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We study the sensitivity of cosmological observables to the reheating phase following inflation driven by
many scalar fields. We describe a method which allows semianalytic treatment of the impact of perturbative
reheating on cosmological perturbations using the sudden decay approximation. Focusing on N -quadratic
inflation, we show how the scalar spectral index and tensor-to-scalar ratio are affected by the rates at which
the scalar fields decay into radiation. We find that for certain choices of decay rates, reheating following
multiple-field inflation can have a significant impact on the prediction of cosmological observables.
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I. INTRODUCTION

The inflationary paradigm [1–5] solves many of the
classical problems associatedwith the hot big bang scenario,
while providing a natural mechanism for generating pri-
mordial cosmological fluctuations [6–10]. Observations are
currently consistent with the simplest single-field, slow-roll
models of inflation, e.g., the Planck observations of the
cosmic microwave background (CMB) [11] indicate a
featureless power-law shape for the primordial power
spectrum of scalar fluctuations and no detectable primordial
non-Gaussianity or tensor fluctuations.
The predictions of single-field inflation are largely

insensitive to the details of reheating. Single-field inflation
models produce purely adiabatic curvature perturbations
ζk, which guarantees that the n-point correlation functions,
hζni, do not evolve on scales exceeding the Hubble radius
k≲ aH during and after inflation [12–15].1 As a conse-
quence, post-inflationary dynamics will not cause the
perturbation spectra to evolve on super-Hubble scales,
and only the integrated expansion following single-field

inflation affects the prediction of cosmological observables
[16–21].
Despite the phenomenological success of single-field

models, they lack the generality of more complex scenar-
ios, representing only a limited class of possible models.
Importantly, they are not always natural from a theoretical
point of view, e.g., string compactifications often result in
hundreds of scalar fields appearing in the low energy
effective action [22–25]. Models with multiple fields
naturally produce nonadiabatic fluctuations, whose pres-
ence allows the curvature perturbation and its correlation
functions to evolve outside the Hubble radius. Therefore, in
order to make predictions in multifield models, it is
necessary to understand the evolution of the correlation
functions until either the curvature fluctuations become
adiabatic or they are directly observed. Unless an “adiabatic
limit” [26–32] is established before the onset of reheating,
then the observable predictions of multifield models will be
sensitive to postinflationary dynamics that must be accu-
rately modeled before comparing the results to data.
Nonadiabatic fluctuations can become adiabatic if the

Universe passes through a phase of effectively single-
field inflation [26–32] or through a period of local
thermal and chemical equilibrium with no nonzero con-
served quantum numbers [33–35]. The latter conditions
are often established during the late stages of reheating,
though notable exceptions include models in which dark
matter is not a thermal relic, or where baryon number was
produced before the end of inflation [36]. We will assume
throughout this work that the result of reheating is a

*selim.hotinli14@imperial.ac.uk
†jonathan.frazer@desy.de
‡a.jaffe@imperial.ac.uk
§jmeyers@cita.utoronto.ca∥laynep@andrew.cmu.edu
¶e.tarrant@sussex.ac.uk
1We mean by “adiabatic fluctuations” those for which the

perturbation to any four-scalar in the system is proportional to the
rate of change of the scalar, with the same proportionality for all
scalars.
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relativistic thermal plasma described entirely by its
temperature. In this paper we will focus on developing
a methodology for calculating the predictions of multi-
field inflation for the fully adiabatic power spectrum of
curvature perturbations after reheating.
For two-field inflation, numerical studies [29,37,38]

have demonstrated that observables such as the power
spectrum PðkÞ, and the local shape bispectrum parameter
fNL can be very sensitive to the details of reheating. This
sensitivity was quantified in Ref. [39], where it was shown
that the adiabatic observables take values within finite
ranges that are determined completely by the details of the
underlying inflationary model. The effect of reheating is to
preferentially enhance or suppress the initial fluctuations of
some fields compared to others, depending on the details of
the reheating model. This gives predictions that effectively
interpolate between those obtained by projecting the non-
adiabatic perturbations along each of the two field direction
ϕi in isolation. If the projection into each direction is the
same, then the sensitivity to reheating for two-field infla-
tion models is minimal.
In this paperwe extend the results of Ref. [39] and provide

a general methodology for calculating the adiabatic power
spectrumof curvature perturbations aftermultifield inflation
for any number of scalar fields. The regime of many-field
inflation (N ≳ 10) typically yields a range of predictions for
curvature perturbations at the end of inflation that is
surprisingly easy to categorize in comparison to the appa-
rently large dimensionality of parameter space (see, e.g.,
Refs [40–48], though stochastic effects can be important in
the presence of many fields [49]). Scenarios with many
fields also tend to predict an amount of isocurvature
perturbations at the end of inflation which increases with
the number of fields [42,47], thereby elevating the impor-
tance of studying the effects of reheating for these models.
As in Ref. [39], we restrict ourselves to perturbative

reheating. This ignores interesting dynamics such as pre-
heating, which may nonperturbatively produce radiation
quanta through parametric resonance [50] potentially leading
to rich phenomena including primordial non-Gaussianity
[51–53] andperhaps theproductionof primordial black holes
[54–56]. However, perturbative reheating is a generically
good phenomenological description for inflationary models
with many degrees of freedom, as periods of exponential
particle production become much harder to realize when
many fields must conspire together to resonate [57–59],
although single-field attractor behavior is common for some
multiple-field models with nonminimal couplings to gravity
[60]. Therefore, the methodology we develop here is quite
generic for inflation with many fields N ≫ 2.

II. OVERVIEW

We begin here with a broad description of the methods
that will be described in more detail in subsequent sections.
We are interested in calculating the two-point statistics of the

curvature perturbation after reheating has completed follow-
ingmultiple-field inflation.Wewill focus in particular on the
scalar spectral index ns and the tensor-to-scalar ratio r.
The δN formalism is a useful method for calculating the

superhorizon evolution of the curvature perturbation in
terms of the initial fluctuations of a set of scalar fields
[61–65]. In this method one calculates the expansion from
some initial time t⋆ on a spatially-flat hypersurface
gijðt⋆;xÞ ¼ a2ðt⋆Þδij, to some final time tc on a uniform
density hypersurface ρðtc;xÞ ¼ ρ̄ðtcÞ. In practice we will
take the initial hypersurface to be at horizon exit and the
uniform density hypersurface to be after the conclusion of
reheating when the Universe is dominated by a thermal
bath of radiation. The number of e-folds of expansion,
defined as N ¼ ln ac=a⋆, is given by

Nðt⋆; tcÞ ¼
Z

tc

t⋆
HðtÞdt: ð1Þ

The perturbation to the number of e-foldings of expansion
is equal to the difference in the curvature perturbation on
these two hypersurfaces

ζ ¼ δN ¼
X
i

N;iδϕ
⋆
i þ

1

2

X
ij

N;ijδϕ
⋆
i δϕ

⋆
j þ…; ð2Þ

where N;i refers to the derivative of the number of e-folds
of expansion with respect to the initial scalar field
value N;i ¼ ∂N=∂ϕ⋆

i .
Using Eq. (2) we can then calculate the observables of

interest. Focusing on the two-point statistics, we find the
curvature power spectrum,

Pζ ¼ P⋆
X
i

N2
;i; ð3Þ

the scalar spectral index,

ns − 1 ¼ −2ϵ⋆ −
2P
iN

2
;i

�
1 −

X
ij

η⋆ijN;iN;j

�
; ð4Þ

and the tensor-to-scalar ratio

r ¼ 8P⋆
Pζ

; ð5Þ

where sums are carried out over all field indices i ¼ 1…N .
We have introduced the initial spectrum of scalar field
fluctuations P⋆ ¼ H2⋆=2k3⋆, and the slow-roll parameters
ϵ⋆ ¼ −ð _H=H2Þ⋆ and η⋆ij ¼ ðV;ij=VÞ⋆, which are calculated
at horizon crossing.
In order to calculate the expansion history and how it

depends on the initial scalar field configuration, one in
general needs to solve the perturbed field equations from
horizon exit all the way through reheating. This is typically
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quite challenging due to the wide range of time and energy
scales involved in the problem. The methods we will
describe allow us to treat the postinflationary evolution
in a simplified manner, thus greatly reducing the computa-
tional cost of making predictions in multifield inflationary
models.
We proceed by splitting the problem into two parts. We

first treat the evolution from horizon exit through inflation
to a phase where the scalar fields are coherently oscillating
about the minima of their potentials. This portion of the
evolution is treated by numerically solving the perturbed
field equations and is described in detail in Sec. IV. Next,
we treat the process of reheating, when the scalar fields
decay into radiation. As described in detail in Sec. III, this
part of the evolution can be treated semianalytically by
using a fluid approximation at very low computational cost,
thus allowing us to quickly calculate how a wide range of
reheating scenarios impacts the observable predictions
of a particular multifield inflationary model. For this part
of the evolution, the unperturbed fluid equations are
evaluated numerically, and the sudden decay approxima-
tion is applied to determine the impact of reheating on the
cosmological perturbations.
As will be shown below, the impact of reheating

following multiple field inflation is to mix together per-
turbations present in individual scalar fields present at the
end of inflation into the final curvature perturbation with
weights determined by the reheating parameters. Additi-
onally, reheating impacts how the length scales we observe
today are related to the scales during inflation. Even
in single-field inflation, reheating affects how many
e-foldings N⋆ before the end of inflation the observed
fluctuations have crossed the Hubble horizon. Predicting
this quantity requires matching the Hubble scale today to
the Hubble scale during inflation, hence the modeling of
the entire expansion history of the Universe. A simple
comparison (approximating transitions between different
epochs in the history of the Universe as instantaneous and
ignoring the recent phase of dark energy domination) can
be made by using the classical matching equation [17,66]

k⋆
a0H0

¼ e−N⋆ aend
areh

areh
aeq

H⋆
Heq

aeqHeq

a0H0

; ð6Þ

where the number of e-foldings between the end of
inflation and when the pivot scale crosses the Hubble
horizon k⋆ ¼ a⋆H⋆ is defined as N⋆ ¼ ln aend=a⋆, and areh
is the scale factor at the end of reheating, i.e., after all fields
have decayed into radiation. The remaining quantities in
the above expression are the Hubble horizon H0 and the
scale factor a0 today and at the time of matter-radiation
equality:Heq, aeq. The latter four quantities are well known
from large-scale observations of the Universe. The remain-
ing quantities are predicted by the inflationary model and

the details of reheating, which fixes N⋆, the number of
e-foldings of inflation after the pivot scale exits the horizon.

III. REHEATING

Regardless of the inflationary model, or how many scalar
fields were present during inflation, the universe must
eventually evolve to the radiation-dominated era of the
standard big bang model. This can be achieved by coupling
the fields ϕi to relativistic particle species. As the fields
approach, overshoot, and begin to oscillate about the
minimum of their potentials, interactions with lighter
particles lead to dissipation which drains energy from
the ϕi zero-mode and excites relativistic particles. We refer
to these collective processes as reheating (see e.g., [67–69]
for reviews).
The relativistic energy densities gain energy at a rate

_ργi þ 4Hργi ¼ Γiρi ð7Þ

whilst damping of the inflaton zero mode due to this decay
process can be approximated by

ϕ̈i þ ð3H þ ΓiÞ _ϕi þm2
iϕi ¼ 0; ð8Þ

and the energy density stored in the oscillating field is
ρi ¼ 1

2
ð _ϕ2

i þm2
iϕ

2
i Þ. Perturbative decay of the oscillating

fields relies on the assumption that the decay rates can be
calculated by standard methods in perturbative quantum
field theory. If, however, the amplitude of the field
oscillations, and the couplings to gauge fields are suffi-
ciently large, perturbation theory breaks down and reheat-
ing proceeds in a different way, through parametric
resonance [70–72].
The impact of reheating on cosmological observables is

well captured by appealing to the sudden decay approxi-
mation [73–75]. This approximation has been used fre-
quently in the past to calculate the statistics of the
primordial curvature perturbation for various models of
inflation [74–78], the most widely known example with
multiple fields being the curvaton scenario [73,79–82].
Furthermore, numerical studies have shown that for the
curvaton scenario, and general models of two–field infla-
tion, sudden decay reproduces the gradual decay result
obtained by solving Eqs. (7) and (8) (together with the
Friedmann constraint) remarkably well [39,75].
We will focus on fields ϕi rolling in potentials with

quadratic minima. During the phase of coherent oscilla-
tions, we will treat these fields as perfect fluids with
vanishing pressure. In this approximation, the density of
these matter fluids scales as a−3 and do not interact with
their decay products until they instantly decay at some time
ti. These dynamics are schematically illustrated in Fig. 1 for
the specific example of N ¼ 5 fields. We are interested in
the statistics of the curvature perturbation ζðt;xÞ at the final
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time t ¼ tf, when reheating has completed (all fields have
decayed). Field ϕi (represented in Fig. 1 by its energy
density ρi) is labeled according to its decay time ti,
where i ¼ 1; 2;…;N and t1 < t2 < … < tN . With this
notation, the final time tf ¼ tN . Our derivation in this
section is a generalization of the methods described in
Refs. [39,75,83].
The underlying assumption of the sudden decay ap-

proximation is that the fields decay instantly into radiation
when the Hubble rate becomes equal to the decay rate
HðtiÞ ¼ Γi, which defines the decay time ti. Furthermore,
the decay hypersurfaces are taken to be surfaces of uniform
energy density, upon which

ρ̄totðt1Þ ¼ ρ̄ϕðt1Þ ¼
XN
i¼1

ρiðt1;xÞ; ð9Þ

ρ̄totðtjÞ ¼ ργðtj;xÞ þ ρϕðtj;xÞ

¼
Xj−1
i¼1

ργi ðtj;xÞ þ
XN
i¼j

ρiðtj;xÞ; j ≥ 2; ð10Þ

where ρiðtj;xÞ ¼ ρ̄iðtjÞ þ δρiðtj;xÞ and ργi ðtj;xÞ ¼
ρ̄γi ðtjÞ þ δργi ðtj;xÞ. Here, ρϕ denotes the total energy
density stored in the oscillating scalar fields, and ργ denotes
the total energy density stored in the decay products

ρϕ ¼
X
i

ρi; ργ ¼
X
i

ργi : ð11Þ

Our first task is to determine how the individual
curvature perturbation, ζi, associated with field ϕi, passes
its fluctuation over to its decay product, ζγi . Within the
confines of the sudden decay approximation this conver-
sion is instantaneous. In the absence of interactions, fluids
with barotropic equation of state, such as dustlike oscillat-
ing scalar fields and their radiation fluid decay products,
have an individually conserved curvature perturbation
[65,75]

ζi ¼ δN þ 1

3

Z
ρiðt;xÞ

ρ̄iðtÞ

d~ρi
~ρi þ Pið~ρiÞ

: ð12Þ

Here, δN is the perturbed amount of expansion, which
working within the separate universe assumption [64,65], is
equivalent to the difference in curvature perturbations
measured from an initial flat hypersurface, up to one of
constant energy density: δN ¼ ζ. In this notation, fluctua-
tions are purely adiabatic if ζi ¼ ζ for all constituents of the
Universe.
From this point on, all unbarred quantities will have an

implicit dependence on position, while barred quantities
have no spatial dependence. With Pi ¼ 0 (relevant for the
dustlike oscillating scalar fields before they decay), and
Pγ
i ¼ ργi =3 (for the radiation decay products) we can easily

perform the integral in Eq. (12) to find:

ρiðtjÞ ¼ ρ̄iðtjÞe3ðζ1ðt1Þ−ζðt1ÞÞ; i ≥ j; ð13Þ

ργi ðtjÞ ¼ ρ̄γi ðtjÞe4ðζ
γ
1
ðt1Þ−ζðt1ÞÞ; i ≤ j: ð14Þ

The i ≥ j and i ≤ j conditions reflect the fact that the decay
products do not exist until the field has decayed. We have
retained the explicit tj dependence for the individual ζi for
clarity, but it is to be understood that ζi is conserved
between tosci ≤ t ≤ ti, where tosci is the time then the field ϕi
begins to oscillate.
Making use of Eqs. (9) and (13), we have on the first

decay hypersurface:

1 ¼
XN
i¼1

Ωiðt1Þe3ðζ1ðt1Þ−ζðt1ÞÞ; Ωiðt1Þ≡ ρ̄i
ρ̄ϕ

����
t1

: ð15Þ

Since decay is instantaneous, ργ1ðt1;xÞ ¼ ρ1ðt1;xÞ, which
making use of Eq. (14), is equivalent to

ρ̄γ1ðt1Þe4ðζ
γ
1
ðt1Þ−ζðt1ÞÞ ¼ ρ̄1ðt1Þe3ðζ1ðt1Þ−ζðt1ÞÞ: ð16Þ

This must hold true even in the absence of fluctuations
[where ρ̄γ1ðt1Þ ¼ ρ̄1ðt1Þ] and so

FIG. 1. A typical “sudden decay” energy diagram illustrating
the decay of N ¼ 5 fields. After the fields leave slow roll (blue
sold lines) they begin to oscillate about their quadratic minima,
their energy density scaling as a−3 (back sold lines). When
HðtiÞ ¼ Γi field ϕi decays instantly into radiation (red dashed
lines) which scales as a−4.
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ζγ1ðt1Þ ¼
3

4
ζ1ðt1Þ þ

1

4
ζðt1Þ: ð17Þ

This expression provides the matching condition for the
curvature perturbation on surfaces of uniform ρ1 and
uniform ργ1 either side of the decay time t1, and straight-
forwardly generalizes to all subsequent decay times:

ζγi ðtiÞ ¼
3

4
ζiðtiÞ þ

1

4
ζðtiÞ: ð18Þ

Having determined these matching conditions, we seek
an expression for the total curvature perturbation at time tN .
This is straightforward to obtain by repeating the above
calculation for all subsequent decay times. Using Eqs. (14)
and (10), we find, for j ≥ 2:

1 ¼
Xj−1
i¼1

Ωγ
i ðtjÞe4ðζ

γ
i ðtjÞ−ζðtjÞÞ þ

XN
i¼j

ΩiðtjÞe3ðζiðtjÞ−ζðtjÞÞ;

ð19Þ
where

ΩiðtjÞ ¼
ρ̄i

ρ̄γ þ ρ̄ϕ

����
tj

; Ωγ
i ðtjÞ ¼

ρ̄γi
ρ̄γ þ ρ̄ϕ

����
tj

: ð20Þ

Equation (19) constitutes a nonlinear expression for
ζðtN ;xÞ if one takes j ¼ N . In order to solve Eq. (19)
for ζðtN ;xÞ, we proceed perturbatively. Expanding to first
order and rearranging slightly:

ζðtjÞ ¼
4

3

Xj−1
i¼1

rijζ
γ
i ðtjÞ þ

XN
i¼j

rijζiðtjÞ; j ≥ 2; ð21Þ

where we have defined the “sudden decay parameters”

rij ≡ riðtjÞ≡

8>>><
>>>:

3ρ̄i
4ρ̄γþ3ρ̄ϕ

����
tj

for i ≥ j

3ρ̄γi
4ρ̄γþ3ρ̄ϕ

����
tj

for i < j:

ð22Þ

Since the ζγi are conserved for t ≥ ti, we may write ζγi ðtjÞ ¼
ζγi ðtiÞ for i ≤ j, and use Eq. (18) in Eq. (21) to substitute for
ζγi ðtiÞ. Similarly, we may write ζiðtjÞ ¼ ζiðtosci Þ for i ≥ j.
Making these two replacements, we find:

ζðtjÞ ¼
1

3

Xj−1
i¼1

rijζðtiÞ þ
XN
i¼1

rijζiðtosci Þ: ð23Þ

Evaluating this expression for j ¼ N gives us a recursive
expression for curvature perturbation at the end of reheat-
ing. After some straightforward manipulation, the expres-
sion for ζðtN Þ can be put into a slightly more convenient
form:

ζðtN ;xÞ ¼
XN
i¼1

Wiζiðtosci ;xÞ; ð24Þ

where

Wi ¼
XN−1

j¼0

AjriðN−jÞ; ð25Þ

and we have defined

Aj ¼
1

3

Xj−1
k¼0

AkrðN−jÞðN−kÞ; ð26Þ

and A0 ¼ 1. Eq. (24) is our final expression for the
primordial curvature perturbation at the completion of
reheating. It is the statistics hζnðtN ;xÞi of this fluctuation
that are relevant for observation. It is clear from Eq. (24)
that the effect of reheating (captured by the weights Wi) is
to rescale the ζiðtosci ;xÞ. TheWi are functions of the sudden
decay parameters rij, which can be directly related to the
physical decay rates Γi within the confines of the sudden
decay approximation. As discussed in [39], this is one area
where the sudden decay approximation falls short and
for this reason we compute the mapping from Γi to rij
numerically.
The individual curvature fluctuations ζiðtosci ;xÞ are

determined completely by the details of inflation (the form
of the potential and the field values at horizon crossing),
and do not depend in any way upon reheating. As can be
seen from Eqs. (24)–(26) once the curvature fluctuations
are known, the effect of reheating on the cosmological
perturbations can be calculated using only unperturbed
energy densities evaluated at various times during the
reheating phase. In the following section we discuss the
calculation of the curvature fluctuations resulting from
inflation.

IV. INFLATIONARY PERTURBATIONS

Generically, ζiðt;xÞ will evolve during multifield infla-
tion until an adiabatic limit is reached, at which point they
become equal and conserved [26,27,29]. Whether conser-
vation is achieved before the end of inflation depends upon
the specifics of the inflationary model. Regardless of these
specifics however, it is guaranteed that the ζiðt;xÞwill (to a
very good approximation) be conserved quantities during
the period when field ϕi is oscillating and before it has
decayed appreciably into radiation. It is therefore sufficient
to compute these quantities at t ¼ tosci .
We use the publicly available MULTIMODECODE infla-

tion solver [20,84–86] to evaluate the first-order mode
equations for each scalar field, without using the slow-roll
approximation. Following the convention of Ref. [87] we
expand each of the first-order field perturbations in terms of
a complex valued matrix qij as
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δϕiðt; k⃗Þ ¼ qijðt; kÞâjðk⃗Þ þ q�ijðt; kÞâ†;jð−k⃗Þ; ð27Þ

where the creation and annihilation operators satisfy
ðâjðk⃗ÞÞ†¼ â†;jð−k⃗Þ. The transformed variable ψ ij¼qij=a
satisfies the Mukhanov-Sasaki equation of motion with a
“mixed” mass matrix Mij

d2ψ ij

dN2
þð1− ϵÞdψ ij

dN
þ
�

k2

a2H2
− 2− ϵ

�
ψ ijþMimψ

m
j ¼ 0

ð28Þ

where

Mij ≡ ∂i∂jV

H2
þ 1

H2

�
dϕi

dN
∂jV þ dϕj

dN
∂iV

�

þ ð3 − ϵÞ dϕi

dN

dϕj

dN
; ð29Þ

with ∂i ≡ ∂=∂ϕi and N is the number of e-folds. We use
the Bunch-Davies initial condition [88] for the transformed
variable ψ ij ∼ δij.
The components of curvature perturbation are defined in

the spatially-flat gauge as

ζiðt; k⃗Þ≡H
_̄ρi
δρiðt; k⃗Þ: ð30Þ

The density perturbations δρiðt; k⃗Þ are given by

δρiðt; k⃗Þ¼ _ϕiðtÞ _δϕiðt; k⃗Þ

−
_ϕiðtÞ2
2H

X
m

_ϕmðtÞδϕmðt; k⃗ÞþV;iδϕiðt; k⃗Þ: ð31Þ

Similar to the field perturbations, we expand each of the
curvature perturbation components in the same basis by
defining a new complex valued matrix ξij as

ζiðt; k⃗Þ≡ ξijðt; kÞâjðk⃗Þ þ ξ�ijðt; kÞâ†;jð−k⃗Þ; ð32Þ

and similarly for δρiðt; k⃗Þ, which is related to δϕiðt; k⃗Þ and
its derivatives. Substituting qijðt; kÞ and its derivative into
Eq. (30) gives

ξijðt; kÞ ¼
qij0ðt; kÞ
3ϕi

0ðtÞ −
1

6

X
m

ϕm
0ðtÞqmjðt; kÞ

þ
�

V;iðtÞ
3H2ðtÞϕi

02ðtÞ
�
qijðt; kÞ; ð33Þ

where ð0Þ is a derivative with respect to e-folds N. A similar
expression is available for ξ�ijðt; kÞ, which is linearly
independent of ξij. We evaluate this quantity by evolving

the qij (or ψ ij) and background quantities numerically as a
function of t for a given k.2

We expand ζiðtosci ;xÞ in terms of field fluctuations at
horizon exit,

ζiðtosci ;xÞ ¼
XN
j¼1

Cijδϕjðt⋆;xÞ; ð34Þ

where Cij is a real matrix. Substituting our δϕiðt; k⃗Þ from
Eq. (27) into Eq. (34) gives

ξijðt; kÞ ¼
X
m

CimðtÞqmjðt⋆; kÞ: ð35Þ

While Eq. (35) is not invertible for general qmj, we match to
the slow-roll approximation above by first discarding the
off-diagonal elements of the perturbation matrix qij at
horizon crossing and define a vector vjðt⋆; kÞ as

qijðt⋆; kÞ≡ diag½v1ðt⋆; kÞ;…; vNðt⋆; kÞ�: ð36Þ
Since qij is complex and Cij is real, we take

Cij ≈ −sgnðRe½qij�Þ
jξijðt; kÞj

jvjj
; ð37Þ

where the overall sign is chosen to match the two-field
results of Ref. [39].
With this, we have all the ingredients to relate the

curvature fluctuations at the end of reheating to the
quantum fluctuations during inflation as in Eq. (2) where
using Eqs. (24) and (34), the derivative of the number of
e-folds of expansion can now be written as

N;i ¼
X
j

WjCji: ð38Þ

V. NUMERICAL IMPLEMENTATION

While the recursive definition of the reheating parameters
introduced in Sec. III require solving numerically the
homogeneous background equations until the end of reheat-
ing, it is sufficient to evolve the field fluctuations only until a
few e-folds into the phase of coherent oscillations, after
which the curvature perturbations of the fields ζiðtosci ;xÞ are
individually conserved. The prescription for solving such a
system of equations will typically involve evolving first the
background equations in order to determine the number of
e-foldings N⋆ at which the pivot scale (which we take to be
kpiv ¼ 0.05 Mpc−1) leaves the horizon during inflation, and
then the first order fluctuations for each field from deep
inside the horizon until the time where the curvature
perturbations are conserved. Note that since we mainly
want to explore the impact of reheating on inflationary
observables, we will sample from many different Γi

2For more details of the numerical methodology see Ref. [86].
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distributions while keeping the parameters describing the
inflationary model unchanged. Hence this approach is quite
inefficient for our purposes, as it requires solving for the
inflationary dynamics as well as reheating for each assign-
ment of decay parameters Γi. Instead in this work we have
chosen to solve the inflationary fluctuations on a grid of N⋆
values in the range N⋆ ∈ ð40 − 60Þ and perform a local
linear fit to determine3 the individual elements of the Cij

matrix in Eq. (37) for a given N⋆.
Following the methods outlined in MULTIMODECODE

[20,84–86], we first solve the Klein-Gordon equations for
the homogeneous background fields with initial conditions
ϕi;0 which determines the field-space positions at the end of
the inflation defined by ϵ ¼ 1. We then continue evolving
the background fields after the end of inflation, well into the
oscillatory phase. For the simulations in this paper, we have
evolved the field equations until each field ϕi has crossed
its minimum 5 times, although the exact number does not
effect the results significantly after each field has oscillated
a few times. Knowing the times for the end of inflation and
the onset of coherent oscillations, the Cij matrix can be
calculated by evolving the mode equations as described in
Sec. IV for a given value of N⋆. We calculate the Cij matrix
during the oscillatory period and evaluate the average of the
maximum and minimum values for each Cij matrix entry.
We use this averaged Cij matrix in calculating the observ-
ables. For the reasons explained above, we repeat this step
multiple times while varying the quantity N⋆.
Since the exact value of N⋆ and the normalization of the

potential V⋆ will depend on the details of reheating, we first
solve the post-inflationary dynamics for some fiducial
values Vfid⋆ and Nfid⋆ . We calculate the Wi array by solving
the scalar field equations for the background solution, using
the end-of-inflation values ϕi;end as the new initial con-
ditions. Once a field ϕi has crossed the minimum of its
potential, we turn on the decay term in its equation of
motion, which sources the corresponding radiation fluid ργi
for that field. After all the fields have passed through their
potential minima and started decaying into radiation, we
stop evolving the Klein-Gordon equations and switch to a
fluid description with equations of motion

_ρi þ 3Hρi ¼ −Γiρi

_ργi þ 4Hργi ¼ Γiρi; ð39Þ

with the Hubble rate given by the Friedmann equation

3H2 ¼
X
i

ðρi þ ργi Þ: ð40Þ

Note that the fluid densities have a mild dependence on
when this transition is implemented, but the change to
observables is negligible compared to the full range of
predictions. We allow this fluid simulation run until all
matter fluids have decayed into radiation. From the results
of this numerical evolution, we are able to read off the
quantities we need to apply the sudden decay approxima-
tion and determine the final curvature perturbation in the
adiabatic limit at the end of reheating. Each time a decay
rate becomes equal to the Hubble rate Γi ¼ H, we evaluate
the sudden decay parameters rij described in Sec. III. After
all the fields have decayed into radiation, we assume that all
decay products quickly come to thermal and chemical
equilibrium. The solutions will then rapidly approach the
adiabatic limit, and we can calculate the curvature pertur-
bation and its power spectrum as described in Eq. (2) and
Eq. (3). This calculation results in a scalar amplitude given
by Pfid

ζ which then needs to be rescaled to match
observations.
The amplitude of the scalar fluctuations is fixed by the

observations of the CMB anisotropies to be PCMB
ζ ≈

2.142 × 10−9 [89]. We rescale the inflationary potential
in order to set the power spectrum calculated in Eq. (3)
equal to this value. The relative quantities transform under
the rescaling of the potential as V → αV follows:

ρ → αρ; H → α
1
2H; Pζ → αPζ; ζ → α

1
2ζ;

ð41Þ

where the scaling for our purposes is α ¼ PCMB
ζ =Pfid

ζ .
Having solved the dynamics of reheating, we also know
from Eq. (6) the quantity

ln
areh
aend

¼ Nreheat: ð42Þ

Rescaling the potential in order to match the CMB
observations in turn fixes the remaining quantities in
Eq. (6) where N⋆ (for a given k⋆) now takes an exact
value (see Fig. 2 for a sketch of the timeline). We then fit
the Cij matrix elements corresponding to the calculated N⋆
from the grid of Cij matrices we already calculated. This
rescaling step after solving the dynamics of reheating is
repeated for all simulations. Having determined the value
N⋆, the corresponding Cij matrix and the Wi array, we
calculate the power spectrum and the cosmological observ-
ables as described in Sec. II.

VI. A CASE STUDY

We consider inflation with canonical kinetic terms, a
minimal coupling to Einstein gravity and N -quadratic
potential,

3In order to smooth the small round-off error in our simu-
lations, and to capture the underlying scaling withN⋆, we linearly
fit the Cij matrix elements from the elements of the calculated
grid within �1 e-fold of the desired N⋆.
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S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
2
−
X
i

1

2
gμν∂μϕi∂νϕi −

X
i

m2
iϕ

2
i

�
;

ð43Þ

a model which has been studied extensively elsewhere, e.g.,
[90–98]. We study the regime where one (or a few) field(s)
dominates the energy density during inflation while the rest
remain subdominant. We achieve this by setting the field
masses mi and initial field positions ϕi;0 to be distributed
linearly in log-space with equal spacing and the same
ordering. In this regime the impact of reheating on the
inflationary predictions is maximized when the subdomi-
nant fields get assigned smaller decay parameters, hence
scaling like matter for a longer period, dominating the
contributions to the curvature perturbation at the end of
reheating. In our simulations we kept the ratio between the
maximum and minimum masses constant and equal to
mmax=mmin ¼ 103 and fixed the initial field positions to be
in the range ½10−3; 20�Mpl.
We are interested in determining how reheating impacts

two-point statistics for a wide range of decay rates, and so
we sample the very large parameter space as follows. First,
we take the decay rates to be determined by the mass
hierarchy as

Γi ≔ 10−4Hend

�
mi

mmax

�
α

; ð44Þ

where Hend is the Hubble parameter at the end of inflation,
for some choice of the parameter α. Next, we perform a
permutation σi on this first set of decay rates randomly
chosen from the N ! possible permutations in order to
generate another set Γi ¼ σiðΓÞ. We perform this same
procedure for several choices of the parameter α which
allows us to adjust the hierarchy between the decay
parameters. In all cases, the minimum decay rate is
bounded from below by big bang nucleosynthesis which
constrains the energy scale at the end of reheating to be
larger than about 4 MeV, and perhaps higher if fields decay
into hadrons [99,100], and the maximum decay rate is
constrained by the validity of sudden decay approximation
to be less than the Hubble parameter at the end of inflation
Γmax < Hend. Note that increasing (decreasing) the value of
the maximum decay constant Γmax will in turn increase
(decrease) the value of N⋆ that satisfies Eq. (6). The results
shown in this paper have values ofN⋆ lower than the instant
reheating case, in the range N⋆ ∈ ð45 − 55Þ.

Figure 3 demonstrates the effect of reheating on the two-
point observables, the spectral index ns and the tensor-to-
scalar ratio r. The results from numerical simulations
described in Sec. V are plotted with colored circles.
Each line (in gray) connects the results from simulations

FIG. 2. Timeline of inflation and reheating. The method we describe numerically evolves the perturbed scalar field equations until all
fields have begun oscillating, after which we switch to evolving unperturbed fluid equations.

FIG. 3. The effect of reheating on the scalar spectral index ns
and tensor-to-scalar ratio r for the case study in Sec. VI with
N ¼ 5 fields with kpiv ¼ 0.05 Mpc−1. Colored circles show the
results from simulations for a particular choice of decay rates Γi,
chosen as described in text following Eq. (44). Each line (in gray)
connects the results from simulations with an identical ordering
of Γi values while the parameter αwhich determines their spacing
is varied in the range α ∈ ½0; 22

3
� in 50 steps. We plot the results

from all possible 120 permutations of Γi. The colors mark the
field that has the largestN;i at the end of reheating, for a particular
simulation (except for the circles with lighter color, which
highlight the simulations with the most energetic ϕA field still
having the largest N;i, although a second field is within 50% of
N;ϕA

). The labeling of the fields is ordered with respect to their
energy densities at the end of inflation ρiðtoscÞ where ϕA has the
largest energy density and ϕE has the smallest.
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with the decay rates assigned with the same permutation
while the parameter α is varied in the range α ∈ ½0; 22

3
�. The

colors of the circles indicate the field with the largest
measured N;i for that simulation. As shown in Eq. (24), this
parameter depends on two quantities, the Cij matrix and the
Wi array which operates on this matrix.
For the N -quadratic case study, Cij matrix has a simple

structure where its diagonal elements are significantly
larger than its off-diagonal elements. Since fluctuations
grow larger in the less massive field directions, the values of
the diagonal elements associated with these fields are also
larger. Hence, for this study, the subset of simulations
where reheating has a significant impact on observables are
ones with particular Γi assignments resulting in the
corresponding Wi arrays to preferentially dampen contri-
butions from the heavier fields, while enhancing those from
the lighter fields. These simulations are shown with varying
colors in Fig. 3 where a large impact on observables is
obtained when contributions from the lighter fields ϕC;D;E

are enhanced.
For most choices of decay rates, the predictions for ns

and r lie very close to the predictions of a model with a
single scalar field in a quadratic potential. The predictions
that deviate from this result essentially interpolate between
a single field regime and a curvatonlike scenario where a
given subdominant field dominates the effect on observ-
ables, resulting in predictions to asymptotically converge
on narrow lines of ns and r predictions, as can be seen in
Fig. 3. The values of the observables corresponding to these
lines depend on the masses and values of the fields at
horizon crossing, or in other words, on the details of the
inflationary model. The total range of predictions in these
scenarios therefore depends on the choice of the infla-
tionary model parameters.
Figure 4 summarizes our results for the N -quadratic

inflation case study with perturbative reheating and sudden
decay approximation. Obtained values for the spectral
index ns and tensor-to-scalar ratio r for simulations with
N ¼ 5, 15, 35, 65 fields are plotted with the Planck 2015
contours [11] with the pivot choice kpiv ¼ 0.05 Mpc−1 and
the theory predictions for the single-field quadratic infla-
tionary potential. In populating the ns − r plane, we show
results for the Γi chosen from all 120 permutations for the
models with 5 fields, and for N ≥ 15 we show only the
results where the Γi are ordered similarly to the field
masses.4 The density of points in this figure does not
represent a simple measure on the input mi and Γi
parameter space, but are chosen to highlight the wide
range of observable parameter values accessible in these
scenarios. Most of the possible permutations, which are

outside this set, fall near the quadratic inflation predictions
(solid black line).

VII. DISCUSSION

We have developed a method to treat the impact of
reheating on observables following multiple-field inflation.
We have shown how to treat the effects of reheating
semianalytically, greatly reducing the computational cost
to make definite predictions with multiple-field models.
Our results focused on one specific form for the infla-

tionary potential, although our method applies much more
broadly. Multiple-field models of inflation have a very rich
parameter space which remains largely unexplored. The
techniques described in this work allow for a thorough
exploration of this space, including the potentially very
important impact of reheating following multiple-field
inflation, as has recently been done for a set of two-field
models [101–103]. We restricted numerical results to
N -quadratic inflation with specific choices for both the
hierarchy of masses and the initial conditions. We showed
that reheating can have an effect on the predictions of
multiple-field inflation. For the scenarios we studied,

FIG. 4. The predictions of the N -quadratic inflation case study
described in Sec. VI for the scalar spectral index ns and tensor-to-
scalar ratio r from the sudden decay approximation, plotted with
the Planck 2015 constraints using kpiv ¼ 0.05 Mpl−1 and assum-
ing zero running. Dashed lines show the predictions from single-
field inflation models with monomial potentials where the pivot
scale exits the horizon 50 or 60 e-folds before the end of inflation
(denoted by N⋆). The thick black line is the prediction of single-
field quadratic inflation. The colored points are the results fromour
simulations withN ¼ 5, 15, 35 and 65 fields. See Sec. VI for the
details of how the decay rates are chosen. Note that only a small
subset of possible choices of the decay rates leads to predictions
which differ significantly from the single-field case. In particular,
for simulations with a large number of fields N ≥ 15, only
scenarios in which the decay rates share nearly the same hierarchy
as the masses lead to predictions with very low r.

4This is an exceedingly small subset of all possible permu-
tations for a model with many fields N ≫ 2.
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reheating has a significant impact on observables only
when the lightest fields are assigned very low decay rates
(this is the case that realizes curvatonlike behavior). For
choices of parameters where this relation is not present we
found almost no sensitivity of the primordial curvature
perturbation to the physics of reheating (apart from the
dependence on N⋆ which is present even in single-field
models). At large N we therefore found only a very small
fraction of the tested scenarios exhibited sensitivity to
reheating. Different choices of parameters would lead to a
different set of perturbations predicted at the end of
inflation, and also a different range of predictions for
observables following reheating. Our focus has been on
exploring a restricted set of initial conditions and model
parameters but it would be interesting to perform a
statistical analysis of the model as described in [45].
Looking beyond N -quadratic inflation, our method

requires only that scalar fields oscillate about quadratic
minima, but there is nothing about our technique that
restricts the form of the potential away from the minimum,
and in fact a straightforward extension of the methods
presented here would allow treatment of non-quadratic
minima as well. The effects of reheating are expected to be
greater than those shown here for more general choices of
potential [39,102].
While the need to include a detailed model of reheating

makes multiple-field models of inflation inherently more
complicated, the dependence of observables on the reheat-
ing phase also presents an opportunity. Very little is known
about how reheating took place, though the sensitivity of
observables to reheating following multiple-field inflation
may allow more information to be gleaned about this
weakly constrained phase of the cosmic history than is
possible for single-field models [21,103–106].
We focused here on the two-point statistics of curvature

perturbations, though it would be very interesting to extend

our results to include the study of primordial non-
Gaussianity [107]. Unlike single-field inflation models,
multiple-field inflation models are capable of producing
detectable levels of local-type non-Gaussianity [108,109],
therefore making calculation of higher-order statistics a
natural next step for the tools we have developed here.
Treatment of non-Gaussianity would require carrying out
calculations to the next order of perturbation theory, but the
general techniques spelled out here should apply without
much modification.
Reheating is a necessary component of any successful

inflationary model. For single-field inflation the predictions
of observables are sensitive only to the integrated expan-
sion history during reheating. However, the details of
reheating following multiple-field inflation have an impor-
tant and direct impact on the evolution of cosmological
perturbations, and therefore must be treated carefully when
predicting the observable outcomes of these models. We
presented here a method to make this treatment tractable.
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