed vs along with the
wavelengths λ0 and λJ which are defined by the following
expressions:

vs ¼
ffiffiffiffiffiffiffiffiffiffi
5kT0

3m

r
; λ0 ¼

2πa0
q

; λJ ¼
2πvsffiffiffiffiffiffiffiffiffiffiffiffiffi
4πGρ0

p ; ð38Þ

Armed with the above definitions, the system of equa-
tions (35) and (36) can be rewritten as

τ2δ00ρðqÞ þ
4

3

�
1þ

ffiffiffi
2

3

r
μ�

�
λJ
λ0

�
2

τ
5−4α
3

�
τδ0ρðqÞ

−
2

3

�
δρðqÞ −

3

5

�
λJ
λ0

�
2 δρðqÞ þ δTðqÞ

τ
2
3

�
¼ 0; ð39Þ

τ

�
δ0TðqÞ −

2

3
δ0ρðqÞ

�
þ 5ffiffiffi

6
p μ�

�
λJ
λ0

�
2

τ
5−4α
3 δTðqÞ ¼ 0: ð40Þ

Above we have used explicitly that the universe is
dominated by matter so the relationships _a=a ¼ 2=3t
and ρ0 ¼ 1=ð6πGt2Þ hold. Further, we introduced the
dimensionless time τ ¼ t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6πGρi0

p
and the prime stands

for derivative with respect to τ. We remark that the above
system of equations is not easy to tackle for several reasons.
We start by recalling that they form a coupled system of
equations and it is even worse than it looks provided the
Bessel equation (39) is nonhomogeneous. Nevertheless, we
are going to obtain the leading contributions due to the
viscosity effects by using a series of physical approxima-
tions. Further, we will confirm the aforesaid solution by
solving the coupled system numerically.
Let us search for a solution of the system of equa-

tions (39) and (40). For simplicity, we consider the case
where α ¼ 1=2, i.e., the case of hard-spheres. First, we
introduce an auxiliary contrast density δβðqÞ in order to
decouple the solution of this system of equations. In doing
so, we define

δβðqÞ ¼ δTðqÞ −
2

3
δρðqÞ; ð41Þ

so that (40) can be rewritten as
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δ0βðqÞ þ
5ffiffiffi
6

p μ�

�
λJ
λ0

�
2
�
2

3
δρðqÞ þ δβðqÞ

�
¼ 0: ð42Þ

The solution of (42) can be splitted as the sum of two
contributions as follows:

δβðqÞ ¼ e−
5ffiffi
6

p μ�ðλJλ0Þ
2
τ −

2

3
e

5ffiffi
6

p μ�ðλJλ0Þ
2
τ

×
Z

τ
dtδρðqÞðtÞ

5ffiffiffi
6

p μ�

�
λJ
λ0

�
2

e−
5ffiffi
6

p μ�ðλJλ0Þ
2t: ð43Þ

From now on, we shall investigate solutions that depart
from the case without dissipation (μ� ¼ 0) by considering
the coefficient ϵ ¼ 5ffiffi

6
p μ�ξ2J as a small quantity. Note that

in this case the shear viscosity coefficient for small
wavelengths ξJ > 1 should be smaller than that for
large wavelengths ξJ < 1. Hence we can approximate
the solution (43) as

δβðqÞ ¼ 1 − ϵτ −
2

3
ϵ

Z
τ
δρðqÞðt0Þdt0: ð44Þ

Given the physical nature of μ�, we can consider the density
contrast as perturbative series in the small (control)
parameter ϵ, namely δρðqÞ ¼ δ1ρðqÞ þ ϵδ2ρðqÞ. Replacing the
latter ansatz in (39) we obtain two differential equations,
one for δ1ρðqÞ and another for δ2ρðqÞ:

τ2δ00
1ρðqÞ þ

4

3
τδ0

1ρðqÞ −
2

3
ð1 − ξ2Jτ

−2
3Þδ1ρðqÞ ¼ −

2

5
ξ2Jτ

−2
3;

ð45Þ

τ2δ00
2ρðqÞ þ

4

3
τδ0

2ρðqÞ −
2

3
½1 − ξ2Jτ

−2
3�δ2ρðqÞ

−
2

5
ξ2Jτ

−2
3

�
τ þ 2

3

Z
τ
δ1ρðqÞðt0Þdt0

�

þ 8

15
τ2δ0

1ρðqÞ ¼ 0: ð46Þ

The homogeneous solution of (45) is given in terms of

Bessel functions of first kind J�5
2
ð
ffiffi
6

p
ξJ

τ
1
3

Þ and its general

solution reads

δ1ρðqÞ ¼ t−
1
6

�
C1Jþ5

2

� ffiffiffi
6

p
ξJ

τ
1
3

�
þ C2J−5

2

� ffiffiffi
6

p
ξJ

τ
1
3

��

−
3

5
½1þ ξJτ

2
3�: ð47Þ

We now calculate the leading terms of (47) under the under
the assumption that ξJ < 1, so we are looking at the regime
where the Jeans instability has already begun. In that
situation, (47) exhibits to contributions, namely δ1ρðqÞ ≃
δ1gτ

2=3 þ δ1dτ
−1 being δ1g and δ1d two constants. In order

to simplify the instability analysis, we have restricted our
attention to the growing mode only, thus it is valid to
consider δ1ρðqÞ ≃ δ1gτ

2=3. Replacing the latter proposal in
(46) and neglecting the term proportional to ξ2J, it is
possible to put Eq. (46) in a more suitable shape for
extracting the growing and decaying modes. Then, Eq. (46)
becomes

τ2δ00
2ρðqÞ þ

4

3
τδ0

2ρðqÞ −
2

3
δ2ρðqÞ þ

16

45
δ1gτ

5
3 ¼ 0. ð48Þ

whose solution is given by

δ2ρðqÞ ¼ −
2

15
δ1gτ

5
3 þ δ2gτ

2
3 þ δ2dτ

−1; ð49Þ

where δ2g and δ2d are two constants. In other words, the
viscosity term generates an additional growing mode which
is proportional to τ

5
3. Taking into account that the total

density contrast is δρðqÞ ¼ δ1ρ þ ϵδ2ρ, we can conclude that
the total density contrast has two growing modes: the
standard one given by τ

2
3 plus another that appears as a

correction in the limit of small viscosity, τ
5
3. Of course, the

latter term is subleading in the limit of very small viscosity
and the standard expression for the density contrast is
recovered for a universe dominated by dustlike matter.
Having obtained the leading behavior in the contrast
density, we are able to determine the leading behavior
of some derived quantities. From (31), we observe that
uðqÞ ∝ δ0ρðqÞ so the peculiar velocity exhibits also a principal
growing mode (τ2=3), a subleading growing mode (∝ ϵτ5=3),
and a decaying mode (∝ τ−1). Using (33), we arrive at
the conclusion that the perturbed gravitational field
δϕðqÞ ∝ a−1δρðqÞ, indicating that the modes include three
terms, one is proportional to a constant, another goes like
τ−5=3 and the subleading correction scales as ϵτ2=3. The
latter fact shows us the gravitational potential remains
constant in the limit of vanishing viscosity, as one could
expect.
As a simple way to confirm our previous analytical

results we are going to solve the system of equation (39)
and (40) without any approximation. Then, we will numeri-
cally determine the conditions for having Jeans instability
when the universe is dominated by a pressureless fluid and
the viscosity is nonzero. To do so, the coupled system of
differential equations (39) and (40) for the density and
temperature contrasts were solved numerically for the
cases of small (ξJ > 1) and large (ξJ < 1) wavelengths.
Without loss of generality, we considered the following
initial conditions δρðqÞð1Þ ¼ δ0ρðqÞð1Þ ¼ δTðqÞð1Þ ¼ 10−1. In

Figs. 2 and 3 the time evolution of the density and
temperature contrasts are plotted, respectively. In both
cases we chosen α ¼ 1—which refers to soft particle
model—but for other values of 1=2 ≤ α ≤ 1 the behavior
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of the curves seems to be quite similar, so we are not
loosing generality. The density and the temperature con-
trasts shown in Fig. 2 for the case of small wavelengths
ξJ ¼ 100 have the same behavior and represent harmonic
waves. When the shear viscosity coefficient vanishes the
density and temperature contrasts evolve with time without
damping, while when the shear viscosity is present the
harmonic waves are damped and by increasing the value of
this coefficient the damping becomes more accentuated.
Figure 3 shows the solutions for large wavelengths ξJ ¼
0.5 where the density and temperature contrasts grow with
time and correspond to Jeans instability. We infer from this
figure that when the shear viscosity is present the evolution
with time of the density and temperature contrasts are less
accentuated than the one without viscosity. This can be
understood by noting that in the presence of viscous and
thermal effects the dissipation in the energy makes the
process of structure formation less effective. Regarding the
physical impact of the shear viscosity coefficient, we have
noticed that it has a strong influence on the temperature
contrast while the density contrast seems to be less sensitive
to it.

III. JEANS INSTABILITY FROM A
THIRTEEN-FIELD THEORY

In this section, we will examine an enlarged model where
the pressure tensor and heat flux vector are endowed with

their own master equations. The physical motivation for
extending our previous approach can be explained as
follows. The balance equations (1) and (2) with the
Navier-Stokes and Fourier (4) constitutive equations lead
to a parabolic system of equations which imply infinite
speeds for the heat propagation. This was known in the
literature as the heat paradox (see [19]). It can be solved by
introducing a hyperbolic system of equations and the most
simple system of equations is to consider the thirteen fields
of mass density ρ, velocity vi, pressure tensor pij, and heat
flux vector qi (cf., Appendix). For an ideal gas these
balance equations can be obtained from the Grad method of
kinetic theory (see, e.g., [18]) or from the so-called
extended thermodynamic theory (see [19]). The field
equations for the mass densit y ρ, velocity vi, pressure
tensor pij, and heat flux vector qi read

∂ρ
∂t þ vi

∂ρ
∂xi þ ρ

∂vi
∂xi ¼ 0; ð50Þ

∂vi
∂t þ vj

∂vi
∂xj þ

kT
mρ

∂ρ
∂xi þ

k
m
∂T
∂xi þ

1

ρ

∂σij
∂xj þ

∂ϕ
∂xi ¼ 0; ð51Þ

3k
2m

�∂T
∂t þvi

∂T
∂xi

�
þ1

ρ

∂qi
∂xiþ

k
m
T
∂vi
∂xiþ

σij
ρ

∂vi
∂xj ¼ 0; ð52Þ

∂σij
∂t þ vk

∂σij
∂xk þ σij

∂vk
∂xk þ

2

5

�∂qi
∂xj þ

∂qj
∂xi

�

−
4

15

∂qr
∂xr δij þ σik

∂vj
∂xk þ σjk

∂vi
∂xk −

2

3
σkr

∂vk
∂xr δij

þ ρ
k
m
T

�∂vi
∂xj þ

∂vj
∂xi −

2

3

∂vr
∂xr δij

�
¼ −νσij; ð53Þ

∂qi
∂t þ vj

∂qi
∂xj þ

7

5
qi
∂vk
∂xk þ

2

5
qj

∂vj
∂xi þ

7

5
qj

∂vi
∂xj

þ
�
p
ρ
δij −

σij
ρ

� ∂σjk
∂xk þ p

ρ
σij

�
5

2T
∂T
∂xk −

1

ρ

∂ρ
∂xk

�

þ 5k
2m

p
∂T
∂xi ¼ −

2

3
νqi: ð54Þ

This system of equations together with Poisson equation (2)
is a closed system for the determination of ρ, vi, pij, and qi.
In order to obtain (52) and (54) we have decomposed the
pressure tensor into a pressure isotropic contribution p plus
a stress tensor σij, i.e., pij ¼ pδij þ σij. We have written
down two evolution equations, the first one refers to its
trace and the second one to σij. Equation (54) refers to the
evolution equation for the heat flux vector. The master
equations for σij and qi involve constitutive terms which
were taken as functions of the thirteen basic fields accord-
ing to Grad’s method (see Appendix). The constitutive
terms refer to a third-order moment pijk, a contracted

FIG. 2. Time evolution of the density contrast for small
wavelengths with α ¼ 1 and ξJ ¼ 100.

FIG. 3. Time evolution of the density contrast and temperature
contrast for large wavelengths with α ¼ 1 and ξJ ¼ 1=2.
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fourth-order moment qij ¼ pikkj and two production
terms Pij and Pi. According to kinetic theory of gases
their expressions in a linearized theory read (see e.g. [18])

pijk ¼
2

5
ðqiδjk þ qjδik þ qkδijÞ; Pij ¼ −νσij; ð55Þ

qij ¼
5p2

2ρ
δij þ

7p
2ρ

σij; Pi ¼ −
2

3
νqi: ð56Þ

Here ν is a collision frequency which, according to the
kinetic theory of gases, is related with the shear viscosity
coefficient and pressure by ν ¼ p=μv.

A. Static universe

As in the previous section we search for solutions of the
system (2) and (50)–(54) in the form of plane waves. At
equilibrium the density, temperature and gravitational
potential assume constant values while the velocity, stress
and heat flux vanish. The perturbations out of equilibrium
refer to plane waves of small amplitudes with frequency ω
and wave number k propagating in the x direction.

ρ ¼ ρ0 þ δρeiðkx−ωtÞ; vx ¼ δvxeiðkx−ωtÞ; ð57Þ

T ¼ T0 þ δTeiðkx−ωtÞ; δσxx ¼ δσeiðkx−ωtÞ; ð58Þ

σij ¼ δσxxdiag

�
1;−

1

2
;−

1

2

�
; qx ¼ δqeiðkx−ωtÞ ð59Þ

ϕ ¼ ϕ0 þ δϕeiðkx−ωtÞ: ð60Þ

Above we have also that the constant values of density,
temperature, and gravitational potential satisfy (50)–(54)
but not the Poisson equation (2), so that we have to impose
Jeans swindle which says that the (2) is valid only for the
perturbations.
From the insertion of the representations (57)–(60) into

the (50)–(54) and (2) we get a system of algebraic equations
for the amplitudes and in order to have a solution for this
system the determinant of the coefficients of the amplitudes
must vanish. This implies the dispersion relation:

ω5� þ
i
μ�

ω4 þ
�
1 −

78

25
k2� −

6

25μ2�

�
ω3�

þ i
μ�

�
1 −

48

25
k2�

�
ω2� −

6

25

�
1 − k2�
μ2�

þ 11k2�
2

�
1 −

9k2�
11

��
ω� −

3ik2�
25μ�

ð5 − 3k2�Þ ¼ 0. ð61Þ

Here again by considering a vanishing shear viscosity
μ� ¼ 0 we get Jeans solution (12).
If we consider big wavelengths λJ=λ < 1 it follows from

(61) five values for the dimensionless frequency

ω�1 ¼ −i
�
5μ�
2

�
λJ
λ

�
2

þ � � �
�
; ð62Þ

ω�2 ¼ −i
�
1 −

3ð1 − 3μ�Þ
2ð3 − 5μ�Þ

�
λJ
λ

�
2

− � � �
�
; ð63Þ

ω�3 ¼ −i
�
2

5μ�
−
9μ�
10

�
λJ
λ

�
2

− � � �
�
; ð64Þ

ω�4 ¼ −i
�
3

5μ�
−
4μ�ð33 − 50μ2�Þ
5ð9 − 25μ2�Þ

�
λJ
λ

�
2

− � � �
�
; ð65Þ

ω�5 ¼ i

�
1 −

3ð1þ 3μ�Þ
2ð3þ 5μ�Þ

�
λJ
λ

�
2

− � � �
�
: ð66Þ

All dimensionless frequencies are pure imaginary with
ω�1 to ω�4 implying decaying perturbations in time
whereas ω�5 grows with time and is identify with the
Jeans instability. All frequencies show up a dependence on
dissipative phenomena through the dimensionless shear
viscosity coefficient μ�.
For small wavelengths λJ=λ > 1 it follows from (61) one

or two sets of complex conjugate solutions for the dimen-
sionless frequency which correspond to harmonic waves in
time and three or one solutions which refer to the decay of
perturbations in time, respectively.
As part of our numerical analysis, we investigate the

behavior of the real part of expð−iωtÞ as a function of time
t (61) for the ratio ξJ ¼ 2 (small wavelengths) for different
values of the dimensionless shear viscosity coefficient. The
solutions are harmonic waves in time and the one without
the shear viscosity (μ� ¼ 0) represents a nondamped wave
which corresponds to the Jeans solution as was pointed out
previously. The other two solutions with μ� ≠ 0 represent
damped harmonic waves and we infer from this figure that
the increase of the shear viscosity coefficient increase the
wave damping. For large values of the shear viscosity
coefficient a strong damping occurs so that the harmonic
character of the wave is lost. It was found that the solutions
of (61) for the ratio ξJ ¼ 1=2 (large wavelengths) repre-
sents the growth of the perturbations with time, showing up
the Jeans instability. One can infer from such analysis that
the Jeans solution (μ� ¼ 0) grows more rapid with respect
to time than those two where the shear viscosity coef-
ficients do not vanish. This behavior can be explained on
the basis of an energy loss due to the dissipative effects so
that the growth of the perturbations are damped. Note that
the growth with time of the perturbation by increasing the
shear viscosity coefficient becomes less accentuated. A
similar behavior as that described above can also be
obtained from the five-field theory of subsection II A,
but here we have used field equations of hyperbolic type
rather than of parabolic type so that the heat paradox is
avoided.
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B. Expanding universe

As in subsection II C we analyze the solution of the
thirteen field equations (50)–(54) coupled with Poisson
equation (2) in form of plane waves of small amplitudes in
an expanding Universe. The background values for the
fields of mass density ρ0, temperature T0, velocity vi and
gravitational potential ϕ0 are given by (22), whereas those
values for the fields of stress and heat flux are considered to
be zero, i.e., σ0ij ¼ q0i ¼ 0. The background values for the
fields are superposed by longitudinal plane waves of
time dependent small amplitudes, namely Y ¼ Y0ðtÞ þP

qδYðqÞeiqx. In our case, Y0ðtÞ≡ fρ0; vx0; T0;ϕ0g pro-
vided qx0 ¼ 0 ¼ σ0xx ¼ 0, while the perturbed fields are
given by δYðqÞ ¼ fδρðtÞ; δvðtÞ; δTðtÞ; δqðtÞ; δσðtÞg, where
we used that the shear tensor has some symmetries, namely
only the diagonal components are nonzeros and the trace of
such tensor vanishes, 2σyy ¼ 2σzz ¼ −σxx, as a result we
only need to introduce just one function called δσðtÞ.
Replacing the latter proposals into the balance equa-
tions (50)–(54) and (2) and linearization it follows a
coupled system of differential equations for the amplitudes:

_δρðqÞ ¼ −iquðqÞ; ð67Þ

_uðqÞ þ 2HuðqÞ þ
iq
a2

�
kT0

m
ðδρðqÞ þ δTðqÞÞ þ δϕðqÞ

�

¼ −
iq
a2ρ0

δσðqÞ; ð68Þ

3

2
_δTðqÞ þ

iq
aρ0

m
kT0

δqðqÞ þ iquðqÞ ¼ 0; ð69Þ

_δσðqÞ þ 5HδσðqÞ þ
iq8
15a

δqðqÞ þ νδσðqÞ þ
iqp0

3
uðqÞ ¼ 0;

ð70Þ

δϕðqÞ ¼ −
4πGρ0a2

q2
δρðqÞ; ð71Þ

_δqðqÞ þ 6HδqðqÞ þ
iqkT0

ma
δσðqÞ þ

iq5kT0

2ma
δTðqÞ

þ 2ν

3
δqðqÞ ¼ 0: ð72Þ

Here also the background solution satisfies Eqs. (50)–(54)
and (2) identically without the use of Jeans swindle. The
above coupled system can be written in a simpler form by
introducing the dimensionless time τ ¼ t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6πGρi0

p
and the

density, temperature, stress, and heat contrasts defined as
δρðqÞ ¼ δρðqÞ=ρ0, δTðqÞ ¼ δTðqÞ=T0, δσðqÞ ¼ δσðqÞ=σ0, and
δqðqÞ ¼ δqðqÞ=q0. The functions used to arrange dimension-
less heat flux and shear tensor are given by

σ0 ¼
kT0ρ0
m

; q0 ¼
α0kT0ρ0a

iqm
: ð73Þ

Furthermore, we recall that the collision frequency is
related with the pressure and the coefficient of shear
viscosity by ν ¼ p=μv while the latter is given in terms
of the cosmic scale factor by (37) and a ¼ a0ð6πGρi0t2Þ13.
Hence we have that

ν ¼ p0

μv
¼ 3

5

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4πGρ0

p

μ�τ
2
3
ð5−2αÞ ð74Þ

where α0 ¼ 6πGρi0. From Eq. (68) we obtain that _δρðqÞ ¼
−iquðqÞ and we can rewrite the coupled system of equa-
tions (68)–(72) in terms of the dimensionless time τ as

τ2δ00ρðqÞ þ
4

3
τδ0ρðqÞ −

2

3
δρðqÞ

þ 2

5τ
2
3

ξ2JðδρðqÞ þ δTðqÞ þ δσðqÞÞ ¼ 0; ð75Þ

τ

�
δ0TðqÞ −

2

3
δ0ρðqÞ

�
þ 4

9
δσðqÞ þ

2

3
τδqðqÞ ¼ 0; ð76Þ

FIG. 4. Upper level: Time evolution of the density (straight
line), temperature (dashed line), stress (dotted line), and heat flux
(dot-dashed line) as damped harmonic waves for small wave-
lengths ξJ ¼ 100 and dimensionless shear viscosity μ� ¼ 10−5.
Lower level: Time evolution of the density (straight line),
temperature (dashed line), stress (dotted line), and heat flux
(dot-dashed line) for large wavelengths ξJ ¼ 0.5 and dimension-
less shear viscosity μ� ¼ 10−5.
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τδ0σðqÞ −
4

3
δσðqÞ þ

8

15
τδqðqÞ −

4

3
τδ0ρðqÞ

¼ −
3

5μ�

ffiffiffi
2

3

r
τ−ð7−4αÞ=3δσðqÞ; ð77Þ

τδ0qðqÞ þ
4

3
δqðqÞ −

2

5
ξ2Jτ

−5
3δσðqÞ − ξ2JδTðqÞ

¼ −
3

5μ�

ffiffiffi
2

3

r
τ−ð7−4αÞ=3δqðqÞ; ð78Þ

where as was previously introduced the primes refer to a
derivation with respect to τ. Equations (75)–(78) represent
a coupled system of differential equations for the deter-
mination of the mass density δρ, temperature δT , stress δσ
and heat flux δq contrasts.
The coupled system of differential equations (75)–(78)

was solved numerically with the following initial condi-
tions δρðqÞð1Þ¼ δ0ρðqÞð1Þ¼ δTðqÞð1Þ¼ δσðqÞð1Þ¼ δqðqÞð1Þ¼
10−1 and for the case of Maxwellian particle (α ¼ 1). In
the upper panel of Fig. 4 are plotted the time evolution of
the density, temperature, stress, and heat flux contrasts,
which behave as damped harmonic waves for small wave-
lengths. For large wavelengths the same contrasts are
shown as function of the time in the lower panel of this
figure. It is interesting to note that the density and temper-
ature contrasts grow with time, while the stress and heat
flux contrasts heavily decay with time. The growth of the
density contrast is associated with Jeans instability.

IV. SUMMARY

We have explored the gravitational amplification of
inhomogeneities within the context of five and thirteen
(thermodynamic) field theories for static and expanding
universes. We provided two simple physical pictures of
how the thermal effects along with viscous ones do affect
the growth of instabilities. In this scheme, we have started
by calculating the dispersion relation in both models,
obtaining that the changes introduced by viscosity and
the heat flux considerably modified the propagating modes.
In the first part, we only considered static universes so the
Jeans instability only involved two elements: pressure and
gravity. We then studied Jeans instability mechanism for a
universe dominated by pressureless matter, generalizing
earlier results on the gravitational instability in the presence
of heat flux and viscosity. Besides, we calculated the Jeans
mass for stellar configurations (mostly molecular clouds)
and their behaviors with the number density, temperature,
and viscosity. The outcome of such analysis confirmed that
astrophysical configurations with viscosity need greater
Jeans mass to collapse.
We devoted our effects to extract the main physical

insight about the coupled system of contrast density and
contrast temperature by focusing in the model of hard

sphere and Maxwellian particles. In the small wavelengths
regime, increasing the amount of shear viscosity into the
system forces the harmonic perturbations to damp faster
whereas in the opposite limit larger values of shear
viscosity lead to smaller values of density and temperature
contrasts. In the limit of large wavelength (λJ < λ0), our
analytical results indicate that viscous effects are sublead-
ing ones provided they generate an additional growing
modes proportional to τ5=3 which becomes important for
intermediate values of viscosity parameter, whereas in the
limit of very small viscosity they can be neglected and the
standard behavior of contrast density is recovered (∝ τ2=3)
for a matter dominated universe.
In order to further understand the Jeans instability with

dissipative effects, we have directed our attention to the
thermodynamic thirteen-field model. The aforesaid scheme
represents a hyperbolic system of differential equation
characterized by two related parameters, the shear viscosity
and the collision frequency. We found that dispersion
relation becomes a polynomial in the frequency with
two order higher in relation to the five-field theory,
indicating that the effects associated with the shear vis-
cosity and heat flux become nontrivial. Regarding the
dynamical evolution of the density, temperature, stress, and
heat flux contrasts for a universe dominated by pressureless
matter, we obtain also damped harmonic waves for small
wavelengths. In the case of large wavelengths, the density
and temperature contrasts grow with time (due to the Jeans
mechanism) while the stress and heat flux contrasts decay
with time.
Even though, we were able to make some progress in

the analysis of Jeans instability with dissipative effects,
showing that thermal and viscous effects contribute to
reduce the ability of the system to aggregate matter in a
cooperative way and therefore the structure formation
may be less effective. It would be interesting to see
whether analytic/numerical results for the growth of
perturbations can be obtained by inspecting the full
Boltzmann equation for one baryonlike specie plus
self-interacting dark matter. In this way, one could
address the issue of warm dark matter coupled to baryons
and by doing so one could take into account thermal
along with viscous effects as a consequence of the
microscopic dynamic of the system. We leave the
investigation of this question for future work.
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APPENDIX: BALANCE EQUATIONS
AND CONSTITUTIVE EQUATIONS
WITHIN THE FRAMEWORK OF
THE BOLTZMANN EQUATION

In this work we have analyzed the Jeans instability of a
viscous and heat conducting ideal nonrelativistic gas
through the use of the balance equations of ordinary and
extended thermodynamics. Although the balance equations
can be determined from a phenomenological theory, the
constitutive equations adopted in this work were taken from
a kinetic theory based on the Boltzmann equation. In the
following we shall sketch the procedure used in the kinetic
theory in order to obtain the balance and constitutive
equations. For more details the reader should consult a
book on the Boltzmann equation (see, e.g., [18]).
The starting point is the Boltzmann equation which is the

space-time evolution of the one-particle distribution func-
tion fðx; ξ; tÞ in the phase space spanned by the space x
and velocity ξ coordinates of the gas particles. In the
presence of a gravitational field ϕ the Boltzmann equation
reads [18].

∂f
∂t þ ξi

∂f
∂xi −

∂ϕ
∂xi

∂f
∂ξi ¼ Qðf; fÞ: ðA1Þ

The right-hand side of the above equation takes into
account the binary elastic collisions between the particles
and Qðf; fÞ denotes the collision operator of the
Boltzmann equation. If ðξ; ξ1Þ and ðξ0; ξ01Þ denote the
pre- and postcollisional velocities of two particles at a
binary collision the collision operator reads [18].

Qðf; fÞ ¼
Z

½fðx; ξ01; tÞfðx; ξ0; tÞ

− fðx; ξ1; tÞfðx; ξ; tÞ�gbdbdϵdξ1: ðA2Þ

At this point, it is illustrative to show that the above
expression of the collision operator already contained the
scattering cross section associated with the collisional
process amongst classical particles. To do so, one can
notice that for simple scattering (elastic), an “event” is
defined as the deflection of one particle into a range dΩ of
solid angles about some observation direction Ω̄. Using
polar coordinates, one can write the differential solid angle
as dΩ ¼ sin χdχdϵ, where ϵ denotes an azimuthal angle
and χ is the scattering angle which defines the scattering
process. Notice that, in general, for a particular interaction
potential VðrÞ between the particles, the scattering angle χ
depends on relative velocity g ¼ jξ1 − ξj and impact
parameter b (miss distance). If there is a one-to-one relation
between b and χ, the particles that will be deflected in the
referred range of angles have impact parameters between
bðχÞ and bðχÞ þ dbðχÞ. By simple geometry, we can write
σdΩ ¼ bðχÞdbðχÞdϵ, so the differential cross section of the
scattering process is given by

σðχ; gÞ ¼ bðχÞ
sin χ

���� dbðχÞdχ

����:
The latter equation tells us that the collision operator
encodes the information of the scattering process in the
term gbðχÞdbðχÞdϵ ¼ gσðχ; gÞdΩ. Further, the physical
information about the interacting potential amongst the
particles is hidden in the generic expression of the scatter-
ing angle χ (see [18]). We would like to remark that we will
be dealing with classical particles which are treated as hard
spheres provided is useful for obtaining an explicit expres-
sions to describe classical gases. It is a tractable model and
also describes in good detail collisions at high energies,
where the attractive wells are negligible compared with the
kinetic energy. In this model, particles of radius r0 ¼ d=2
interact with a central potential that is infinitely hard when
particles meet at a distance d. When the interactions are
described by the hard sphere of diameter d, one can
simplify the scattering section provided the impact param-
eter and the deflection angle are related by the next
expression: b ¼ d cosðχ=2Þ; then the scattering section is
given by σtotal ¼ d2=4 [18]. As expected, total scattering
cross section is proportional to the projected area of the
sphere. Let us end this remark on the scattering section by
mentioning why the classical approach is possible. Since
collisions occur at atomic distance, their rigorous analysis
requires quantum mechanics. Specifically, this is so when-
ever the distance of closest approach the scattering section
(of the order of

ffiffiffiffiffiffiffiffiffi
σtotal

p
) is comparable to or less than

the Broglie wavelength for the relative momentum ℏ=p.
Putting p≃ ffiffiffiffiffiffiffiffiffiffiffiffiffi

μredkT
p

with μred ¼ m1m2=ðm1 þm2Þ, quan-
tum effects dominate when σtotal < ℏ2=ðμredkTÞ. As long as
the latter condition holds, classical dynamics can be used
in the calculation of the scattering section as we have
done before, and then the overall collisional effects which
appear in the collision operator of the Boltzmann equation
are obtained on firm grounds. For instance, n-n collisions,
μred>mH¼1.7×10−27 kg, and T¼3000K this requires
σtotal < 10−22 m2.
Now, we show how the macroscopic fields in kinetic

theory are given as mean values with respect to the one-
particle distribution function. The mass density ρ, velocity
v, specific internal energy ε, pressure tensor pij, and heat
flux vector qi are defined by

ρ ¼
Z

mfd3ξ; vi ¼
1

ρ

Z
mξifd3ξ; ðA3Þ

ε ¼ 1

2ρ

Z
mξ2fd3ξ; ðA4Þ

pij ¼
Z

mξiξjfd3ξ; qi ¼
Z

m
2
ξ2ξifd3ξ; ðA5Þ

where m is the particle mass.
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For the case of ordinary thermodynamics the balance
equations are obtained by multiplying the Boltzmann
equation (A1) with the mass m, momentum mξi, and
energy mξ2=2 of a particle and integration over all values
of the velocity d3ξ. Following this methodology we arrive
at the balance equations of mass ð1Þ1 and of velocity ð1Þ2.
For the determination of the balance equation for the
specific internal energy one has to subtract from the balance
equation for the total energy the corresponding balance
equation for the kinetic energy of the particles ρv2=2. Note
that the collision operator does not furnish any contribution
to these balance equations, since mass, momentum, and
energy are conserved in an elastic collision.
The Maxwellian distribution function

f0 ¼
m

1
2ρ

ð2πkTÞ32 exp
�
mðξ − vÞ2

2kT

�
; ðA6Þ

refers to the equilibrium solution of the Boltzmann
equation (A1). It is a function of the mass density ρ,
velocity v and temperature T of the gas. Above k is the
Boltzmann constant. From the knowledge of the equilib-
rium distribution function it is easy to determine the
pressure and the specific internal energy in terms of the
mass density and temperature, namely, p ¼ ρkT=m
and ε ¼ 3kT=2m.
The non-equilibrium distribution function is obtained

from the Boltzmann equation through the Chapman-
Enskog method (see, e.g., [18]). In this method the
distribution function is written as a Maxwellian distribution
function f0 plus a small deviation, namely f ¼ f0ð1þ φÞ.
In order to determine the deviation φ, the Maxwellian
distribution is inserted into the left-hand side of the
Boltzmann equation and the time derivatives of the mass
density, velocity, and temperature are eliminated by the use
of the Euler equations. The expression for the distribution
function f ¼ f0ð1þ φÞ is inserted on the right-hand side of
the Boltzmann equation and the products of the deviations
are neglected. Hence it is found that the deviation is a
function of the velocity and temperature gradients, namely

f ¼ f0

�
1 −

3μv
2p

��
mξ2

2kT
−
5

2

�
ξi
T
∂T
∂xi

þ m
3kT

ξiξj

�∂vi
∂xj þ

∂vj
∂xi −

2

3

∂vk
∂xk δij

��	
: ðA7Þ

Here the shear viscosity coefficient is

μv ¼
5

16

1

Ωð2;2Þ

ffiffiffiffiffiffiffiffiffiffi
mkT
π

r
; ðA8Þ

which is given in terms of the collision integral

Ωð2;2Þ ¼
Z

∞

0

Z
∞

0

e−γ
2

γ7ð1 − cos2 χÞbdbdγ: ðA9Þ

Above γ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m=2kT

p
g and χ is the scattering angle. For a

potential of hard spheres b ¼ d cosðχ=2Þ where d is the
diameter of the particle, so that Ωð2;2Þ ¼ d2 and the shear

viscosity coefficient becomes μv ¼ 5
16

1
d2

ffiffiffiffiffiffiffi
mkT
π

q
.

If we substitute the nonequilibrium distribution function
(A7) into the definitions of the pressure tensor and heat
flux vector (A5) and integrate over all particle velocities
we get the Navier-Stokes and Fourier constitutive equa-
tions (4), where the relation between the thermal con-
ductivity and shear viscosity coefficients is given by λc ¼
15kμv=4m for all spherically symmetric interaction poten-
tials. Furthermore, the shear viscosity coefficient does not
depend on the mass density, but only on the temperature.
This dependence can be written as μv ∝ Tα where the value
of α depends on the interaction potential, for example α ¼
1=2 for hard sphere potential and α ¼ 1 for soft sphere
potential (Maxwellian particles).
In the case of extended thermodynamics we base on

Grad’s 13-moment method and apart from the balance
equations of the mass density and velocity, we introduce
the balance equations for the pressure tensor and for the
heat flux vector. These balance equations are obtained from
the multiplication of the Boltzmann equation by mξi and
mξ2ξi=2 and integration over all values of the velocity d3ξ,
respectively. They read

∂pij

∂t þ ∂ðpijk þ pijvkÞ
∂xk þ pki

∂vj
∂xk þ pkj

∂vi
∂xk ¼ Pij; ðA10Þ

∂qi
∂t þ ∂ðqij þ qivjÞ

∂xj þ pijk
∂vj
∂xk þ qj

∂vi
∂xj

−
pki

ρ

∂pkj

∂xj −
1

2

prr

ρ

∂pij

∂xj ¼ Qi: ðA11Þ

In the above equations we have introduced new moments of
the distribution function, namely

pijk ¼
Z

mξiξjξkfd3ξ; qij ¼
Z

m
2
ξ2ξifd3ξ; ðA12Þ

and the production terms

Pij ¼
Z

mξiξjQðf; fÞd3ξ; Qi ¼
Z

m
2
ξ2ξiQðf; fÞd3ξ:

ðA13Þ
In order to close the system of equations we have to

express the new moments of the distribution function
and production terms as functions of the 13-moments
ρ; vi; T; σij; qi, where σij is the symmetric and traceless
part of the pressure tensor pij. This is attained by using
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Grad’s distribution function which is given in terms of
these quantities, namely (see, e.g., [18])

f ¼ f0

�
1þ ρ

2p2

�
σijξiξj þ

4

5
qiξi

�
mξ2

2kT
−
5

2

��	
: ðA14Þ

Insertion of the Grad’s distribution function (A14)
into the definition of the new moments (A12) and

production terms (A13) and integrating over all the
velocities d3ξ we arrive at the linearized constitutive
equations (56). Once these constitutive equations are
known, the insertion of them into the balance
equations (A10) and (A11) implies Eqs. (53) and
(54), once we decompose the pressure tensor pij in
(A10) in its trace prr ¼ 3p and its symmetric traceless
part σij.
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