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Standard cosmological models do predict a measurable amount of anisotropies in the intensity and linear
polarization of the cosmic microwave background radiation (CMB) via Thomson scattering, even though
these theoretical models do not predict circular polarization for CMB radiation. In other hand, the circular
polarization of CMB has not been excluded in observational evidences. Here we estimate the circular
polarization power spectrum CVðSÞ

l in CMB radiation due to Compton scattering and nonlinear photon-
photon forward scattering via Euler-Heisenberg effective Lagrangian. We have estimated the average value

of circular power spectrum is lðlþ 1ÞCVðSÞ
l =ð2πÞ ∼ 10−4 ðμKÞ2 for l ∼ 300 at present time which is smaller

than recently reported data for upper limit of circular polarization (SPIDER collaboration). As a result to
test our results, the ability to detect nano-Kelvin level signals of CMB circular polarization requires. We
also show that the generation of B-mode polarization for CMB photons in the presence of the primordial
scalar perturbation via Euler-Heisenberg interaction is possible however this contribution for B-mode
polarization is not remarkable.
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I. INTRODUCTION

Photon-matter interactions can convert or generate the
polarization states of photons in different situations such as
Faraday rotation, Faraday conversion and so on. In some
special cases, the measurement of circular polarization
contribution provides very important tools to better under-
stand the universe. In standard scenario of cosmology,
CMB anisotropies are partially linearly polarized [1–6]
while the generation of circular polarization is ignored,
because there is not a notable mechanism to generate
circular polarization in the recombination epoch. Note
Compton (Thomson) scattering, as most important inter-
action of CMB radiation, cannot generate the circular
polarization [6].
On the other hand, the circular polarization of CMB has

not been excluded in observational evidences. For example,
recently the SPIDER collaboration has made maps of
approximately 10% of the sky with degree-scale angular
resolution in 95 and 150 GHz observing bands. Data of the
SPIDER group have been analyzed in [7] and a new upper
limit on CMB circular polarization is obtained, so that
constraints of the circular power spectrum lðlþ 1ÞCV

l =ð2πÞ

are reported in rang of a few hundred ðμKÞ2 at 150 GHz for
a thermal CMB spectrum. Also it is worthwhile to take a
look at other reports about the constraint on the circular
polarizations ΔV

TCMB
[8–10] and B-mode polarization [11–13].

In the case of theoretical models, there are several
mechanisms, almost considering new physics inter-
actions, which discuss the possibility of the generation
of circular polarization in the CMB. For instances, the
conversion of the existing linear polarization into circular
one in the presence of external magnetic fields of galaxy
clusters [14], the relativistic plasma remnants [15] and
magnetic fields in the primordial universe [16–18] is
discussed. Forward scattering of CMB radiation from the
cosmic neutrino background [19], and photon-photon
interactions in neutral hydrogen [20] have also been
shown as potential mechanisms for the generation of
CMB circular polarization. There are some mechanisms
which are postulated extensions to QED such as Lorentz-
invariance violating operators [16,21,22], axionlike
pseudoscalar particles [23], and nonlinear photons inter-
actions (through effective Euler-Heisenberg Lagrangian)
[24]. In [25], the production of primordial circular
polarization in axion inflation coupled to fermions and
gauge fields, with special attention paid to reheating, has
been studied. Also see a brief review of some of the
mentioned mechanisms in [26].

*m.sadegh@pnu.ac.ir
†rmohammadi@ipm.ir

PHYSICAL REVIEW D 97, 023023 (2018)

2470-0010=2018=97(2)=023023(9) 023023-1 © 2018 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.97.023023&domain=pdf&date_stamp=2018-01-29
https://doi.org/10.1103/PhysRevD.97.023023
https://doi.org/10.1103/PhysRevD.97.023023
https://doi.org/10.1103/PhysRevD.97.023023
https://doi.org/10.1103/PhysRevD.97.023023


In this work, we focus on the generation of circular
polarization due to nonlinear photon-photon interaction
(via Euler-Heisenberg Lagrangian). Of course we should
mention that Faraday conversion phase shift ΔϕFC due to
Euler-Heisenberg Lagrangian for CMB radiation has been
estimated in [24]. It is worthwhile to mention that one
can calculate ΔϕFC from the below equation [see more
detail in [14,27]]

_V ¼ 2U
d
dt

ðΔϕFCÞ; ð1Þ

whereU and V are Stokes parameters which describe linear
and circular polarizations respectively. Note ΔϕFC reported
in [24] is not a suitable quantity to compare with exper-
imental data which are usually reported by circular polari-
zation power spectrum CV

l . So the main purpose of our
work is to calculate CV

l via Euler-Heisenberg effective
interactions and make a comparison with recently data
reported by the SPIDER collaboration group.
We start by a brief discussion on Stokes parameters and

their definitions in terms of density matrix elements. Then
we calculate time evolution of those parameters by Euler-
Heisenberg consideration. In the next two sections we solve
them by some estimations to calculate dominant contribu-
tion terms. These contributions come from total intensity of
CMB photon contribution in comparison with linear and
circular polarizations. Finally in the last section,we compute
the power spectrum and B-mode spectrum of CMB photons
which are generated by the Euler-Heisenberg effective
Lagrangian.

II. POLARIZATION AND STOKES PARAMETERS

An ensemble of photons in a completely general
mixed states is given by a normalized density matrix
ρij ≡ ðjεiihεjj=trρÞ, where in the quantum mechanics
description, an arbitrary polarized state of a photon with
energy ðjk0j2 ¼ jkj2Þ propagating in the ẑ-direction is
written as

jεi ¼ a1 expðiθ1Þjε1i þ a2 expðiθ2Þjε2i; ð2Þ

where jε1i and jε2i represent the polarization states in the
x̂- and ŷ-directions. Then the 2 × 2 density matrix ρ of
photon polarization states are given as

ρ ¼
�
ρ11 ρ12

ρ21 ρ22

�
¼ 1

2

�
I þQ U − iV

U þ iV I −Q

�
; ð3Þ

where I, Q, U, and V are Stokes parameters, so that
I-parameter is the total intensity of radiation, Q- and
U-parameters indicate the intensity of linear polarization
of radiation, and V-parameter determines the intensity of
circular polarization of radiation. Note I and V are

independently physical observable quantities of the coor-
dinate system, while Q- and U-parameters depend on the
orientation of the selected coordinate system. Linear
polarization can also be characterized through a vector

parameter P which describe by jPj≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þU2

p
and α ¼

1
2
tan−1 U

Q [28].
The time evolution of each Stokes parameter can be

yielded through the quantum Boltzmann equation. To do
this issue, ones can play with each polarization state of the
CMB radiation as the phase space distribution function χ
which can generally obey from the classical Boltzmann
equation

d
dt

χ ¼ CðχÞ: ð4Þ

The left-hand side of the above equation is known as the
Liouville term (containing all gravitational effects), while
the right-hand side one contains all possible collision terms.
By considering the CMB interactions on the right-hand side
of the Boltzmann equation, we can calculate the time
evolution of the each polarization state of the photons. In
the next section, we consider nonlinear photon-photon
forward scattering via the Euler-Hesinberg Hamiltonian
to compute the time evolution of each polarization sates.

III. THE EULER-HEISENBERG LAGRANGIAN
AND THE PHOTONS POLARIZATIONS

The time evolution of ρijðkÞs as well as Stokes param-
eters are given by (see [6] for more detail),

ð2πÞ3δ3ð0Þð2k0Þ d
dt

ρijðkÞ

¼ ih½H0
I ðtÞ;D0

ijðkÞ�i −
1

2

Z
dth½H0

I ðtÞ; ½H0
I ð0Þ;D0

ijðkÞ��i;

ð5Þ

where H0
I ðtÞ is the leading order of the photon-photon

interacting via the Euler-Hiesenberg Hamiltonian. The first
term on the right-handed side of above equation is called
forward scattering term, and the second one is a higher
order collision term which is in order of the ordinary cross
section of photon-photon scattering. The Euler-Heisenberg
Lagrangian is a low energy effective lagrangian describing
multiple photon interactions. The first order of photon-
photon interacting Hamiltonian via Euler-Heisenberg
Lagrangian can be written as [29,30]

H0
I ðtÞ ¼ −

α2

90m4

Z
d3x

�
ðFμνFμνÞ2 þ 7

4
ðFμν

~FμνÞ2
�
; ð6Þ

where Fμν ¼ ∂μAν − ∂νAμ is the strength of electromag-
netic field and ~Fμν ¼ ϵμναβFαβ, in which ϵμναβ is an
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antisymmetric tensor of rank four (for example see
[31,32]). Note

ÂμðxÞ¼
Z

d3k
ð2πÞ32k0 ½arðkÞϵrμðkÞe

−ik:xþa†rðkÞϵ�rμðkÞeik:x�:

ð7Þ
where creation a†r and annihilation ar operators satisfy the
canonical commutation relation as

½arðkÞ; a†r0 ðk0Þ� ¼ ð2πÞ32k0δrr0δð3Þðk − k0Þ: ð8Þ

We only compute the first order of the quantum Boltzmann
equation, i.e., the first term in the RHS of the Eq. (5), and
neglect the second term which is in order of α4. In principle
when the first term does not have any result, in any special
theory, one can try to compute the second term. It is
worthwhile to mention that the contribution of ðFμν

~FμνÞ2
for CMB polarization is given in [24], however they
have just calculated Faraday conversion phase shift.
Here we will consider both term of Euler-Heisenberg
Lagrangian. After a tedious but straightforward calculation,
using Eq. (A1), the time-evolutions of Stokes parameters
Eq. (3) are obtained (find details in the Appendix). First we
start with I-parameter

_IðkÞ ¼ 0; ð9Þ

_IðkÞ ¼ 0 implies, for each ensemble of photons like CMB,
the total intensity I in any direction k̂ is constant and does
not change from Euler-Heisenberg forward scattering. The
above result for intensity I is expected, because the forward
scattering cannot change momenta of photons which is
necessary condition to change intensity in any direction.
Note for the rest of paper, we do not consider the terms with
linearly dependence of ρij on the right side of the above
equations, because we are interested in photon-photon
forward scattering. The time evolution of linear and circular
polarization parameters are given as follows

_QðkÞ¼ 16α2

45m4k0
VðkÞ

Z
d3p

ð2πÞ32p0
ðp0k0Þ2½f1ðp̂; k̂ÞUðpÞ�;

ð10Þ

_UðkÞ¼ 8α2

45m4k0
VðkÞ

Z
d3p

ð2πÞ32p0
ðp0k0Þ2½f1ðp̂; k̂ÞIðpÞ�:

ð11Þ

_VðkÞ¼ 8α2

45m4k0
UðkÞ

Z
d3p

ð2πÞ32p0
ðp0k0Þ2½f2ðp̂; k̂ÞIðpÞ�

ð12Þ
where fis are given in the Appendix. Note in the case of
CMB radiation, I can be total intensity of CMB or CMB

thermal anisotropy (depending of angular dependence of
fis) while the contributions ofQ,U, and V are about or less
than 10% of total CMB thermal anisotropy. As a result, to
consider dominated contribution in our calculations
Eqs. (10)–(12), we neglect terms in second order of Q,
U, and V. As Eqs. (10)–(12) show, the initial circular
polarization of an ensemble of photon VðkÞ can be
converted to linear one UðkÞ; QðkÞ and inverse due to
Euler-Hisenberg interactions. To go further and calculate
angular integrals most conveniently, we introduce the
momentum and polarization vectors of incoming photons
as follow [6]

k̂ ¼ ðsin θ cosϕ; sin θ sinϕ; cos θÞ;
⃗̂ϵ1ðkÞ ¼ ðcos θ cosϕ; cos θ sinϕ;− sin θÞ;
⃗̂ϵ2ðkÞ ¼ ð− sinϕ; cosϕ; 0Þ: ð13Þ

The exactly same definition are correct for momentum
and polarization vectors of target photons (denoted by p
and ϵ⃗sðpÞ) just with θ → θ0 and ϕ → ϕ0. The angular
integrals in Eqs. (10)–(12) must be done over θ0 and ϕ0.
As momentum and polarization vectors of photons are
defined in spherical coordinate, one can expand all
variables and Stokes parameters in terms of spherical
harmonics Ym

l to make angular integrals easily, so we
have

IðpÞ ¼
X
l0m0

Il0m0 ðpÞYm0
l0 ðθ0;ϕ0Þ;

ðQ� iUÞðpÞ ¼
X
l0m0

ðQ� iUÞl0m0 ðpÞYm0
l0 ðθ0;ϕ0Þ;

VðpÞ ¼
X
l0m0

Vl0m0 ðpÞYm0
l0 ðθ0;ϕ0Þ: ð14Þ

Also we can use above equations to expand IðkÞ, QðkÞ,
UðkÞ, and VðkÞ in terms of spherical harmonics by
replacing θ → θ0, ϕ → ϕ0, l0 → l, and m0 → m. So by
considering the time evolution of Stokes parameters given
in Eqs. (10)–(12), using expansions in Eq. (14) and
adding the Compton scattering contributions to Euler-
Heisenberg contributions, we have

dI
dt

¼ CI
eγ;

d
dt

ðQ� iUÞ ¼ C�
eγ ∓ i_κ�V;

dV
dt

¼ CV
eγ þ _κUU; ð15Þ

where CI
eγ, C�

eγ, and CV
eγ denote contributions of Compton

scattering which their expressions could be found in
[6,33,34]. The Euler-Heisenberg contribution coefficients
are given as follows
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_κ� ¼ 8α2

45m4k0

Z
p2dpdΩ0

ð2πÞ32p0
ðp0k0Þ2

× ½ð−2iUðpÞ � IðpÞÞf1ðp̂; k̂Þ� ð16Þ

_κU ¼ 8α2

45m4k0

Z
p2dpdΩ0

ð2πÞ32p0
ðp0k0Þ2½f2ðp̂; k̂ÞIðpÞ�: ð17Þ

As shown in Eq. (16), _κ� is divided into two terms
which are proportional to UðpÞ and IðpÞ. According to
the earlier mentioned argument, to consider dominant
contributions of Euler-Heisenberg effective Lagrangian
in CMB power spectrum, we can neglect the term
including UðpÞ. Then

_κ� ¼� 1

15π
σT

k
me

I0
me

�Z
d3p
ð2πÞ3pf1ðp̂; k̂Þ

X
lm

Yl;m
IlmðpÞ
I0

�
;

¼�_~κ

�
f01þ

Z
d3p
ð2πÞ3p

~f1ðp̂; k̂Þ
X
lm

Yl;m
IlmðpÞ
I0

�
ð18Þ

_κU ¼ 1

15π
σT

k
me

I0
me

�Z
d3p
ð2πÞ3 pf2ðp̂; k̂Þ

X
lm

Yl;m
IlmðpÞ
I0

�
;

¼ _~κ

�
f02 þ

Z
d3p
ð2πÞ3 p

~f2ðp̂; k̂Þ
X
lm

Yl;m
IlmðpÞ
I0

�
; ð19Þ

where _~κ¼ 1
15πσT

k
me

I0
me

and here we separate fiðp̂; k̂Þ ¼
f0i þ ~fiðp̂; k̂Þ, note f0i is constant part of fiðp̂; k̂Þ and
also

Z
pd3p
ð2πÞ3 IðpÞ ¼ I0ðp̄Þ≃ p̄nγ: ð20Þ

and p̄ ¼ jpj is the average value of the momentum of
target (CMB-photons). Be ware in above equations, the
term including ~fiðp̂; k̂Þ is in the order of CMB temper-
ature anisotropy ∼ δT

T which several order of magnitude
smaller than the term including f0i . So it is reasonable to
ignore the term including ~fiðp̂; k̂Þ for the rest of our
calculation. As a result, by considering nonlinear pho-
ton-photon interaction, a linear polarization converts to
circular one while crossing through an isotopic unpo-
larized medium beam I0.
To understand the above results, we can assume that

linearly polarized CMB photons encounter by an isotopic
background magnetic and electric fields when they cross
through the unpolarized beam. By purposing the mentioned
point, we can rewrite Euler-Heisenberg Hamiltonian by
replacing Fμν → Bμν þ Fμν where Bμν indicates back-
ground fields (for example see [35])

H0
I ðtÞ ¼ −

α2

90m4
e

Z
d3x

�
½ðFμν þ BμνÞðFμν þ BμνÞ�2

þ 7

4
½ðFμν þ BμνÞð ~Fμν þ ~BμνÞ�2

�
: ð21Þ

Note in above equation,we just need termswith twoFμνwhile
terms including ðBμνBμνÞðFμνFμνÞ and ðBμν

~BμνÞðFμν
~FμνÞ do

not affect our results. So by using Eq. (7),

H0
I ðtÞ¼

4α2

90m4
e

Z
d3p

ð2πÞ3ð2p0Þ2
X
ss0

â†sðpÞâs0 ðpÞ

×

�
pμBμνϵ

ν
s0p

λBλρϵ
�ρ
s −

7

4
pμ ~Bμνϵ

ν
s0p

λ ~Bλρϵ
�ρ
s

�
: ð22Þ

and by substituting the below equations

pμBμνϵ
ν
s ¼ B⃗:ðp⃗ × ϵ⃗sÞ þ p0E⃗:ϵ⃗s;

pμ ~Bμνϵ
ν
s0 ¼ 2E⃗:ðp⃗ × ϵ⃗sÞ þ 2p0B⃗:ϵ⃗s; ð23Þ

in Eq. (22), we obtain

H0
I ðtÞ¼

4α2

90m4
e

Z
d3p

ð2πÞ3ð2p0Þ2
X
ss0

â†sðpÞâs0 ðpÞð½ðB⃗:ðp⃗× ϵ⃗sÞ

þp0E⃗:ϵ⃗sÞðB⃗:ðp⃗× ϵ⃗s0 Þþp0E⃗:ϵ⃗s0 Þ�
−7½ðE⃗:ðp⃗× ϵ⃗sÞþp0B⃗:ϵ⃗sÞðE⃗:ðp⃗× ϵ⃗s0 Þþp0B⃗:ϵ⃗s0 Þ�Þ:

ð24Þ

At the end, we have used Eqs. (5) and (24) to obtain the
time evolution of Stokes parameters, here we just discuss the
V-parameter

_Vðk⃗Þ ¼ 4α2k0

90m4
e
½~gQðk⃗Þ þ ~fUðk⃗Þ� ð25Þ

where

~g ¼ 2ðB⃗ · ðk̂ × ϵ̂2ÞB⃗:ðk̂ × ϵ̂1Þ þ E⃗ · ϵ̂2B⃗ · ðk̂ × ϵ̂1Þ
þ E⃗ · ϵ̂1B⃗ · ðk̂ × ϵ̂2Þ þ E⃗ · ϵ̂1E⃗ · ϵ̂2Þ
þ 14ðE⃗ · ðk̂ × ϵ̂2ÞE⃗:ðk̂ × ϵ̂1Þ þ B⃗ · ϵ̂2E⃗ · ðk̂ × ϵ̂1Þ
þ B⃗ · ϵ̂1E⃗ · ðk̂ × ϵ̂2Þ þ B⃗ · ϵ̂1B⃗ · ϵ̂2Þ ð26Þ

and

~f ¼ k0½6ððB⃗ · ϵ1Þ2 − ðB⃗ · ϵ2Þ2Þ
þ 6ððE⃗ · ϵ2Þ2 − ðE⃗ · ϵ1Þ2Þ þ 16ððE⃗ · ϵ1ÞðB⃗ · ϵ2Þ
− ðB⃗ · ϵ1ÞðE⃗ · ϵ2ÞÞ�: ð27Þ
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Now we are ready to check the results discussed in Eq. (19).
Using Eqs. (13) and considering a random direction for
electric fields E⃗ ¼ Eðsin θE cosϕE; sin θE sinϕE; cos θEÞ,
we will rewrite the average value of h ~fi and h~gi as follows

h ~fi ¼ 3=4ð1 − cos 2θÞhE2i þ h ~f1ðθE;ϕEÞi
∝ 3=4ð1 − cos 2θÞI0 þ h ~f1ðθE;ϕEÞi ð28Þ

note in the above equation 3=4ð1 − cos 2θÞhE2i is indepen-
dent from the direction of electric fields as well as the
polarizations of radiation (hE2i ∝ I0). But h~gi does not
include a term which can be independent from the direction
of electric fields. In simplewords, h ~fi has a contribution from
isotropic unpolarized CMB radiation which comes from the
nature of nonlinear interaction between CMB photons them-
selves via Euler-Heisenberg Hamiltonian.

IV. THE TIME EVOLUTION OF CMB
POLARIZATIONS DUE TO EULER-HEISENBERG
LAGRANGIAN AND COMPTON SCATTERING

In the present section, we consider our rest calculation in
the presence of the primordial scalar perturbations indicating
by (S) which we expand these perturbations in the Fourier
modes characterized by a wave number K. For each given
wave number K, it is useful to select a coordinate system
with K∥ẑ and ðê1; ê2Þ ¼ ðêθ; êϕÞ. Temperature anisotropy

ΔðSÞ
I , linear polarizations (ΔðSÞ

Q and ΔðSÞ
U ), and circular

polarization ΔðSÞ
V of the CMB radiation can be expanded

in an appropriate spin-weighted basis as following [33]

ΔðSÞ
I ðK;k; τÞ ¼

X
lm

almðτ; KÞYlmðnÞ; ð29Þ

Δ�ðSÞ
P ðK;k; τÞ ¼

X
lm

a�2;lmðτ; KÞ�2YlmðnÞ; ð30Þ

ΔðSÞ
V ðK;k; τÞ ¼

X
lm

aV;lmðτ; KÞYlmðnÞ; ð31Þ

where we define

ΔðSÞ
I ðK;k; τÞ ¼

�
4k

∂I0
∂k

�
−1
ΔðSÞ

I ðK;k; tÞ;

Δ�ðSÞ
P ¼

�
4k

∂I0
∂k

�
−1
ðQðSÞ � iUðSÞÞ: ð32Þ

As usual, one can transfer the CMB temperature and polar-
izationsΔI;P;Vðη;K; μÞ in the conformal time η and describe
them by multipole moments as following

ΔI;P;Vðη;K;μÞ¼
X∞
l¼0

ð2lþ1Þð−iÞlΔl
I;P;Vðη;KÞPlðμÞ ð33Þ

where μ ¼ n̂ · K̂ ¼ cos θ, the θ is angle between the CMB
photon direction n̂ ¼ k=jkj and the wave vectors K, and
PlðμÞ is the Legendre polynomial of rank l. Here we should
define left-hand sides of Eq. (15) d

dt to take into account
space-time structure and gravitational effects such as redshift
and so on. For each plane wave, each scattering and
interaction can be described as the transport through a
plane parallel medium [36,37], and finally Boltzmann
equations in the presence of the primordial scalar perturba-
tions are given as

d
dη

ΔðSÞ
I þ iKμΔðSÞ

I þ 4½ _ψ − iKμφ�

¼ _τeγ

�
−ΔðSÞ

I þ Δ0ðSÞ
I þ iμvb þ

1

2
P2ðμÞΠ

�
ð34Þ

d
dη

Δ�ðSÞ
P þ iKμΔ�ðSÞ

P

¼ _τeγ

�
−Δ�ðSÞ

P −
1

2
½1−P2ðμÞ�Π

�
∓ iaðηÞ_~κf01ΔðSÞ

V ð35Þ

d
dη

ΔðSÞ
V þ iKμΔðSÞ

V

¼ −_τeγ
�
ΔðSÞ

V −
3

2
μΔðSÞ

V1

�
þ i
2
_~κf02ðΔ−ðSÞ

P − ΔþðSÞ
P Þ ð36Þ

where _τeγ≡dτeγ
dη which τeγ is Compton scattering optical

depth, aðηÞ is normalized scale factor and Π≡Δ2ðSÞ
I þ

Δ2ðSÞ
P þΔ0ðSÞ

P .
The values of Δ�ðSÞ

P ðn̂Þ and ΔðSÞ
V ðn̂Þ at the present time

η0 and the direction n̂ can be obtained in following
general form by integrating of the Boltzmann equation
[Eqs. (34)–(36)] along the line of sight [33] and summing
over all the Fourier modes K as follows

Δ�ðSÞ
P ðn̂Þ ¼

Z
d3KξðKÞe�2iϕK;nΔ�ðSÞ

P ðK;k; η0Þ; ð37Þ

ΔðSÞ
V ðn̂Þ ¼

Z
d3KξðKÞΔðSÞ

V ðK;k; η0Þ; ð38Þ

where ϕK;n is the angle needed to rotate the K and n̂
dependent basis to a fixed frame in the sky, ξðKÞ is a
random variable using to characterize the initial amplitude
of each primordial scalar perturbations mode, and also the

values of Δ�ðSÞ
P ðK;k; η0Þ and ΔðSÞ

V ðK;k; η0Þ are given as

Δ�ðSÞ
P ðK; μ; η0Þ ¼

Z
η0

0

dη_τeγeixμ−τeγ
�
3

4
ð1 − μ2ÞΠðK; ηÞ

∓ if01
_~κ

_τeγ
ΔðSÞ

V

�
; ð39Þ
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and

ΔðSÞ
V ðK; μ; η0Þ ≈

Z
η0

0

dη_τeγeixμ−τeγ
�
3

2
μΔðSÞ

V1 − if02
_~κ

_τeγ
ΔðSÞ

P

�
;

ð40Þ

in which x ¼ Kðη0 − ηÞ, f1;2ðp̂; k̂Þ are defined in (A2),
(A3) and

ΔðSÞ
P ðK;μ;ηÞ¼

Z
η

0

dη_τeγeixμ−τeγ
�
3

4
ð1−μ2ÞΠðK;ηÞ

�
: ð41Þ

The differential optical depth _τeγðηÞ and total optical
depth τeγðηÞ due to the Thomson scattering at time η are
defined as

_τeγ ¼ aneσT; τeγðηÞ ¼
Z

η0

η
_τeγðηÞdη: ð42Þ

V. THE CONTRIBUTION OF
EULER-HEISENBERG INTERACTION FOR THE

CIRCULAR POWER SPECTRUM OF CMB

In the preceding section, we have prepared all instru-
ments to calculate different power spectra CXðSÞ

l s of CMB
radiation due to Compton scattering and photon-photon
forward scattering via Euler-Heisenberg interaction. So the

power spectrum CXðSÞ
l in the presence of primordial scalar

perturbation [indicated by (S)] is given as

CXðSÞ
l ¼ 1

2lþ1

X
m

ha�X;lmaX;lmi; X¼fI;E;B;Vg; ð43Þ

where

aE;lm ¼ −ða2;lm þ a−2;lmÞ=2; ð44Þ

aB;lm ¼ iða2;lm − a−2;lmÞ=2; ð45Þ

aV;lm ¼
Z

dΩY�
lmΔV: ð46Þ

By using (39)–(41), the circular power spectrum CVðSÞ
l of

CMB radiation can be written as follows

CVðSÞ
l ¼ 1

2lþ1

X
m

ha�V;lmaV;lmi;

≈
1

2lþ1

Z
d3KPðSÞ

ϕ ðK;ηÞ

×
X
m

����
Z

dΩY�
lm

Z
η0

0

dη_τeγeixμ−τeγ ηEHðηÞΔðSÞ
P

����
2

;

ð47Þ

where ηEHðτÞ ¼ f02
_~κ
_τeγ

PðSÞ
ϕ ðK; τÞδðK0 −KÞ ¼ hξðKÞξðK0Þi; ð48Þ

and PðSÞ
ϕ ðK; τÞ is the scalar power spectrum of primordial

matter perturbations.
Furthermore, as shown Eq. (47), the circular polarization

cannot be generated in the scalar perturbation without
considering the effects of Euler-Hiesenberg interactions.
This result is in agreement with results of standard
cosmology models [6]. With this knowledge that _~κ and
_τeγ depend on redshift, we have

ηEHðzÞ≃ f02
15π

n0γ
n0e

ð1þ zÞ2
χeðzÞ

�
T0
CMB

me

�
2

; ð49Þ

where χeðzÞ is fraction of free cosmic electron, n0γ and n0e
are number densities of CMB photons and cosmic electrons
at present time, and T0

CMB ≃ 2.7 K. ηEHðzÞ is plotted in
terms of redshift in Fig. 1.
Now we can estimate CVðSÞ

l in terms of the linearly

polarized power spectrum CPðSÞ
l and the average value of

ηEH as

CVðSÞ
l ≈ ðηavEHÞ2CPðSÞ

l ; ð50Þ

where

CPðSÞ
l ¼ 1

2lþ 1

Z
d3KPðSÞ

ϕ ðK; τÞ

×
X
m

����
Z

dΩY�
lm

Z
η0

0

dη_τeγeixμ−τeγΔ
ðSÞ
P

����
2

; ð51Þ

and

0 200 400 600 800 1000
0.000

0.001
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Η

FIG. 1. ηEHðzÞ is plotted in terms of redshift.
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ηavEH ¼ 1

zlss

Z
zlss

0

ηEHðzÞdz≃ 0.0002; ð52Þ

where zlss indicates redshift at the last scattering

surface. Using the experimental value for CPðSÞ
l which

is in the order of ∼ðμKÞ2 and Eqs. (50)–(52), one can

obtain an estimation on the range of CVðSÞ
l ∼ 10 ðnKÞ2.

Note, we just make above estimation to have a sense
about the contribution of Euler-Heisenberg interactions
for the power spectrum of CMB circular polarization.

The more precise estimation of lðlþ 1ÞCVðSÞ
l =ð2πÞ is

given in Fig. 2. Let us compare our results with
experimental data reported by the SPIDER group [7].
Constraints (upper bound) of the circular power spectrum
lðlþ 1ÞCV

l =ð2πÞ reported by the SPIDER group is in
ranging from 141 to 203 ðμKÞ2 at 150 GHz for a thermal
CMB spectrum and 33 < l < 307 which is much larger
than what can be found by considering nonlinear photon-
photon interaction.
The Euler-Heisenberg interactions not only can gen-

erate circular polarization for CMB, but also generate
the B-mode polarization in the presence of scalar
metric perturbations in contrast with standard cosmol-
ogy models [33,38]. Next, one can divide the CMB
linear polarization in terms of the divergence-free part

(B-mode ΔðSÞ
B ) and the curl-free part (E-mode ΔðSÞ

E )
which are defined in terms of Stokes parameters as
following

ΔðSÞ
E ðn̂Þ≡ −

1

2
½ð̄2ΔþðSÞ

P ðn̂Þ þ ð2Δ−ðSÞ
P ðn̂Þ�; ð53Þ

ΔðSÞ
B ðn̂Þ≡ i

2
½ð̄2ΔþðSÞ

P ðn̂Þ − ð2Δ−ðSÞ
P ðn̂Þ�; ð54Þ

where ð and ð̄ indicate spin raising and lowering
operators respectively [38]. As Eqs. (38), (43), (52),

and (54) shown, the B-mode power spectrum CBðSÞ
l is

given in terms of the circular polarization power

spectrum CVðSÞ
l which can be estimated as

CBðSÞ
l ∝ η̄2CVðSÞ

l ≪ ðnKÞ2: ð55Þ

Note the B-mode generating by Euler-Hiesenberg
interaction is very small than ðnKÞ2 and so that we
can neglect it.

VI. CONCLUSION AND REMARKS

In this work, we have solved the first order of the
quantum Boltzmann equation for the density matrix of
CMB radiation by considering Compton scattering and
nonlinear photon-photon forward scattering via the Euler-
Heisenberg effective Lagrangian as collision terms. We
have shown that propagating photons convert their linear
polarizations to circular polarizations via the Euler-
Heisenberg effective interaction. Also we have discussed
that by considering nonlinear CMB-CMB photons inter-
action, CMB linear polarization converts to circular one
while crossing through CMB isotopic unpolarized medium
I0. The power spectrum of circular polarization in CMB

radiations CVðSÞ
l in the presence of scalar perturbations is

given in terms of linearly polarized power spectrum of

CMB radiation CVðSÞ
l ∼ ðηavEHÞ2CPðSÞ

l which ηEH (49) is
given in terms of redshift by factor ð1þ zÞ2=χeðzÞ
and also ηavEH ≃ 0.0002 (52). Also, we have estimated
the average value of circular power spectrum is

lðlþ 1ÞCVðSÞ
l =ð2πÞ ∼ 10−4 ðμKÞ2 for l ∼ 300 at present

time which is very smaller than recently reported data
for upper limit of circular polarization (SPIDER collabo-
ration). As a result to observe our results, the ability to
detect Nano-Kelvin level signals of CMB circular polari-

zation requires. lðlþ 1ÞCVðSÞ
l =ð2πÞ is plotted in Fig. 2. We

also show that the generation of B-mode polarization for
CMB photons in the presence of the primordial scalar
perturbation via Euler-Heisenberg interaction is possible
however this contribution for B-mode polarization is not

remarkable. It is shown in Eq. (55) that CBðSÞ
l ≪ ðnKÞ2.

APPENDIX: TIME EVOLUTION OF
DENSITY MATRIX

The time-evolution of the density matrix approximately
obtained as

10 20 50 100 200 500 1000 2000
10 9

10 8

10 7

10 6

10 5

10 4

0.001

l

l
l

1
2

\,\
,C

lV
S

K
2

FIG. 2. The power spectrum of circular polarization lðlþ1Þ=2π
CVðSÞ
l is plotted in terms of l and in unit ðμKÞ2 due to Compton

scattering and photon-photon forward scattering via Euler-
Heisenberg effective Lagrangian. This file contains the LCDM
power spectra that are derived from Planck (2015) parameters and
also we have modified CMBQUICK Mathematica code to make
above plot.
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ð2πÞ3δ3ð0Þ2k0 d
dt

ρijðkÞ ≈ ih½H0
I ðtÞ; D0

ijðkÞ�i

¼ −
2α2i
45m4

ð2πÞ3δ3ð0Þ ×
Z

d3p
ð2πÞ32p0

½ðp:kÞ2½ϵsðkÞ:ϵs0 ðpÞϵlðkÞ:ϵl0 ðpÞ�

× f−5ρs0l0 ðpÞρisðkÞδlj þ 5ρs0l0 ðpÞρljðkÞδsi þ 4ρl0s0 ðpÞρljðkÞδsi − 4ρl0s0 ðpÞρisðkÞδlj
þ 3ρl0s0 ðpÞρsjðkÞδli − 3ρl0s0 ðpÞρilðkÞδsj þ 4ρs0l0 ðpÞρsjðkÞδli − 4ρs0l0 ðpÞρilðkÞδsj þ 9ρljðkÞδsiδs0l0

− 9ρisðkÞδljδs0l0 þ 3ρsjðkÞδs0l0δli − 3ρilðkÞδsjδs0l0g
þ ½p:ϵsðkÞk:ϵs0 ðpÞp:ϵlðkÞk:ϵl0 ðpÞ − 2ðp:kÞϵsðkÞ:ϵs0 ðpÞp:ϵlðkÞk:ϵl0 ðpÞ�
× f8ρljðkÞδsiδs0l0 − 8ρisðkÞδljδs0l0 þ 4ρl0s0 ðpÞρljðkÞδsi − 4ρl0s0 ðpÞρisðkÞδlj − 4ρs0l0 ðpÞρisðkÞδlj
þ 4ρs0l0 ðpÞρljðkÞδsi þ 4ρsjðkÞδl0s0δli þ 4ρsjðkÞρl0s0 ðpÞδli − 4ρilðkÞδl0s0δsj − 4ρl0s0 ðpÞρilðkÞδsj
þ 4ρs0l0 ðpÞρsjðkÞδli − 4ρs0l0 ðpÞρilðkÞδsjg − 28ϵμναβϵσν

0γβ0kγkμpαpσϵs0βðpÞϵlν0 ðpÞϵsνðkÞϵl0β0 ðkÞ
× ½ρl0jðkÞδsi − ρisðkÞδl0j þ ρsjðkÞδl0i − ρil0 ðkÞδsj� × ½ρls0 ðpÞ þ ρs0lðpÞ þ δs

0l��; ðA1Þ

where k and p indicate the energy-momentum states of photons and δ3ð0Þ will be canceled in the final expression. Here
detail of abbreviated functions in Eqs. (9)–(12) are brought.

f1ðp̂; k̂Þ¼2½ðp̂:k̂Þ2ððϵ̂2ðkÞ:ϵ̂1ðpÞÞ2−ðϵ̂1ðkÞ:ϵ̂1ðpÞÞ2þðϵ̂2ðkÞ:ϵ̂2ðpÞÞ2−ðϵ̂1ðkÞ:ϵ̂2ðpÞÞ2Þ
þððp̂:ϵ̂2ðkÞÞ2−ðp̂:ϵ̂1ðkÞÞ2Þððk̂:ϵ̂2ðpÞÞ2þðk̂:ϵ̂1ðpÞÞ2Þþ2ðk̂:p̂Þððϵ̂1ðkÞ:ϵ̂1ðpÞp̂:ϵ̂1ðkÞ− ϵ̂2ðkÞ:ϵ̂1ðpÞp̂:ϵ̂2ðkÞÞk̂:ϵ̂1ðpÞ
þðϵ̂1ðkÞ:ϵ̂2ðpÞp̂:ϵ̂1ðkÞ− ϵ̂2ðkÞ:ϵ̂2ðpÞp̂:ϵ̂2ðkÞÞk̂:ϵ̂2ðpÞÞ� ðA2Þ

f2ðp̂; k̂Þ ¼ 2½ðp̂:k̂Þ2ð½ϵ̂2ðkÞ:ϵ̂1ðpÞ�2 − ½ϵ̂1ðkÞ:ϵ̂1ðpÞ�2 þ ½ϵ̂2ðkÞ:ϵ̂2ðpÞ�2 − ½ϵ̂1ðkÞ:ϵ̂2ðpÞ�2Þ
þ 2ðp̂:k̂Þððϵ̂2ðkÞ:ϵ̂2ðpÞp̂:ϵ̂2ðkÞ − ϵ̂1ðkÞ:ϵ̂2ðpÞp̂:ϵ̂1ðkÞÞk̂:ϵ̂2ðpÞ − ϵ̂1ðkÞ:ϵ̂1ðpÞp̂:ϵ̂1ðkÞk̂:ϵ̂1ðpÞÞ
þ ððp̂:ϵ̂1ðkÞÞ2 − ðp̂:ϵ̂2ðkÞÞ2Þððk̂:ϵ̂1ðpÞÞ2 þ ðk̂:ϵ̂2ðpÞÞ2Þ�: ðA3Þ
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