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Under certain conditions the collision and intercommutation of two cosmic strings can result in the
formation of a third string, with the three strings then remaining connected at Y-junctions. The kinematics
and dynamics of collisions of this type have been the subject of analytical and numerical analyses in the
special case in which the strings are Nambu-Goto. Cosmic strings, however, may well carry currents, in
which case their dynamics is not given by the Nambu-Goto action. Our aim is to extend the kinematic
analysis to more general kinds of string model. We focus in particular on the collision of strings described
by conservative elastic string models, characteristic of current carrying strings, and which are expected to
form in a cosmological context. As opposed to Nambu-Goto strings collisions, we show that in this case the
collision cannot lead to the formation of a third elastic string: if dynamically such a string forms then the
joining string must be described by a more general equation of state. This process will be studied
numerically in a forthcoming publication.
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I. INTRODUCTION

Strings with Y-shaped junctions occur in many models,
and have been the subject of numerous studies, from
QCD [1], to cosmic strings [2–9], and cosmic superstrings
[10–13]. In a cosmological context, the presence of
Y-junctions on a string network can give rise to many
interesting effects: for instance, the lensing pattern of a
distant light source background sources can pick up a
distinctive triplified aspect [14,15]; when kinks (disconti-
nuities on the tangent vector of a string) travel through a
junction they multiply (in number) thus potentially sourc-
ing more gravitational waves [16,17]; and also networks of
cosmic superstrings lead to novel effects on the CMB
temperature and polarization spectra [18,19].
Detailed analytic studies [3,4] of the collisions of strings

and the subsequent formation of Y-junctions have, so far,
focused on Nambu-Goto (NG) strings, which are idealized
strings that are infinitely thin and carry no internal
structure.1 In this paper we consider the more general case
of elastic string models, which provide a macroscopic
description of different kinds of current-carrying and

superconducting strings such as those originally proposed
by Witten in [20]. Crucially, in a cosmological context,
current carrying strings are expected to be formed in many
supersymmetric models of inflation [21]. Thus while it
seems probable that cosmic strings carry currents, the
collision of such strings has not been fully investigated.
That is the aim of this paper.
There are important differences between NG and current

carrying strings, the latter of which carry internal degrees of
freedom. From a technical point of view, in particular, the
world-sheet gauge choices often made to study NG strings
(the conformal and temporal gauges) do not apply to
general elastic string models. Furthermore, the equations
of motion of these strings are generally not integrable (the
exception being the chiral case, in which the world sheet
current is null [22]). The above-mentioned gauge choices
were made in previous works on NG strings [3,4], thus
rendering them inapplicable to the study of elastic string
collisions. For this reason, here we develop a fully covariant
formalism—with respect to both the string world sheet and
the background spacetime [23–25]—to study the collision
of current-carrying strings with Y-junctions. This formal-
ism applies both to NG strings where it reduces to that of
[3,4], and to different elastic-string models as discussed
in Sec. VI.
The simplest field theory model in which Y-junctions

form is the Abelian-Higgs model in the type I regime
where higher winding number (labeled by the integer n)
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strings are stable. It has been shown that when two n ¼ 1
strings collide, under certain conditions—which depend
on the relative velocity and angle of the two colliding
strings [3–5]—a third n ¼ 2 string is formed with two
corresponding Y-junctions joining it to the original 2
strings. Elastic current-carrying strings are obtained by
extending this model to a Uð1Þ × Uð1Þ theory, as first
discussed by Witten [20]. Here the first Uð1Þ forms the
strings while, if the coupling between the two Uð1Þ sectors
is chosen appropriately, the secondUð1Þ can condensate on
the strings and generate a current. This model has been
studied in depth, both from a field theory (microscopic)
[26] and effective action (macroscopic) point of view
[27–29]. It is this second, effective action approach, that
we follow in this paper. The questions we are interested in
are: what happens to the currents when the two strings
collide? Can junctions form? If so, what are the properties
of the joining string? Initial numerical studies of collisions
of this kind were presented in [30]; further studies will be
presented in a companion paper [31].
This paper is set up as follows. In Sec. II we briefly

review some of the main properties of elastic string models.
In Sec. III we set up the necessary formalism to describe
junctions between elastic strings, and derive the corre-
sponding junction conditions. In Sec. IV we apply these
junction conditions to V-junctions at which two strings
join; and in Sec. V we apply them to Y-junctions. String
collisions are studied in Sec. VI. Our conclusions are
presented in Sec. VII.

II. PRELIMINARIES: ELASTIC STRINGS

Elastic strings contain internal degrees of freedom, and
(for a string with no junctions) the models we consider are
governed by an effective action of the form [23,24]

S ¼
Z

d2σ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðγabÞ

p
LðwÞ; ð1Þ

where σa ¼ ðτ; σÞ are the internal coordinates of the string
world sheet. In terms of the string position xμðσ; τÞ, the
induced metric γab is given by

γab ¼ ημνx
μ
;axν;b;

where a comma denotes partial differentiation, and ημν is
the Minkowski metric (with mostly positive signature). For
NG strings, the world-sheet Lagrangian L is constant—
there are no internal world-sheet degrees of freedom—and
hence the string is locally Lorentz invariant. Thus the
tension T and energy per unit length U of NG strings are
equal and constant.
For elastic strings [23,24], first introduced in the context

of cosmic string theory for studying the mechanical effects
of the currents that occur in “superconducting” strings
[20,22], the Lagrangian is a function of the variable w
(often referred to as the state parameter) defined by

w≡ κ0γ
abφ;aφ;b ð2Þ

where κ0 is a freely adjustable positive dimensionless
normalisation constant. The scalar field φðσiÞ can be
viewed as a stream function associated with the conserved
current,2 which itself arises from the invariance of LðwÞ
under φ → φþ constant, see below. In many physical
models, φ can be associated with a (dimensionless) phase:
for instance, in a field theory with Uð1Þlocal ×Uð1Þglobal
symmetry, φ can be identified with the phase of the
Uð1Þglobal field which condenses in the core of the string
(which is itself formed by the breaking of the Uð1Þlocal
symmetry group). The precise form of the world-sheet
Lagrangian LðwÞ depends on the underlying field theory,
and has been the subject of numerous studies, see for
instance [28,29]. In terms of the massm associated with the
symmetry breaking scale and the mass M of the current
carriers, electric strings (with timelike w < 0) in the
Uð1Þlocal ×Uð1Þglobal can be described by [29]

LðwÞ ¼ −m2 −
M2

2
ln

�
1þ w

M2

�
: ð3Þ

The divergence at w ¼ −M2 corresponds to the threshold
for current carrier particle creation. Formagnetic strings for
which w is spacelike, w > 0, a suitable Lagrangian is [28]

LðwÞ ¼ −m2 −
w
2

�
1 −

w
M2

�
: ð4Þ

Lightlike null currents w ¼ 0 must be treated separately,
and in this case the equations of motion are inte-
grable [22,32,33]. For most of this analysis we shall leave
LðwÞ arbitrary, but we exclude chiral strings w ¼ 0 which
will be considered elsewhere.
The equations of motion obtained from (1) by varying

with respect to φ and xμ take the form

∇aca ¼ 0;

∇aðTabxμ;bÞ ¼ 0;

where the conserved current ca, and the stress energy tensor
Tab, are given by

ca ≡
ffiffiffiffiffi
κ0

p
KðwÞ γ

abφ;b; ð5Þ

Tab ≡ LðwÞγab þKðwÞcacb; ð6Þ

with

K−1 ≡ −2
dL
dw

> 0: ð7Þ

2For simplicity we assume that the field is not charged under
electromagnetism.
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We define the norm of ca as

χ ≡ caca;

so that the state parameter defined in Eq. (2) is given by
w ¼ K2χ. One of the eigenvectors of Tab is ca, whilst the
other is da ∝ ϵabφ;b (where ϵab is the antisymmetric tensor
with ϵ01 ¼ 1) with cada ¼ 0. Indeed, from Eq. (6),

Tabcb ¼ ðLþKχÞca;
Tabdb ¼ ðLÞda:

The corresponding eigenvalues correspond to the energy
density U or tension T depending on whether w is positive
or negative:

U ¼ −L; T ¼ −ðLþKχÞ for w > 0 ðmagneticÞ;
ð8Þ

U ¼ −ðLþKχÞ; T ¼ −L for w < 0 ðelectricÞ:
ð9Þ

Note that U ¼ UðχÞ and T ¼ TðχÞ so that U ¼ UðTÞ, and
hence elastic strings are characterized by a barotropic
equation of state. (This can be determined explicitly in
the case of the two Lagrangians given in Eqs. (3) and (4),
see e.g. [28].) It follows from Eqs. (8) and (9) that the
relation

U − T ¼ Kjχj ð10Þ

holds whatever the sign of w ¼ K2χ, and that the tension of
the string is always of lower value than U (recall that
K > 0). As a result, the transverse (or “wiggle”) perturba-
tions on the string propagate at speeds [24] c2E ¼ T=U less
than or equal to 1. There are also longitudinal (soundlike)
perturbations, which travel at speed c2L ¼ −dT=dU. For
NG strings c2E ¼ 1 ¼ c2L, whereas for elastic strings, all
field theory models studied in detail so far give cE > cL.
It the following it will be more transparent to work in

terms of four-dimensional “extrinsic” quantities, namely

T̄μν ¼ Tabxμ;axν;b; and c̄μ ¼ caxμ;a: ð11Þ

On using world-sheet reparametrization invariance to
choose the conformal gauge, _x · x0 ¼ 0, x02 ¼ −_x2 (here
_xμ ¼ ∂xμ

∂τ , x0μ ¼ ∂xμ
∂σ ) so that the induced metric γab ¼

x02diagð−1; 1Þ, it follows that the two vectors

uμ ≡ _xμffiffiffiffiffiffi
x02

p ; vμ ≡ x0μffiffiffiffiffiffi
x02

p ð12Þ

with

uμuμ ¼ −1; vμvμ ¼ þ1; uμvμ ¼ 0;

define a world-sheet orthogonal frame. Furthermore, it is
important to notice that providedw ≠ 0 (thus excluding NG
and chiral strings), one can use the freedom of Lorentz
rotation on the world sheet to choose φ ¼ φðτÞ for electric
strings, and φ ¼ φðσÞ for magnetic strings. In this pre-
ferred rest frame, which we shall use repeatedly below, it is
straightforward to show using Eqs. (11) and (12), that the
stress energy tensor is given by

T̄μν ¼ Uuμuν − Tvμvν; ð13Þ

and that the components of the current ca take a particularly
simple form, see (5), from which c̄μ ¼ νuμ for electric
strings, and c̄μ ¼ νvμ for magnetic ones, where

ν ¼ χffiffiffiffiffijχjp ¼ ðsignðχÞÞ
ffiffiffiffiffi
jχj

p
:

III. COVARIANT JUNCTION CONDITIONS
FOR ELASTIC STRINGS

We now study the dynamics of elastic strings meeting at
a junction (itself assumed massless). We label the strings by
an index j, so that for a V-junction j runs from 1 to 2, and
for a Y-junction j runs from 1 to 3. AV-junction is nothing
other than a kink, or discontinuity in the tangent vector of
the string. Since kinks are invariably formed when strings
collide and create of Y-junctions, see [3], it is crucial to
consider them in the following analysis.
Let string j have coordinates xμj ðσ; τÞ, world-sheet scalar

field φj, Lagrangian density LðwjÞ, and corresponding
tension Tj and energy per unit length Uj. Furthermore the
spatial world-sheet coordinate σ is taken to increase
towards the junction where it takes the value sjðτÞ, thus

−∞ < σ ≤ sjðτÞ:

The action describing the dynamics of the system (strings
and massless junction) is given by

S ¼
X
i

Z
dτdσθðsiðτÞ − σÞ ffiffiffiffiffiffiffi

−γi
p

LðwiÞ

þ
X
i

Z
dτffμi · ½xi;μðsiðτÞ; τÞ − XμðτÞ�

þ gi · ½φiðsiðτÞ; τÞ −ΦðτÞ�g;

where fi is a 4-vector Lagrange multiplier imposing that the
strings meet at the same position, namely at the junction

XμðτÞ ¼ xμi ðsiðτÞ; τÞ; ð14Þ
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and gi a scalar Lagrange multiplier imposing that the fields
are continuous at the junction

ΦðτÞ ¼ φiðsiðτÞ; τÞ:

Varying the action with respect to Xμ and Φ gives

X
i

fμi ¼ 0 ¼
X
i

gi; ð15Þ

and with respect to xμi and φi gives

∂að ffiffiffiffiffiffiffi
−γi

p
Tab
i xμi;bθðsiðτÞ − σÞÞ ¼ fμi δðsi − σÞ;

∂að ffiffiffiffiffiffiffi
−γi

p
zai θðsiðτÞ − σÞÞ ¼ giδðsi − σÞ;

where zaj ¼ ffiffiffiffiffiffiffi
κ0;j

p caj . Thus at the junction [where
σ ¼ siðτÞ], on using Eq. (15), one deduces the conservation
equations

X
i

ffiffiffiffiffiffiffi
−γi

p ðT0b
i _si − T1b

i Þxμi;b ¼ 0; ð16Þ

X
i

ffiffiffiffiffiffiffi
−γi

p ðz0i _si − z1i Þ ¼ 0: ð17Þ

In terms of 4-dimensional quantities defined in Eq. (11)
these conservation equations can be written in a simpler and
more physically obvious form [25], namely

X
j

λjνT̄
νμ
j ¼ 0; ð18Þ

X
j

λjνc̄νj ¼ 0; ð19Þ

where the λμj , which we construct below, are outward
directed unit normal vectors at the junction:

λμjλμ;j ¼ þ1; λμj _Xμ ¼ 0: ð20Þ

Here the 4-velocity of the junction _XμðτÞ is obtained from
Eq. (14) as

_Xμ ¼ _xμj þ x0μj _sj;

where all quantities are evaluated at the junction and
_sj ¼ dsj=dτ. The corresponding unit timelike vector
_̂X
μðτÞ is thus

_̂X
μðτÞ ¼

_XμðτÞ
NðτÞ ;

_̂X
2 ¼ −1; N2ðτÞ ¼ _X2 ¼ x02jð1 − _s2jÞ

ð21Þ
which, in terms of the orthonormal unit frame vectors
defined in Eq. (12), becomes

_̂X
μ ¼ Γjðuμj þ _sjv

μ
j Þ ð22Þ

where Γj ≡ ð1 − _s2jÞ−1=2. It finally follows from Eq. (20)
that

λμj ¼ Γjð_sjuμj þ vμj Þ: ð23Þ

Using this expression, together with the definitions of T̄μν

and c̄μ in (11) it is now straightforward to show the
equivalence of “intrinsic” expressions for current and
energy conservation at the junction Eqs. (16), (17), with
their extrinsic form in Eqs. (18), (19).
Before proceeding, we note that Eqs. (22) and (23) can

be inverted to determine uμj and vμj at the junction, namely

uμj ¼ Γjð _̂Xμ − _sjλ
μ
j Þ;

vμj ¼ Γjðλμj − _̂X
μ
_sjÞ:

When the vectors _̂X
μ
and λμj , as well as _sj, are constants—a

particular case we will meet repeatedly below where we
consider straight segments of string—then it is straightfor-
ward to integrate these equations to determine the string
position xμðσ; τÞ. Indeed

xμj ðσ; τÞ ¼ Γj½ _̂Xμðτ − _sjσÞ þ λμj ðσ − _sjτÞ�; ð24Þ

where we have chosen the integration constant to be such
that at the junction x02j ¼ 1 (that is N ¼ 1=Γj) so that the
induced metric is exactly Minkowski.
Now consider the junction condition Eq. (18). Working

in the preferred rest frame of each string where T̄μν
j takes

the form given in Eq. (13), it becomes

X
j

T̄μν
j λjν ¼

X
j

½fjλμj þ gj
_̂X
μ� ¼ 0; ð25Þ

where the 4D-Lorentz scalars fj and gj are given by

fj ¼ Γ2
jðUj _s2j − TjÞ ð26Þ

gj ¼ −Γ2
j _sjðUj − TjÞ: ð27Þ

Assuming that strings meeting at the junction are either
all electric, c̄μj ¼ νju

μ
j , or all magnetic c̄μj ¼ νjv

μ
j , the

current conservation equation Eq. (19) reduces, on using
Eq. (23), to

X
j

Γjνj _sj ¼ 0 ðelectricÞ; ð28Þ

X
j

Γjνj ¼ 0 ðmagneticÞ: ð29Þ
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We now apply this formalism to study the dynamics of V
and Y-shaped junctions, as well as to string collisions.

IV. V-SHAPED JUNCTIONS

For a V-shaped junction formed by two strings, j ¼ 1, 2,
energy-momentum conservation at the junction [Eq. (25)]
imposes3

f1 ¼ f2 ¼ 0; g1 ¼ −g2:

The first equality implies, from Eq. (26), that

_s2j ¼
Tj

Uj
¼ c2E;j; ð30Þ

so that junction propagates along the strings with extrinsic
velocity cE. Hence, using Eq. (10),

Γ2
j ¼

Uj

Uj − Tj
¼ Uj

Kjjχjj
;

and condition g1 ¼ −g2 becomes [on using Eq. (27)]

ffiffiffiffiffiffiffiffiffiffiffi
U1T1

p
¼

ffiffiffiffiffiffiffiffiffiffiffi
U2T2

p
:

For NG strings (Ui ¼ Ti) it follows that U1 ¼ U2, and the
two strings meeting at the junction must be identical. For a
current-carrying string, the current conservation condition
leads—for both electric (28) and magnetic (29) strings—to
the same condition, namely

L1ðw1Þ
K1ðw1Þ

¼ L2ðw2Þ
K2ðw2Þ

;

where KðwÞ is defined in Eq. (7). Assuming the strings
meeting at the kink are described by the same underlying
field theory and hence the same underlying Lagrangian,
current conservation therefore imposes that

w1 ¼ w2

as expected—namely the strings carry the same current.
For illustrative purposes, choose the first string to lie

along the x-axis and the other to be the (x, y)-plane, so that
in the V-junction rest frame (see Fig. 1)

_̂XðτÞ ¼ ð1; 0; 0; 0Þ;
λμ1 ¼ ð0; 1; 0; 0Þ;
λμ2 ¼ ð0;− cos θ; sin θ; 0Þ:

Since w1 ¼ w2 ≡ w are constants, _s1 ¼ −_s2 ¼ cE are also
constant and given by Eq. (30). Then from Eq. (24),

xμ1ðσ; τÞ ¼ ΓEðτ − cEσ; σ − cEτ; 0; 0Þ:

Notice that the point xμ1ð0; τÞ is not fixed but moves along
string 1 in the negative x-direction with speed cE.
Physically, therefore, it is more transparent to work in a
frame in which points of fixed σ do not have a component
of velocity along the string, namely in a frame in which
_⃗x · x⃗0 ¼ 0. Hence, we now boost to a frame moving with
velocity −cE along the x-axis, and with a transverse
velocity vz in the z-direction: this will correspond precisely
to the situation at hand when considering string collisions
in Sec. VI. In this case

_̂X
μ ¼ ΓEðγz; cE; 0; γzvzÞ;
λμ1 ¼ ΓEðγzcE; 1; 0; γzvzcEÞ; ð31Þ

so that from Eq. (24),

xμ1ðσ; τÞ ¼ ðγzτ; σ; 0; γzvzτÞ: ð32Þ

When vz ¼ 0 this reduces to xμ1ðσ; τÞ ¼ ðτ; σ; 0; 0Þ as
required.

V. Y-SHAPED JUNCTIONS

In this section we consider a Y junction where, as shown
in Fig. 1, for simplicity we assume that two of the strings
deviate by the same angle θ from the direction of the first.
Working in the junction rest frame, we thus have

_̂X
μ ¼ ð1; 0; 0; 0Þ
λμ1 ¼ ð0; 1; 0; 0Þ
λμ2 ¼ ð0;− cos θ; sin θ; 0Þ
λμ3 ¼ ð0;− cos θ;− sin θ; 0Þ

so that λμ2 þ λμ3 ¼ −2λμ1 cos θ. The y component of the
energy-momentum conservation Eq. (25) gives

Γ2
2ðT2 −U2 _s2Þ ¼ Γ2

3ðT3 −U3 _s3Þ

where Γi ¼ Γð_siÞ. This will be automatically satisfied if
strings 2 and 3 are identical, which we will suppose in
the following (and drop the subscripts 2 and 3). Then the
x-component yields

2 cos θΓ2ðT −U_s2Þ ¼ −Γ2
1ðT1 − U1 _s21Þ; ð33Þ

which, in the case of NG strings, yields the condition on θ
found in [3,4], namely cos θ ¼ U1=2U so that U1 ≤ 2U as

expected energetically. Contracting Eq. (25) with _̂X
μ
gives

2Γ2 _sðT − UÞ ¼ −Γ2
1 _s1ðT1 −U1Þ; ð34Þ3on contracting Eq. (25) with λμ1;2 and _̂X

μ
.
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a condition which vanishes for NG strings. Finally, current
conservation Eq. (28) gives

2Γ_sν ¼ −Γ1 _s1ν1 ðelectricÞ; ð35Þ

2Γν ¼ −Γ1ν1 ðmagneticÞ: ð36Þ

Let us assume that the Lagrangian of each string is known,
see for instance Eq. (3), as well as the current on that string,
namely the values of ðw;w1Þ. (That is, the tension and
energy density of each string is known.) Then the unknown
variables describing the junction are ð_s; _s1; cos θÞ. The first
two are determined from Eqs. (34) and (35), and cos θ from
Eq. (33). For instance, for electric strings it follows from
Eqs. (34) and (35) that

_s ¼ −
KðwÞ
2Kðw1Þ

_s1; _s2 ¼ jw1j − jwj
jw1j − jwj 4K2ðw1Þ

K2ðwÞ
ðelectricÞ;

which implies that jw1j > jwj and 2Kðw1Þ ≤ KðwÞ where,
for the explicit electric string model of (3), KðwÞ ¼
1 − jwj=M2. The condition cos θ ≤ 1 further restricts the
parameter space.
Finally, the position of each string can be obtained from

(24) as before.

VI. STRING COLLISIONS

We now consider a string collision between two incom-
ing and identical strings at angles �α in the ðx; yÞ plane
with velocities �vz in the z-direction, as shown in Fig. 2.
The values of α and vz, as well as the type of incoming

FIG. 2. String collision. Before the collision two identical are parallel to the ðx; yÞ plane forming an angle �α with the x-axis and
moving in the z-direction with velocities �vz. After the collision, two Y-junctions (labeledW and Y) moves along the x-axis while four
V-junctions (labeled Q, S, U, V) travel along the strings at velocity cE in the string’s preferred frame.

FIG. 1. Static V and Y junctions. The arrows indicate the direction of the outward pointing tangent vectors.
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string, namely its tension T from whichUðTÞ is determined
(or equivalently LðwÞ and w) are thus given initial con-
ditions for this problem. Note that this means that cE, the
speed of any V-junction formed, is also therefore known
from the initial conditions.
There are at least 3 different possible outcomes of such a

collision: (i) the strings could cross without interaction,
(ii) they could intercommute, or (iii) the two initial strings
could become joined by the formation of connecting
segment (string 1 in the figure) which, by symmetry, is
at rest in the x direction. It is scenario (iii) that is
envisaged here.
For NG strings (when U ¼ T), it is has been show in

[3,4] that the formation of a connecting segment is only
possible in a well defined region of the ðα; vzÞ plane. This
kinematic constraint comes from the physical requirement
that the length of the connecting segment should increase in
time. Our aim in this section is to see if a similar constraint
exists for current carrying string collisions.
After the collision, two Y-junctions (labeled W and Y in

Fig. 2) move along string 1 parallel to the x-axis, while
four V-junctions (labeled Q, S ,U, V) travel along the
strings with velocity cE. By causality, the segments ZQ and
VTof the string 2 remain unperturbed (and analogously for
string 3), and are given by an expression similar to that of
Eq. (32), namely

xμ2ðσ; tÞ ¼ γzðeμt þ vze
μ
zÞtþ ðcos αeμx þ sin αeμyÞσ;

where the unit vectors eμt ¼ ð1; 0; 0; 0Þ, eμx ¼ ð0; 1; 0; 0Þ
and analogously for eμy and e

μ
z . The unit-velocity 4-vector of

the V-junction V is then given by, see Eq. (31),

_̂X
μ
VðtÞ ¼ ΓEγzðeμt þ vze

μ
zÞ þ ΓEcEðcos αeμx þ sin αeμyÞ:

The corresponding vector _̂X
μ
UðtÞ for the junction U is

simply obained from the above by flipping vz → −vz
and α → −α.
On the other hand, string 1 is given by

xμ1ðσ; tÞ ¼ teμt þ σeμx;

and at the Y-junction Y, σ ¼ s1ðtÞ. Hence
_̂X
μ
YðtÞ ¼ Γ1ðeμt þ _s1e

μ
xÞ;

λμ1 ¼ Γ1ð_s1eμt þ eμxÞ:

Junctions V and Y therefore have a relative speed vþ with
γþ ¼ ð1 − v2þÞ−1=2 given by

γþ ¼ − _̂X
μ
YðtÞ _̂XV

μ ðtÞ ¼ Γ1ΓEðγz − _s1cE cos αÞ: ð37Þ

In order to apply the junction conditions at the Y-junction
Y, we need to construct outward pointing tangent vectors

on strings 2 and 3 at Y. On string 2, λμ2 is a linear

combination of _̂X
μ
Y and _̂X

μ
V , with coefficients determined

by the normalization of λμ2 and its orthogonality with _̂X
μ
Y :

λμ2 ¼ −ðvþγþÞ−1ð _̂Xμ
V − γþ

_̂X
μ
YÞ: ð38Þ

The expression for λμ3 is the same, but with _̂X
μ
V replaced by

_̂X
μ
U. Finally (up to an irrelevant overall additive constant)

from Eq. (24), the string on segment YV is given by4

xμYVðσ; tÞ ¼ Γ2½ _̂Xμ
Yðt − _s2σÞ þ λμ2ðσ − _s2tÞ�; ð39Þ

where σ ¼ _s2t at the Y-junction. This string had better
connect the Vand Y-junctions. Or, in other words, the value
of _s2 must such that at the V-junction where σ ¼ cEt,
the equality d

dt ðxμYVðcEt; tÞÞ ¼ _Xμ
V holds. Hence, since

_̂X
μ
V ¼ ΓE

_Xμ
V , it follows from Eq. (39) that

_̂X
μ
V ¼ ΓEΓ2½ _̂Xμ

Yð1 − cE _s2Þ þ λμ2ðcE − _s2Þ�: ð40Þ

Combining Eqs. (38) and (40) therefore gives

_s2 ¼
cE þ vþ
1þ cEvþ

¼ _s3 ≡ _s; ð41Þ

where vþ ¼ −ð1 − γ−2þ Þ1=2. Finally, the angle θ between
strings 1 and 2 is given by

cos θ ¼ −λμ1λ2;μ ¼
Γ1ΓE

vþγþ
ð_s1γz − cE cos αÞ

¼ 1

vþ

ð_s1γz − cE cos αÞ
ðγz − _s1cE cos αÞ

ð42Þ

where vþ itself obtained from Eq. (37).
We are now finally in a position to apply the Y-junction

conditions Eqs. (33)–(35) to Y. First, however, let us
understand the NG limit. Here there is obviously no current
conservation condition, and furthermore one of the other
stress-energy conservation equations [namely Eq. (34)] is
trivially satisfied sinceU ¼ T for NG strings. How does the
resulting condition reduce to the kinematic constraint of
[3]? The NG limit is obtained when cE → 1, and from
Eq. (37) that obviously implies vþ → −1 as expected. Then
from Eq. (42),

cos θ →
_s1γz − cos α
γz − _s1 cos α

ðNG limitÞ:

The only remaining junction condition is Eq. (33), which
for NG strings reads

4Assuming that _̂X
μ
Y , λ

μ
2, and _s2 are constants, as expected for

straight strings.
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2 cos θT ¼ −T1:

On substituting for cos θ one arrives directly at the result

_s1 ¼
2Tγ−1z cos α − T1

2T − T1γ
−1
z cos α

:

Since the length of the joining string must increase,
cos α > γzT1=ð2TÞ. Hence for a given T1 and T, the
formation of Y-junctions in such a collision can only occur
in a certain region of the ðα; vzÞ plane (namely small α and
vz), as discussed in depth in [3].
Now let us turn to current carrying string collisions, for

which the three junction conditions (33) to (35) must be
satisfied. Relative to the static Y-junction considered in
Sec. V, it is important to notice two crucial differences. The
first is that _s is not free variable: from Eq. (41), given α, vz
and cE (known from the initial conditions), it is a function
of _s1. Second, the angle cos θ is also no longer a free
variable but determined by _s1. Therefore, contrary to the
case considered in Sec. V where there were 3 unknown
variables, there are only two unknown variables in this
problem involving colliding strings namely ð_s1; w1Þ.
However, there are 3 junction conditions. The system is
therefore overdetermined. Indeed, we arrive at the con-
clusion that in such a collision between two elastic current
carrying strings, if a joining string forms, then this joining
string cannot be described by an elastic string model (that
is, by a barotropic equation of state). We expect that there
must be time dependence and dissipative processes at the
Y-junctions, which will generically require the use of a

nonconservative model. It is also of great interest to
investigate numerically, as will be reported elsewhere [31].

VII. CONCLUSIONS

In this paper we have extended the analysis of string
collisions, with the subsequent formation of Y-junctions, to
elastic string models which characterise current-carrying
strings. To do so, we have developed a fully covariant
formalism. We have shown that when Y-junctions form,
the resulting system of equations is overdetermined: the
number of the unknown variables is smaller than the
number of junction conditions. Therefore our main result
is that if the collision of two elastic current-carrying strings
leads to the formation of a joining string, then this joining
string cannot be described by the elastic string model: a
nonconservative model must be used. This will be the
subject of future work, together with a numerical study of
the collision of field theory current-carrying strings in the
Uð1Þ ×Uð1Þ model.
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