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We investigate the equation of state (EoS) and the effect of the hadron-quark phase transition of strong
interaction matter in compact stars. The hadron matter is described with the relativistic mean field theory,
and the quark matter is described with the Dyson-Schwinger equation approach of QCD. The complete
EoS of the hybrid star matter is constructed with not only the Gibbs construction but also the 3-window
interpolation. The mass-radius relation of hybrid stars is also investigated. We find that, although the EoS of
both the hadron matter with hyperon andΔ-baryon and the quark matter are generally softer than that of the
nucleon matter, the 3-window interpolation construction may provide an EoS stiff enough for a hybrid star
with mass exceeding 2M⊙ and, in turn, solve the so-called “hyperon puzzle.”
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I. INTRODUCTION

It has been well known that, when one has an equation of
state (EoS) for the dense matter in a star, one can calculate
the mass-radius relation of the star by solving the Tolman-
Oppenheimer-Volkov (TOV) equation, and compare the
result with astronomical observations. Compact stars are
then regarded as wonderful laboratories in the Universe,
which have the extreme condition impossible to reach on
Earth, to test the theories for not only cold-dense matter, but
also thermal-dense matter [1,2], and even the existence of
the critical end point of the QCD phase transitions [3].
The EoS has been known as essential to astronomical

research (for reviews, see, e.g., Refs. [4–7]). Specifically,
the maximum mass of a compact star is highly dependent
on the stiffness of the EoS at high density [2,4–11]. For the
ones composed of only protons, neutrons, and electrons
(hereafter, we denote it as pure nucleon matter), the EoS
can be stiff enough and support a highly massive star.
However, the components at the suprasaturation densities
in the core of a compact star are not well determined.

For hadron matter, hyperonic degree of freedom is likely to
appear at about ð2 ∼ 3Þρsat (ρsat is the saturation nuclear
matter density, 0.153 fm−3) [12–17]. The appearance of
hyperons softens greatly the EoS, and this contradicts with
the observations of the compact stars with mass about
2 M⊙ [18,19]. This is called the hyperon puzzle in
literatures (e.g., Refs. [20,21]). In addition, the possible
appearance of Δ-resonance states (simply referred as
Δ-baryons in the following) might also soften the EoS.
For a long time it was believed that the Δ-baryons would
appear in nuclear matter at a density of∼10ρsat [2], which is
too high even in compact stars. However, later research
shows that with proper symmetry energy and parametriza-
tion, the Δ-baryons may appear at a density relevant in
compact stars [22–27]. And this formulates the “Δ puzzle,”
similar to the hyperon puzzle.
One way to solve the hyperon puzzle is the modification

of the interactions at high density. There have been
phenomenological models for the matter consisting of
nucleons and hyperons and corresponding leptons (here-
after we refer to the star composed of such a kind of matter
simply as a neutron star) which predict neutron stars of
mass exceeding 2 M⊙ (see, e.g., Refs. [28–32]). In micro-
scopic models, there have been relativistic Dirac-
Brueckner-Hartree-Fock calculations with three-body
forces [33], auxiliary field diffusion Monte Carlo method
calculations [20,34,35], and so forth.
However, the possible appearance of quark matter should

also be taken into consideration, and is believed to be a
straightforward way to solve the hyperon puzzle (see, e.g.,
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the discussion in Ref. [18]). In the center of a compact star,
the baryon density may reach, or even exceed 1 fm−3. At
such a high density, the baryons overlap with each other,
and the quark degree of freedom is likely to appear. The
compact star with a quark matter core and a hadron matter
mantle is called a “hybrid star.” If there is a quark matter
core inside the compact star, the EoS of the star matter is
also changed, and expected to be stiff enough to support a
high-mass compact star.
A simple but widely implemented model for the quark

matter is the MIT bag model (see, e.g., Refs. [36–39]), and
there have been models beyond the MIT bag model for cold
quark matter, e.g., the Nambu–Jona-Lasino (NJL) model
[40–46], the density-dependent-quark-mass model [47–
49], the chiral quark meson model [50], the quasiparticle
model [51–53], the extended confined isospin-density-
dependent mass model [54], and so on. However, these
models lack a pronounced quantum chromodynamics
(QCD) foundation. Because of the complexity of the
nonlinear and nonperturbative nature of the strong inter-
action between the quarks, the EoS for the cold quark
matter of a compact star in the sophisticated QCD approach
is then still under investigation.
It has been known that the Dyson-Schwinger equations

(DSEs) (see, e.g., Ref. [55]) are almost uniquely a con-
tinuum QCD approach that includes both the confinement
and the dynamical chiral symmetry breaking features
simultaneously [56], and are successful in describing
QCD phase transitions and hadron properties (see, e.g.,
Refs. [55,57–60]). And the MIT bag model, NJL model,
and other phenomenological models can be regarded as the
limiting cases of the DSE approach. We then, in this paper,
implement the DSE approach to describe the quark matter
in a way similar to that used in Refs. [61–64] in which only
the Gibbs construction (see below) is taken to build the EoS
of the hybrid star matter.
For the EoS of the matter in hybrid stars, one should take

into account the transition from hadron phase to quark phase.
An ideal theory for describing the hadron-quark phase
transition is that all the properties are depicted with a unified
Lagrangian for the system, but such a theory has definitely
not yet been established. At present, one has to describe the
quark phase and the hadron phase with separate approaches,
and derive the complete EoS by construction.
One of the commonly used methods of the construction is

theGibbs construction [2,65]. It assumes that there is amixed
phase where both quark and hadron phases coexist. The
pressure and chemical potential of each of the two phases
equate to each other, respectively. At the same time, though
the hadron and quark phases are charged separately, they
neutralize each other and combine to be charge neutral. The
Gibbs construction has been widely taken to calculate the
masses of hybrid stars (see, e.g., Refs. [38,61–71]).
However, apart from its success, the Gibbs construction

has its limitations. For example, near the hadron-quark

phase transition density, the distance between quarks in one
hadron and that in different hadrons is of the same order;
the hadrons should then not be regarded as point particles.
Though the hadron models are accurate for the matter near
the saturation density due to the calibrations coming from
plenty of experiments, they are unreliable and different
from each other greatly in the higher density region, the
phase transition regions (see, e.g., Refs. [7,72]). Similarly,
the quark models are appropriate at extremely high density
where perturbative QCD and asymptotic freedom can be
applied, but they are unreliable at lower densities. Also, in
Gibbs construction, both the quark and the hadron matters
in the mixed phase region are assumed to be uniform and in
equilibrium. However, because of the Coulomb energy, the
surface energy and other finite size effects [66,73–78], and
also due to the nonequilibrium effect, the EoS should be
very different from that coming from the Gibbs construc-
tion. Nevertheless, since we know little about the properties
of matter at the intermediate and high densities, the
discussion about such effects is still limited.
To fix these problems, the 3-window construction model

[21,79–83], which assumes that with the increasing of
density, there are also three regions, has been proposed. In
the 3-window construction, the matter in the low density
region consists of only separate hadrons that can be
approximated as point particles; the quarks (and gluons)
are confined inside hadrons and do not play the role of
affecting the properties of the matter directly. At high
density, the boundaries of hadrons totally disappear and
only quark (and gluon) degrees of freedom exist. In the
middle density region, the hadron-quark transition region,
the boundaries of hadrons gradually disappear, and there is
a smooth “crossover” but not a sudden change from hadron
matter to quark matter. In the low and high density regions,
the hadron and quark models can be applied, respectively.
In the transition region, however, the EoS is constructed
by interpolating the EoS in the low and the high density
regions.
In this paper, we investigate the EoS of compact star

matter in a quite large baryon density region and the mass-
radius relation of compact stars to solve the hyperon puzzle
(as well as the “Δ puzzle”). In our investigation, we take the
relativistic mean field (RMF) theory for the matter in
hadron phase, and the DSE approach for the matter in quark
phase. For the construction of the interplay we implement
both the Gibbs construction and the 3-window interpola-
tion. Our calculations show that, although the EoS of the
hadron matter including hyperons and Δ-baryons and that
of the quark matter are generally softer than that of pure
nucleon matter, the 3-window interpolation may provide an
EoS stiff enough for a hybrid star with mass exceed-
ing 2 M⊙.
This paper is organized as follows. After this introduc-

tion, we describe briefly the models for the hadron matter
and the quark matter in Secs. II and III, respectively. In
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Sec. IV, we describe the Gibbs construction and the
3-window interpolation for the EoS of the hybrid star
matter. In Sec. V, we represent the numerical results of the
EoS, the mass-radius relation and the component structure
of the matter in the hybrid star. And Sec. VI is for a
summary and some remarks.

II. HADRON MATTER SECTOR

In order to calculate the mass-radius relation of the star
composed of mainly strong interaction matter, we need
to calculate the EoS of the matter (hadron matter, quark
matter, or their mixture). For the hadron matter in which the
quark degrees of freedom do not appear, we adopt the
relativistic mean field theory.
The RMF theory [84–86] has been known as one of the

successful approaches in describing the properties of
compact nuclear matter [2,7]. There are hundreds of para-
metrization schemes (models) for the RMF theory, which
are based on fitting the properties of nuclear matter. In
Ref. [87], 263 RMF models are analyzed and the authors
show that, if they satisfy sufficient nuclear constraints,
only a small number of them survive. And a more strict
constraint, the stellar constraint, has been added in
Ref. [88]. Since the inclusion of hyperons reduces the
maximum mass of the neutron star, the EoS of the matter in
the pure nucleon phase should be stiff enough to support a
neutron star over 2 M⊙; otherwise the model will certainly
not allow the observed high-mass neutron star after the
inclusion of hyperons. In this paper, we make use of the
TW-99 model [89] which satisfies both the nuclear and
the stellar constraints [87,88].
The Lagrangian of the TW-99 model for the hadron

matter including hyperons and Δ-baryons is written as

L ¼ LB þ Llep þ LM þ Lint; ð1Þ

where LB is the Lagrangian of free baryons.
In this work, we consider not only the baryon octet

p,n,Λ,Σ�;0 and Ξ−;0, but also the Δ-resonance states
Δþþ;þ;0;− (Δ-baryons).
The Lagrangian for the baryon octet reads

Loct ¼
X
oct

Ψ̄iðiγμ∂μ −miÞΨi; ð2Þ

while the Lagrangian for the Δ-baryons is

LΔ ¼
X
Δ
Ψ̄Δαðiγμ∂μ −mΔÞΨα

Δ: ð3Þ

In the RMF theory, one can neglect all the complexities
arising from the spin-3=2wave function of theΔ resonances,
and treat them in the sameway as for the baryon octet except
for considering the spin degeneracy of a factor 4 [24,90].

LM is the Lagrangian of mesons,

LM ¼ 1

2
ð∂μσ∂μσ −m2

σσ
2Þ

−
1

4
ωμνω

μν −
1

2
m2

ωωμω
μ

−
1

4
ρμνρμν −

1

2
m2

ρρμρμ; ð4Þ

where σ, ωμ, and ρμ are the isoscalar-scalar, isoscalar-
vector, and isovector-vector meson field, respectively.
ωμν ¼ ∂μων − ∂νωμ, ρμν ¼ ∂μρν − ∂νρμ.
The Lint in Eq. (1) is the Lagrangian describing the

interactions between baryons that are realized by exchang-
ing the mesons,

Lint ¼
X
B

gσBΨ̄BσΨB − gωBΨ̄Bγμω
μΨB

− gρBΨ̄BγμτB · ρμΨB; ð5Þ

where giB for i ¼ σ, ω, ρ are the coupling strength
parameters between baryons and mesons, which depend
on the baryon density.
In some other literatures, the self-interaction of the σ-

meson, the cross interaction between different kinds of
mesons, and the effect of the isovector-scalar δ-meson are
included explicitly (see, e.g., the review in Refs. [7,87]). In
TW-99 parametrization, however, all these terms are taken
as 0, and their effects are represented in the density
dependence of the coupling constants. For nucleons, the
coupling constants are

giNðρBÞ ¼ giNðρsatÞfiðxÞ; for i ¼ σ;ω; ρ; ð6Þ

where ρB is the baryon density, ρsat is the saturation nuclear
matter density, and x ¼ ρB=ρsat. The density function can
be chosen as [89]

fiðxÞ ¼ ai
1þ biðxþ diÞ2
1þ ciðxþ diÞ2

; for i ¼ σ;ω;

fρðxÞ ¼ exp ½−aρðx − 1Þ�; ð7Þ

where the parameters ai, bi, ci, di, and giNðρsatÞ are fixed by
fitting the properties of the nuclear matter at the saturation
density, and their values are listed in Table I.
For hyperons, we represent them with the relation

between the hyperon coupling and the nucleon coupling
as χσ ¼ gσY

gσN
, χω ¼ gωY

gωN
, χρ ¼ gρY

gρN
. On the basis of hypernuclei

experimental data, we choose them as those in Refs. [2,88]:
χσ ¼ 0.7, χω ¼ χρ ¼ 0.783. For the Δ-baryons, we choose
the naive coupling constant, xσΔ ¼ xωΔ ¼ xρΔ ¼ 1.
The Llep is the Lagrangian for leptons, which are treated

as free fermions,
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Llep ¼
X
l

Ψ̄lðiγμ∂μ −mlÞΨl; ð8Þ

and we include only the electron and muon in this paper.
The field equations can be derived by differentiating the

Lagrangian. Under RMF approximation, the system is
assumed to be in the static, uniform ground state. The
partial derivatives of the mesons all vanish; only the
0-component of the vector meson and the third component
of the isovector meson survive and can be replaced with the
corresponding expectation values. The field equations of
the mesons are then

m2
σσ ¼

X
B

gσBhΨ̄BΨBi; ð9Þ

m2
ωω0 ¼

X
B

gωBhΨ̄Bγ0ΨBi; ð10Þ

m2
ρρ03 ¼

X
B

gρBhΨ̄Bγ0τ3BΨBi; ð11Þ

where τ3B is the third component of the isospin of baryon B.
The equation of motion (EoM) of the baryon is

½γμði∂μ − ΣμÞ − ðmB − gσBσÞ�ΨB ¼ 0; ð12Þ

where

Σμ ¼ gωBωμ þ gρBτB · ρμ þ ΣR
μ : ð13Þ

The ΣR
μ is called the “rearrange” term, which appears

because of the density dependence of the coupling con-
stant, and reads

ΣR
μ ¼ jμ

ρ

�∂gωB
∂ρ Ψ̄Bγ

νΨBων

þ ∂gρB
∂ρ Ψ̄Bγ

ντB · ρνΨB −
∂gσB
∂ρ Ψ̄BΨBσ

�
; ð14Þ

where jμ ¼ Ψ̄BγμΨB is the baryon current.
Under the EoM of Eq. (12), the baryons behave as

quasiparticles with effective mass

m�
B ¼ mB − gσBσ; ð15Þ

and effective chemical potential

μ�B ¼ μB − gωBω0 − gρBτ3Bρ03 − ΣR
μ : ð16Þ

One can then get the baryon (number) density,

ρB ≡ hΨ̄Bγ
0ΨBi ¼ γB

Z
d3k
ð2πÞ3 ¼ γB

k3FB
6π2

; ð17Þ

where kFB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ�2B −m�2

B

p
is the Fermi momentum of the

particle, and γB is the spin degeneracy, which is 2 for the
baryon octet and 4 for the Δ-baryons. And the scalar
density is

ρsB ≡ hΨ̄BΨBi ¼ γB

Z
d3k
ð2πÞ3

m�
Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þm�2
B

p

¼ γB
m�

B

4π2

�
kFBμ�i −m�2

B ln

�
kFB þ μ�B

m�
B

��
: ð18Þ

The expression of the density of leptons is the same as
those for baryons, except that the effective mass and the
effective chemical potential should be replaced with the
corresponding mass and chemical potential of the leptons,

ρl ¼
k3Fl
3π2

; ð19Þ

where k2Fl ¼ μ2l −m2
l for l ¼ e−; μ−.

The matter in the star composed of hadrons should be in
β-equilibrium. Since there are two conservative charge
numbers, the baryon number and the electric charge
number, all the chemical potential can be expressed with
the neutron chemical potential and the electron chemical
potential,

μi ¼ Bμn −Qμe; ð20Þ

where B and Q is the baryon number, and electric charge
number for the particle i, respectively.
Then, combining Eqs. (9)–(11) and (14)–(20), together

with the charge neutral condition,

ρp þ ρΣþ þ ρΔþ þ 2ρΔþþ ¼ ρe þ ρμ− þ ρΣ− þ ρΞ− þ ρΔ− ;

ð21Þ

one can determine the ingredients and the properties of the
hadron matter with any given baryon density ρB.
The EoS of hadron matter can be calculated from the

energy-momentum tensor,

Tμν ¼
X
ϕi

∂L
∂ð∂μϕiÞ

∂νϕi − gμνL: ð22Þ

TABLE I. Parameters of the mesons and their couplings (taken
from Ref. [89]).

Meson i σ ω ρ

miðMeVÞ 550 783 763
giNðρsatÞ 10.72854 13.29015 7.32196
ai 1.365469 1.402488 0.515
bi 0.226061 0.172577
ci 0.409704 0.344293
di 0.901995 0.983955
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The energy density ε is

ε ¼ hT00i ¼
X
i¼B;l

εi þ
1

2
m2

σσ
2 þ 1

2
m2

ωω
2
0 þ

1

2
m2

ρρ
2
03; ð23Þ

where the contribution of the baryon B to the energy
density is

εB ¼ γB

Z
d3k
ð2πÞ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm�2

B

q

¼ γB
1

4π2

�
2μ�3B kFB −m�2

B μ�BkFB −m�4
B ln

�
μ�B þ kFB

m�
B

��
:

ð24Þ

The contribution of the leptons to the energy density can
be written in the similar form as baryons with a spin
degeneracy parameter γl ¼ 2, except that the effective mass
and effective chemical potential should be replaced with
those of the leptons, respectively.
As for the pressure of the system, we can determine that

with the general formula,

P ¼
X
i

μiρi − ε: ð25Þ

III. QUARK MATTER SECTOR

To describe the properties of the matter in quark phase,
we adopt the DSE approach of QCD [55].
The starting point of the DSE approach is the gap

equation,

Sðp; μÞ−1 ¼ Z2½iγ · pþ iγ4ðp4 þ iμÞ þmq� þ Σðp; μÞ;
ð26Þ

where Sðp; μÞ is the quark propagator, Σðp; μÞ is the
renormalized self-energy of the quark,

Σðp; μÞ ¼ Z1

Z
Λ d4q
ð2πÞ4 g

2ðμÞDρσðp − q; μÞ

×
λa

2
γρSðq; μÞΓa

σðq; p; μÞ; ð27Þ

where
R
Λ is the translationally regularized integral, andΛ is

the regularization mass scale. gðμÞ is the strength of the
coupling, Dρσ is the dressed gluon propagator, Γa

σ is the
dressed quark-gluon vertex, λa is the Gell-Mann matrix,
and mq is the current mass of the quark. In this paper, for
simplicity, the current mass of u and d quark is taken to
be 0, and the current mass of the s quark is chosen to be
115 MeV, by fitting the kaon mass in vacuum [61]. Z1;2 is
the renormalization constants.
At finite chemical potential, the quark propagator can be

decomposed according to the Lorentz structure as

Sðp; μÞ−1 ¼ iγ · pAðp2; pu; μ2Þ þ Bðp2; pu; μ2Þ
þ iγ4ðp4 þ iμÞCðp2; pu; μ2Þ; ð28Þ

with u ¼ ð0; iμÞ.
At zero chemical potential, a commonly used ansatz for

the dressed gluon propagator and the dressed quark-gluon
interaction vertex is

Z1g2Dρσðp − qÞΓa
σðq; pÞ

¼ Gððp − qÞ2ÞDfree
ρσ ðp − qÞ λ

a

2
Γσðq; pÞ; ð29Þ

where

Dfree
ρσ ðk≡ p − qÞ ¼ 1

k2

�
δρσ −

kρkσ
k2

�
; ð30Þ

Gðk2Þ is the effective interaction introduced in the model,
and Γσ is the quark-gluon vertex. In this paper, the rainbow
approximation of the vertex is adopted,

Γσðq; pÞ ¼ γσ: ð31Þ

For the interaction part, we adopt the Gaussian-type
effective interaction (see, e.g., Refs. [57,61,91–94]),

Gðk2Þ
k2

¼ 4π2D
ω6

k2e−k
2=ω2

; ð32Þ

where D and ω are the parameters of the model. In this
paper we take ω ¼ 0.5 GeV and D ¼ 1.0 GeV2 as the
same as in many literatures.
In case of finite chemical potential, an exponential

dependence of the G on the chemical potential was
introduced in Ref. [61] as

Gðk2; μÞ
k2

¼ 4π2D
ω6

e−αμ
2=ω2

k2e−k
2=ω2

; ð33Þ

where α is the parameter controlling the rate for the quark
matter to approach the asymptotic freedom. It is evident
that, when α ¼ 0, it is the same as that at zero chemical
potential; when α ¼ ∞, the effective interaction is 0 and
corresponds to the case of the MIT bag model. We adopt
such a model in our calculation in this paper, and for
simplicity, we take the same interaction for each flavor of
the quarks.
Moreover, Ref. [63] has calculated the properties of

quark matter with several different vertex models and
shown that the vertex effect can be absorbed into the
variation of the parameter α. We then in this paper adopt
only the rainbow approximation of the quark-gluon inter-
action vertex in our calculations.
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With the above equations, we can get the quark propa-
gator, and derive the EoS of the quark matter in the same
way as taken in Refs. [57,58,94,95].
The number density of quarks as a function of its

chemical potential is

nqðμÞ ¼ 6

Z
d3p
ð2πÞ3 fqðjpj; μÞ; ð34Þ

where fq is the distribution function and reads

fqðjpj; μÞ ¼
1

4π

Z
∞

−∞
dp4trD½−γ4Sqðp; μÞ�; ð35Þ

where the trace is for the spinor indices.
The pressure of each flavor of quark at zero temperature

can be obtained by integrating the number density,

PqðμqÞ ¼ Pqðμq;0Þ þ
Z

μq

μq;0

dμnqðμÞ: ð36Þ

The total pressure of the quark matter is the sum of the
pressure of each flavor of quark,

PQðμu; μd; μsÞ ¼
X

q¼u;d;s

~PqðμqÞ − BDS; ð37Þ

~PqðμqÞ≡
Z

μq

μq;0

dμnqðμÞ; ð38Þ

BDS ≡ −
X

q¼u;d;s

Pqðμq;0Þ: ð39Þ

Theoretically, the starting point of the integral μq;0 can be
any value; in this paper we take μq;0 ¼ 0. For the value of
BDS, a discussion can be seen in Ref. [64]. Here we adopt
the “steepest-descent” approximation and take BDS ¼
90 MeV fm−3 [61,94,96].
The quark matter in a compact star should also be in β-

equilibrium and electric charge neutral, so we have

μd ¼ μu þ μe ¼ μs; ð40Þ
2ρu − ρd − ρs

3
− ρe − ρμ− ¼ 0: ð41Þ

And we have the baryon density and chemical potential as

ρB ¼ 1

3
ðρu þ ρd þ ρsÞ; ð42Þ

μB ¼ μu þ 2μd: ð43Þ

Therefore, we can calculate the properties of the quark
matter with a given baryon chemical potential (baryon
density).

IV. CONSTRUCTION OF THE COMPLETE
EQUATION OF STATE

A. Gibbs construction

After having the EoSs of both the hadron matter and the
quark matter, we derive the complete EoS of the hybrid star
matter by construction.
A widely used construction is the Gibbs construction

[2,65]. It assumes that there is a mixed phase in a density
region in which both quarks and hadrons coexist. Because
of the conservations of the baryon number and the electric
charge number, the baryon chemical potential and the
charge chemical potential are the same, respectively, in
both the quark and the hadron phases. In hadron matter, the
baryon chemical potential μB is the same as the chemical
potential of neutron μn. In quark matter, μB is defined by
Eq. (43). Since the electron carries zero baryon number and
one minus electric charge number, we have μQ ¼ −μe,
where μQ is the charge chemical potential and μe is the
electron chemical potential.
In the mixed region, the pressure of the two phases is the

same. And though the two phases may not be charge
neutral separately, there still exists a global electric charge
neutral constraint. If we define the quark fraction χ
with χ ∈ ½0; 1�, the phase transition condition can be
expressed as

pHðμn; μeÞ ¼ pQðμn; μeÞ; ð44Þ

ð1 − χÞρcHðμn; μeÞ þ χρcQðμn; μeÞ ¼ 0; ð45Þ

where pH and pQ is the pressure of the matter in hadron,
quark phase, respectively, which is a function of both μn
and μe. And ρcH and ρcQ is the electric charge density of the
two phases, respectively.
Combining Eqs. (44) and (45), together with the field

equations of the two phases in Secs. II and III, we can get
the μn and μe with a given quark fraction χ. Then, we can
calculate the pressure, the energy density, and the baryon
density of the two separate phases at the phase equilibrium
state. The energy density and the baryon density of the
mixed phase (in fact at the phase equilibrium state) are
the corresponding superpositions of the contributions from
the two phases, and read

εM ¼ χεQðμn; μeÞ þ ð1 − χÞεHðμn; μeÞ; ð46Þ

ρM ¼ χρQðμn; μeÞ þ ð1 − χÞρHðμn; μeÞ; ð47Þ

where the subscriptsM,Q, andH correspond to the mixed,
quark, and hadron phase, respectively. The pressure of the
mixed phase is just the pressure of each of the two phases,
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pM ¼ pH ¼ pQ: ð48Þ
The calculated relation between the pressure and the

baryon chemical potential of different phases is shown in
Fig. 1. It has been well known that, under the scheme of
Gibbs construction, the phase transition occurs only if there
is a cross point between the P–μB curves of the quark
matter and the hadron matter, since both the pressure and
the chemical potential of the two phases equate to each
other in the phase coexistence region (more concretely, at
the equilibrium state of the phase transition). From Fig. 1
we can notice that there exists always a cross point between
the P–μB curve of the quark matter with different param-
eters and the curve of the hadron matter without hyperons,
but only some of the quark matter curves (with larger α, i.e.,
weaker couplings) cross the curve of the hadron matter with
hyperons and that with both hyperons and Δ-baryons. It
indicates that through the hadron-quark phase transition,
the hadron matter including hyperons can only change
to the quark matter with weak couplings. Therefore to
include the hadron-quark phase transition effects in the
hybrid star matter, only the nucleon matter was taken into
account in Ref. [61] (with the hadron model used in
Ref. [61], when hyperons are included, the phase transition
from hadron to quark cannot happen even for large α). Our
result manifests that, to get massive compact star, it is
naturally not necessary to take the hybrid matter whose

hadron matter sector includes hyperons and Δ-baryons
under the Gibbs construction into account in the following.
Recalling the scheme and the numerical result, one can
know that the Gibbs construction takes only the hadron-
quark phase transition at the critical state(s) [or phase
equilibrium state(s)] into account but does not consider
the effects of the phase transitions occurring at different
states (for example, different densities) explicitly, which
does not match the phase coexistence feature of the
first order phase transition at high density (see, e.g.,
Refs. [21,57–60,79–82]).

B. 3-window interpolation

In the scheme of the 3-window interpolation construc-
tion, as the baryon density increases, the compact star
matter goes through three regions. At low density, the
matter is in hadron phase composed of hadrons which are
approximated as point particles. At high density, quarks,
the components of hadrons, are no longer confined, so that
the properties of the matter are governed by the quark
degrees of freedom. In the middle density, there should be a
transition from hadron matter to quark matter, where
hadrons percolate, and the boundary of any hadron gradu-
ally disappears.
The EoSs of both the hadron and the quark phases are

based on models. The hadron model results are accurate
near the saturation density, but differ greatly in the high
density region, while the quark models are appropriate in
the extremely high density region and lose accuracy at low
density. In the transition region, neither the hadron model
nor the quark model represent the nature individually.
Therefore, an interpolation between the quark and the
hadron phases should be taken.
Here we adopt the ε-interpolation as a function of the

baryon number density as that in Ref. [80], which reads
explicitly as

εðρÞ ¼ f−ðρÞεHðρÞ þ fþðρÞεQðρÞ; ð49Þ

f� ¼ 1

2

�
1� tanh

�
ρ − ρ̄

Γ

��
; ð50Þ

where εH and εQ are the energy density of the hadron
matter and that of the quark matter, respectively. ρ̄ and Γ
are parameters describing the “center” density and the
width of the transition region, respectively. In the tran-
sition region, the hadron and quark matter may not
distribute uniformly; the ε is then an approximation of
the total energy density.
Note that the interpolating function in Eq. (50) is

different from the χ in Gibbs construction. The latter is
the volume fraction of quark matter and characterizes the
dependence of the EoS of the matter at the equilibrium state
of the phase transition on that of the related two phases
(hadron or quark) in a specified region which is determined
by solving the coupled equations. The former, the

FIG. 1. Calculated result of the relation between the pressure
and the baryon chemical potential of the matter with different
particle components. The solid, dashed curve corresponds to that
of the hadron matter without and with hyperons, respectively. The
star curve denotes that of the hadron matter with both hyperons
and Δ-baryons. The line marked with DSα stands for the result of
the pure quark phase with parameter α in Eq. (33).
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interpolating function f� in the 3-window model, charac-
terizes the dependence on the hadron (or quark) EoS at any
possible density but not only those in a specified region.
The variation behavior of the f� in terms of the baryon
number density (with parameters ρ̄ ¼ 3.75ρsat and
Γ ¼ 1.5ρsat) is shown in Fig. 2. It can be easily seen that
at very low density, the dependence on the hadron EoS
approaches 1 and that on the quark EoS approaches 0,
while at extremely high density the EoS approaches the
quark EoS rather than the hadron’s. Moreover, it has been
well known that the transition from hadron to quark in the
high density region is a first order phase transition, whose
phase coexistence region exhibits obvious nonuniform,
anisotropic, and nonequilibrium effects. The 3-window
interpolation construction can be interpreted as an approxi-
mation for these first order phase transition effects.
The pressure of the transition region can be determined

with the thermodynamic relation,

P ¼ ρ2
∂ðε=ρÞ
∂ρ ; ð51Þ

and the baryon chemical potential μ ¼ ðεþ PÞ=ρ.

V. NUMERICAL RESULTS AND DISCUSSIONS

A. Equation of state

The calculated results of the relation between the
pressure and the energy density (the EoS in convention)
of the pure hadron matter and that of the pure quark matter
are shown in Fig. 3. It is apparent that the hadron matter
without hyperons and Δ-baryons has the stiffest EoS, while
all the quark EoS with different values for the parameter α
are softer than all the hadron EoS, with or without hyperons
and Δ-baryons. The inclusion of hyperons softens the EoS
of hadron matter, and including the Δ-baryons does not
change the EoS significantly at low density. However, at
high density, the EoS of the matter with Δ-baryons
becomes nonmonotonic, which is in accordance with some

of the previous results (see, e.g., Refs. [24,97]). Since a
nonmonotonic EoS means that the matter in the star is
unstable, and there is no physical solution for the neutron
star under the nonmonotonic region of the EoS, we then
take into account only the EoS in the density region in
which the EoS of the hadron matter with Δ-baryons is
monotonic.
The calculated results of the EoS of the hybrid star matter

under the Gibbs construction with quark phase fixed via
different parameters in the DSE approach of QCD are
shown in Fig. 4. We take Nq DSα to denote the result of the
hybrid matter including the quark phase described with the
DSE approach and parameter α in Eq. (33).
Recalling the scheme of the Gibbs construction, one can

know that the point at which the curve is not smooth
corresponds to the appearance of quark matter (the lower
unsmooth point) and the disappearance of hadron matter
(the upper unsmooth point), where the quark fraction χ
equates 0, 1, respectively. Figure 4 shows apparently that
the phase transition happens at a lower density in the case
of a larger value of α. This results from the fact that with the
increasing of α, the interaction (or correlation) between
quarks becomes weaker; it is then easier for the quarks to
get deconfined from a hadron. One can also notice that,
although the EoS of the pure quark phase with large α is
stiffer at high density, the EoS of the hybrid star matter in
the phase transition region is softer, because the EoS

 0
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ρ/ρsat

f-
f+

FIG. 2. Variation behaviors of the interpolation functions f�
with respect to the baryon number density (in units of the
saturation nuclear matter density ρsat).

FIG. 3. Calculated EoS of the hadron matter with different
particle compositions and the pure quark matter via different
parameters in the interaction kernel. The solid curve and dashed
curve correspond to that of the hadron phase without and with
hyperons, respectively. The star curve denotes that of the hadron
phase with both hyperons and Δ-baryons. The DSα stands for the
result of the pure quark phase with the parameter in Eq. (33)
taking a value α.
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transits from a stiff nucleon EoS to a stiff quark EoS rather
rapidly.
From Eqs. (49) and (50) one can know that, to implement

the 3-window interpolation scheme to construct the EoS
of the hybrid star matter from those of the hadron matter
and the quark matter, one needs the interpolation function
in terms of the center density ρ̄ and the width Γ of the
transition region. We should then fix the parameters ρ̄ and Γ
at first in practical calculations. The calculated results of the
relation between the pressure and the baryon number
density (P–ρB curves) under several sets of ðρ̄;ΓÞ values
and the corresponding curve of the pure nucleon matter is
illustrated in Fig. 5.
It can be easily seen from Fig. 5 that in the case of narrow

width Γ of the transition region [e.g., the line with
filled circles for ðρ̄;ΓÞ ¼ ð3.5; 1.0Þρsat] and quite large
central density ρ̄ [e.g., the line with up triangles
for ðρ̄;ΓÞ ¼ ð5.0; 2.0Þρsat], the constructed EoS with the
3-window interpolation scheme are nonmonotonic, which do
not match the general behavior of the EoS of a stable state.
Another constraint on the choice of the ðρ̄;ΓÞ is
the consistence of the interpolated EoS with the EoS of
the hadron matter at saturation density, which is believed to
be accurate and requires f−ðρsatÞ ≥ 0.99 [with f−ðρÞ defined
in Eq. (50)]. Considering these two aspects, we take ðρ̄;ΓÞ ¼
ð3.75; 1.5Þρsat in the rest of our calculations in this paper.
The calculated results of the EoS of the hybrid star matter

under the 3-window interpolation construction with

parameters ðρ̄;ΓÞ ¼ ð3.75; 1.5Þρsat and the hadron sector
without or with the inclusion of the hyperons and
Δ-baryons are illustrated in Figs. 6 and 7, respectively.
Comparing with the results in Gibbs construction shown

in Fig. 4, one can notice that there is no clear starting and
ending points of the phase transition in the interpolation
scheme. It indicates that the 3-window interpolation con-
struction provides a more smooth transition of the EoS in
different phases, i.e., represents the phase coexistence
nature of the first order phase transition at high density
really explicitly.
A more significant difference between the results under

the 3-window interpolation and the Gibbs construction is
the stiffness of the EoS. Even though the EoS of the quark
phase is generally softer than that of the hadron phase, the
EoS of the hybrid star matter under the 3-window inter-
polation construction can be stiffer than the hadron EoS in
the transition region, especially for the hadron matter with
the inclusion of hyperons and Δ-baryons. This provides a
promise to get a large mass hybrid star whose composing
matter includes hyperons and Δ-baryons.
The calculated results of the relation between the pressure

and the baryon chemical potential (P–μB curves) under
different construction schemes are shown in Figs. 8–10. It is
known that, for a uniform and equilibrium phase transition,
the pressure of the mixed phase should be generally greater
than not only that of the hadron matter but also that of the
quark matter at a given chemical potential, and therefore the
mixed phase is energy favorable. The results obtained from
the Gibbs construction displayed in Fig. 8 represent such a
feature clearly.

FIG. 4. Calculated EoS of the hybrid star matter under the
Gibbs construction and that of the pure hadron matter without
including hyperons and Δ-baryons (in the solid line). The lines
with different symbols display the EoS of the hybrid matter built
via the Gibbs construction. The Nq DSα marks the one in which
the quark sector is described with parameter α in Eq. (33) in the
DSE approach of QCD.

FIG. 5. Calculated P–ρB curves of the pure nucleon matter
(solid line) and the corresponding hybrid star matter in the
3-window interpolation construction with several sets of param-
eters ρ̄ and Γ (lines with different symbols). The quantities of the
quark matter sector in the interpolation are fixed via the DSE
approach with parameter α ¼ 2, where α is defined in Eq. (33).
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FIG. 6. Calculated EoS of the hybrid star matter under the
3-window interpolation construction with parameters ðρ̄;ΓÞ ¼
ð3.75; 1.5Þρsat (lines with symbols) and that of the hadron matter
without including hyperons and Δ-baryons (solid line). The Nq
DSα marks the one in which the quark sector is fixed with
parameter α in Eq. (33) in the DSE approach.

FIG. 7. The same as Fig. 6 except for that the hadron sector of
the hybrid matter is the one including hyperons and Δ-baryons.

FIG. 8. Calculated P–μB curves of the hybrid star matter under
the Gibbs construction (lines with different symbols) and that of
the hadron phase without including hyperons and Δ-baryons
(solid line). The Nq DSα marks the one in which the property of
the quark sector is described with the parameter α in Eq. (33) in
the DSE approach.

FIG. 9. Calculated P–μB curves of the hybrid star matter under
the 3-window interpolation construction with parameters
ðρ̄;ΓÞ ¼ ð3.75; 1.5Þρsat (lines with symbols) and that of the
hadron matter without including hyperons and Δ-baryons (solid
line). The Nq DSα marks the one in which the quark sector is
described with parameter α in Eq. (33) in the DSE approach.
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Recalling the scheme of the 3-window interpolation
[Eqs. (49)–(51)], one can know that the pressure of the
hybrid star matter reads

P ¼ −εþ ρ
∂ε
∂ρ

¼ f−

�
−εH þ ρ

∂εH
∂ρ

�
þ fþ

�
−εQ þ ρ

∂εQ
∂ρ

�

þ ρεH
∂f−
∂ρ þ ρεQ

∂fþ
∂ρ :

It manifests that the total pressure is not only a super-
position of the pressures of the matter in the two phases
with fraction factor f∓ but also other quite complicated
terms. The pressure of the hybrid matter in the phase
transition region is then not necessarily larger than both the
hadron and quark matters’, since the EoS of not only the
hadron but also the quark matters are unreliable individu-
ally. In other words, the condition mentioned in the last
paragraph is not required. However, the pressure of the pure
hadron matter at small μB and that of the pure quark matter
at large μB should still be the larger, respectively. Our
numerical results shown in Figs. 9 and 10 demonstrate such
a characteristic very well.
To show the characteristics of the EoS of the hybrid star

matter more explicitly, we display the calculated results of
the relation between the pressure and the baryon density
(P–ρB curves) under different construction schemes in
Figs. 11–13. For the result given in the Gibbs construction
shown in Fig. 11, it is clear that with the increasing of
parameter α, phase transition starts and ends at a lower

density, the same as we have seen in Fig. 4. For the α ¼ 2
case, the phase transition starts at around 4ρsat and ends at
around 10ρsat. Such an ending density is too high in the
compact star matter. It manifest that, in the α ¼ 2 case,
there will not be a pure quark core inside the compact star
(this will be discussed further later).
Figures 12 and 13 represent obviously that, for the

3-window interpolation, every constructed P–ρB relation
of the hybrid matter starts to deviate from that of the pure
hadron matter at around saturation density. This is a direct
demonstration of the principle of the interpolation scheme.
However, different from the Gibbs construction, this
deviation does not correspond to the sudden appearance
of quarkmatterwith considerable fraction and the occurrence
of the phase transition. It means only that from this density,
the hadrons cannot be regarded as point particles and the
effect of the quarks inside hadrons begins to play the role.

B. Mass-radius relation

The mass-radius relation of compact stars can be
calculated by solving the TOV equation,

dP
dR

¼ −
G
R2

ðmðRÞ þ 4πPR3Þðεþ PÞ
�
1 − 2G

mðRÞ
R

�
−1
;

ð52Þ

FIG. 10. The same as Fig. 9 except for that the hadron sector of
the hybrid matter is the one including hyperons and Δ-baryons. FIG. 11. Calculated relation between the pressure and the

baryon number density (P–ρB curve) of the hybrid matter under
the Gibbs construction (lines with symbols) and that of the
hadron matter without including hyperons and Δ-baryons (solid
line). The Nq DSα marks the one in which the quark sector is
described with parameter α in Eq. (33) in the DSE approach.
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where G is the gravitational constant and mðRÞ is the mass
inside radius R,

mðRÞ ¼
Z

R

0

4πr2εdr: ð53Þ

Then taking the EoS as input, one can integrate the TOV
equation from inside out to get the mass and radius of the
star with a given center density.
The obtained mass-radius relation for the pure hadron

star and pure quark star is shown in Fig. 14. It is evident that
the neutron star consisting of purely nucleon matter has the
largest maximum mass, while the inclusion of hyperons
and Δ-baryons greatly reduces the maximum mass. Since
the EoS of the hadron matter including both hyperons and
Δ-baryons is not so different from the EoS of the matter
including hyperons but without Δ-baryons, the maximum
mass is nearly the same in the two cases. This confirms the
so-called hyperon puzzle and the Δ puzzle. Meanwhile the
maximum mass of the pure quark star is much lower, and
the radius is also much smaller for quark stars. Moreover
setting different values to the quark parameter α does not
change the mass radius of the quark star significantly.
The obtained mass-radius relation of the pure nucleon

star whose composing matter does not include either
hyperons or Δ-baryons and the corresponding hybrid star
under the Gibbs construction is shown in Fig. 15. The solid
line in the figure is the result of the pure nucleon star
without the hadron-quark phase transition. It is apparent
that the maximum mass of the pure nucleon star in this case
is 2.06 M⊙, and the corresponding radius is 10.5 km.
Figure 15 manifests clearly that including the quark

degrees of freedom via the Gibbs construction reduces the

FIG. 12. Calculated P–ρB curves of the hybrid star matter under
the 3-window interpolation construction with parameters
ðρ̄;ΓÞ ¼ ð3.75; 1.5Þρsat (lines with symbols) and that of the
hadron matter without including hyperons and Δ-baryons (solid
line). The Nq DSα marks the one in which the quark sector is
described with parameter α in Eq. (33) in the DSE approach.

FIG. 13. The same as Fig. 12 except for that the hadron sector
of the hybrid matter is the one including hyperons andΔ-baryons.

FIG. 14. Calculated mass-radius relation of a compact star with
pure hadron matter or pure quark matter. The DSα marks the one
in which the quark matter is described with parameter α in
Eq. (33) in the DSE approach of QCD.

ZHAN BAI, HUAN CHEN, and YU-XIN LIU PHYS. REV. D 97, 023018 (2018)

023018-12



maximum mass of the hybrid star. For the stars with lower
mass, the curves of the mass-radius relation of the hybrid
stars are the same as the pure nucleon star’s, because for
such stars, the center density is below the hadron-quark
phase transition threshold. In more detail, the results of the
hybrid star with EoS of the quark matter in DSE approach
(DSα) with a lager α deviate from that of the nucleon star
with small radius drastically. The maximum mass of the
hybrid star drops from 1.89 M⊙ in DS2 to 1.47 M⊙ in
DS5, and the corresponding radius decreases from
11.05 km in DS2 to 9.96 km in DS5. Notice that, in the
case of DS2, the hybrid star reaches its maximum mass
soon after the phase transition begins, and then drops while
the mass of the nucleon star is still increasing. Therefore,
the corresponding radius is larger in the DS2 case.
The obtained results of the mass-radius relation of the

hybrid star with the EoS of the matter being constructed by
the 3-window interpolation with parameters ðρ̄;ΓÞ ¼
ð3.75; 1.5Þρsat and that of the neutron star whose ingredient
matter not including or including hyperons and Δ-baryons
are illustrated in Figs. 16 and 17, respectively.
One can see from the figures that, just like those in the

case of the Gibbs construction, the maximum mass and
the corresponding radius of the hybrid star decrease with
the increasing of the parameter α in the DSE approach.
However, comparing with the case under the Gibbs con-
struction in which the maximum mass of the hybrid star is
generally smaller than that of the neutron star, one can
recognize that, by 3-window interpolation construction,
even though the curves of the mass-radius relation differ in
shape, the maximum mass can be the same. Concretely, the

maximum mass of the hybrid star without the inclusion of
hyperons and with quark parameter α ¼ 2 is 2.06 M⊙,
which is exactly the same as that of the pure neutron star.
Nevertheless, the radius of the hybrid star in the case of
DS2 shown in Fig. 16 is generally larger than that of the
pure nucleon star. The radius of the hybrid star with the
maximum mass is 12.40 km, and that of the 1.4 M⊙ hybrid
star is 12.64 km.

FIG. 15. Calculated mass-radius relation of a neutron star
without the inclusion of hyperons (solid line) and those of hybrid
stars with the EoS of the composing matter being fixed using the
Gibbs construction (lines with symbols). The Nq DSα notation
marks the one in which the quark sector is described with
parameter α in Eq. (33) in the DSE approach of QCD.

FIG. 16. Calculated mass-radius relation of a neutron star
without the inclusion of hyperons (solid line) and those of hybrid
stars with the EoS of the composing matter being constructed
using the 3-window interpolation with parameters ðρ̄;ΓÞ ¼
ð3.75; 1.5Þρsat (lines with symbols). The Nq DSα notation marks
the one in which the quark sector is described with parameter α in
Eq. (33) in the DSE approach of QCD.

FIG. 17. The same as Fig. 16 except for that the solid line
corresponds to the result of the neutron star whose ingredients
include hyperons and Δ-baryons.
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As for the results in the case with hyperons and Δ-
baryons, Fig. 17 displays that the inclusion of the quark
phase can even increase the maximum mass of the star. In
detail, in the case of including hyperons andΔ-baryons, the
maximum mass of the hadron star is only 1.69 M⊙, but the
maximum mass of the hybrid star with quark parameter
α ¼ 2 is 2.01 M⊙, exceeding 2-solar mass. The radius of
the hybrid star including the quark matter in the case of
DS2, moreover, is larger than that of the hadron star with
the same mass except for the cases in which the mass is
very small. The radius corresponding to the maximummass
of the hybrid star is 12.03 km, while that of the 1.4 M⊙
hybrid star is 12.53 km.
Comparing Figs. 16 and 17, one can see that though the

mass-radius relation curves of the neutron stars with and
without the inclusion of hyperons and Δ-baryons differ
greatly, the curves of the hybrid stars with the same quark
parameter remain similar. This may imply that the appear-
ance of hyperons and Δ-baryons affects the EoS of the
hybrid star matter under the 3-window interpolation con-
struction quite slightly.
To summarize the main results of the properties of the

stars and for the convenience of further discussion, we list
our obtained maximum mass, the corresponding radius,
and center density of the hybrid star whose EoS of the
composing matter is fixed with different construction
schemes in Table II.

C. Composing particle configuration

One can notice easily from Table II that the pure nucleon
star can be quite massive with a maximum mass exceeding
2 M⊙ but either the neutron star whose composing matter
includes hyperons or both hyperons and Δ-baryons or the
pure quark star cannot be so massive. Nevertheless the
hybrid star whose EoS of the composing matter is fixed
with the 3-window interpolation scheme can have a
maximum mass about 2 M⊙, i.e., the 3-window interpo-
lation construction scheme can solve the hyperon puzzle
(and the Δ puzzle). To show this more explicitly and
understand the mechanism, we resort to the composing
particle configuration in the hybrid star matter.
At first we show the calculated results of the particle

fraction as a function of baryon density for the hadron
matter in Figs. 18 and 19, with hyperon only and with both
hyperon and Δ-baryon, respectively. Comparing Figs. 18
and 19 one can see that the hyperons begin to appear at
2ρsat, and Δ-baryons emerge also at that density. In more
detail, the Σ−-hyperon appears at about 1.93ρsat and then
the chargeless Λ-hyperon at about 3.2ρsat. Such a sequence
is just a result given with the traditional parameters of the
hyperon couplings [2,88]. If one takes the modern repulsive
Σ-nuclear potential (e.g., Refs. [98–100]) into account, the
Σ–Λ sequence can get inverted (e.g., Refs. [16,32,101]),
but the mass-radius relation maintains almost the same
(especially for the hybrid stars).

One can see further from Figs. 18 and 19 that the
inclusion of Δ-baryons suppresses the fraction of the Σ−

hyperon, electron, and muon, and the fraction of the
neutron is also suppressed at high density. It means that
the Δ-baryons (especially the Δ−) replace the hyperons
(especially the Σ−). Such a simultaneous appearance of the
hyperons and Δ-baryons and the replacement induce that
the EoS of the hadron matter including both hyperons
and Δ-baryons is almost the same as that not including

TABLE II. Calculated results of the maximum mass, the
corresponding radius and center density of the pure hadron star
(NS) and pure quark star (QS), and those of the hybrid stars (HS)
whose EoS of the composing (hybrid) matter is determined with
different construction schemes and different parameters for the
quark sector.

Mmax=M⊙ RðMmaxÞðkmÞ ρc=ρsat

N 2.06 10.53 7.18
NS NY 1.69 9.93 8.76

NYΔ 1.66 10.18 7.71

DS2 1.27 7.66 10.59
QS DS3 1.26 7.53 11.39

DS4 1.28 7.52 11.88
DS5 1.32 7.58 11.90

Nq DS2 1.89 11.05 6.81
HS Nq DS3 1.72 10.94 7.25
Gibbs Nq DS4 1.57 10.75 7.25

Nq DS5 1.47 9.96 8.80

Nq DS2 2.06 12.40 5.39
HS Nq DS3 1.76 12.10 5.32
3 window Nq DS4 1.53 11.81 5.33

Nq DS5 1.40 9.71 9.87

NYΔq DS2 2.01 12.03 5.72
HS NYΔq DS3 1.72 11.53 6.04
3 window NYΔq DS4 1.51 10.68 7.38

NYΔq DS5 1.42 9.64 9.74

FIG. 18. Calculated result of the particle fraction of the hadron
matter including nucleons and hyperons.
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Δ-baryons, just as Figs. 1 and 3 have shown. In turn the Δ
puzzle and the hyperon puzzle appear simultaneously.
The calculated result of the baryon density dependence

of the particle fraction of the hybrid matter under the Gibbs
construction and the variation behavior of the particle
fraction of the matter in terms of the distance from the
center of the maximum mass hybrid star are illustrated in
Figs. 20 and 21, respectively. The quark sector in the Gibbs
construction is that described with the parameter α ¼ 2.
The two figures manifest apparently that in the low density
region (the outer part of the star) the composing particles of
the matter are pure hadrons, and the quarks appear as the
density is about 3–4ρsat (exist in the core with a radius
about 6 km). And at about 8ρsat, which is beyond the center
density of the maximum mass hybrid star, the number

fraction of the quarks and hadrons is of the same order.
Since the lower density hadron mantle region (composed of
nucleons) is quite large (more than five times the volume of
the hybrid matter region) and the EoS of the hadron matter
at low baryon density is rather soft (as shown in Figs. 3–6)
and that of the hybrid matter is much softer (see Fig. 4),
such a hybrid star can then not be very massive.
We have also calculated the baryon density dependence

of the particle fraction of the hybrid matter under the 3-
window interpolation construction, as well as the variation
behavior of the particle fraction of the matter in terms of the
distance from the center of the maximum mass hybrid star.
The obtained result of the baryon density dependence of the
particle fraction in the hybrid matter whose hadron sector
consists of only nucleons is shown in Fig. 22. Those for the
cases in which the hadron matter sector includes hyperons,
both hyperons and Δ-baryons are displayed in Figs. 23
and 24, respectively. The calculated results of the variation
behavior of the particle fraction of the matter in terms of the
distance from the center of the maximum mass hybrid star
are illustrated in Figs. 25–27 for the three cases of the
hadron matter, respectively. The quark sector in the 3-
window interpolation construction is also that described
with the parameter α ¼ 2. Since we are using the inter-
polation of the energy contribution to describe the phase
transition region, the direct particle fraction Yi does not
have the usual meaning. Therefore, we take fi × Yi [with fi
defined in Eq. (50)] to identify the particle fraction, which
represents the effect of a certain species of the particles on
the EoS.
From Figs. 22–27, one can recognize distinctly that the

quark matter appears at very low baryon density (according
to our interpolation scheme, the contribution factor fQ ¼
fþ ∼ 0.01 at ρB ¼ ρsat). The hyperons and Δ-resonances
appear as ρB ≈ 2ρsat, or in other words, exist in the region

FIG. 19. Calculated result of the particle fraction of the hadron
matter including nucleons, hyperons, and Δ-baryons.

FIG. 20. Calculated result of the baryon density dependence of
the particle fraction in the hybrid star matter under the Gibbs
construction, where the hadron matter does not include either
hyperons or Δ-baryons, and the parameter describing the prop-
erty of the quark matter is α ¼ 2. Yi ¼ ρi=ρB for the hadron
sector and Yi ¼ ρi=3ρB for the quark sector.

FIG. 21. Calculated variation behavior of the particle fraction of
the matter in terms of the distance from the center of the maximal
mass hybrid star under the Gibbs construction. The other items
are the same as Fig. 20.
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R < 10 km (in more detail, the Δ-resonances cannot exist
in the region very close to the center). These facts manifest
that the hadron mantle of the hybrid star consists of only
nucleons and is very thin; the hybrid star is thus composed
mainly of the hybrid matter. Referring to Figs. 6,7, 12, and
13, one can know that the EoS of the hybrid star matter
under the 3-window interpolation construction (no matter
whether the hadron matter sector includes hyperons and Δ-
baryons or not) is quite stiff [even much stiffer than that of
the corresponding hadron matter’s in the ρB ∈ ð2–4Þρsat
region]. As a consequence, the maximum mass of the
hybrid star can be as massive as exceeding 2 M⊙, almost
the same as that of the pure nucleon star.

It is also remarkable that as the compact star with
maximum mass exceeding 2 M⊙ is obtained (or, in other
words, the hyperon puzzle and the Δ puzzle are solved)
when one takes the quark degrees of freedom (or the
hadron-quark phase transition) into account, there does not
exist a pure massive quark star, even there is no pure quark
core inside the maximum mass hybrid star. In Gibbs
construction for the hybrid star matter, the core consists
of a considerable fraction (about 51%) of nucleons. While
in the 3-window interpolation scheme, quark matter con-
tributes definitely most (about 94%) to the center region of
the star but there still exist nucleons and hyperons (about

FIG. 22. Calculated result of the baryon density dependence of
the particle fraction in the hybrid star matter under the 3-window
interpolation construction, where the hadron matter does not
include either the hyperons or the Δ-baryons, and the parameter
to describe the property of the quark matter is α ¼ 2. Yi ¼ ρi=ρB
for the hadron sector and Yi ¼ ρi=3ρB for the quark sector, and
fi ¼ fH;Q ¼ f−;þ is that defined in Eq. (50).

FIG. 23. The same as Fig. 22, but the hadron matter sector in
the construction including hyperons.

FIG. 24. The same as Fig. 22, but the hadron matter sector in
the construction including both hyperons and Δ-baryons.

FIG. 25. Calculated variation behavior of the particle fraction of
the matter in terms of the distance from the center of the
maximum mass hybrid star under the 3-window interpolation
construction. The hadron phase in the hybrid matter does not
include hyperons and Δ-baryons. The parameter describing the
property of the quark sector is α ¼ 2. Yi ¼ ρi=ρB for the hadron
sector and Yi ¼ ρi=3ρB for the quark sector, and fi is that defined
in Eq. (50).
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6%), and a considerable amount of hyperons and
Δ-resonances appears in the middle region (about 13%).
The mechanism for the solving of the so-called hyperon
puzzle and the Δ puzzle can then be attributed to that the
hadron-quark phase transition (the mixing of the hadron
matter and the quark matter) stiffens the EoS of the hybrid
matter at the middle and high density region.

VI. SUMMARY AND REMARKS

We have investigated the mass-radius relation of hybrid
stars with both the Gibbs construction and the 3-window
interpolation construction for the EoS of the composing
matters in this paper. For that of the hadron phase we adopt
the result of the relativistic mean field theory, and for that of

the quark phase we take the result via the Dyson-Schwinger
equation approach of QCD.
Our calculation manifests that the Gibbs construction

results in a rather soft EoS for the hybrid star matter, while
for the 3-window interpolation, the EoS of the hybrid star
matter can be stiffer than those in both the hadron phase and
the quark phase separately. Therefore, for a hybrid star
whose hadron matter sector includes hyperons and
Δ-resonances, the maximum mass can exceed 2 M⊙,
which is in accordance with the observations several years
ago as well as the upper limitation of maximum mass of
∼2.17 M⊙ by recent gravitational wave estimation [102].
It indicates that taking the hadron-quark phase transition

into account with the 3-window interpolation scheme to
construct the EoS of the hybrid star matter can solve the
hyperon puzzle and the Δ puzzle. Nevertheless the high-
mass compact star is not a pure quark star, or even a hybrid
star with a pure quark core. More concretely, the matter
around the center involves nucleons and hyperons, and that
in the middle region even has Δ-baryons. This provides a
further evidence for the happening of the hadron-quark
phase transition in the core of the compact star and the
significance of the phase coexistence in governing the
properties of compact stars.
For the radius of the compact stars, our result of the

hybrid star seems larger than some of the estimates from
observational data at first glance. For example, the radius of
the neutron star with canonical mass, 1.4 M⊙, is estimated
to be R1.4 ∈ ð9.7; 13.7Þ km based on chiral effective theory
[103], or 9.4� 1.2 km by analyzing the quiescent x-ray
transients in low mass x-ray binaries [104]. However, our
present result coincides with some of the previous results
(see, e.g., Refs. [30,88]), and also the most recent estima-
tion via gravitational wave [105]. Furthermore, in view of
the result that the effective radius of a hadron increases with
respect to the increase of the density (or temperature) of the
strong interaction matter (see, e.g., Refs. [93,106–108]), we
believe our present result is reasonable.
Analyzing the detail of our calculation and the obtained

results, we confirm that the maximum mass of the neutron
star is determined mainly by the stiffness of the EoS at
density above ð2 ∼ 4Þρsat, and the slope of the mass-radius
relation curve is related closely with the EoS in the range of
ρB ≈ ð2 ∼ 4Þρsat [4–6]. In turn, an EoS which is stiff at
middle and high densities while soft at lower density can be
expected as the perfect one. And this may be reached by
changing the parameters describing the quark phase.
Recalling our calculation process, we know that the
parameter α in Eq. (33) in the DSE approach affects the
stiffness of the EoS in quark phase at densities relevant to
that in the core of the star, and the bag constant in Eq. (39)
determines the pressure at zero density. Therefore, it is
possible to get a perfect EoS by adjusting the α and BDS.
The relevant work is under progress.

FIG. 26. The same as Fig. 25, but for that the hadron matter
sector in the construction includes hyperons.

FIG. 27. The same as Fig. 25, but for that the hadron matter
sector in the construction includes both hyperons and Δ-baryons.
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