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We discuss the role of dynamical tidal effects for inspiraling neutron star binaries, focusing on features
that may be considered “unmodeled” in gravitational-wave searches. In order to cover the range of
possibilities, we consider (i) individual oscillation modes becoming resonant with the tide, (ii) the elliptical
instability, where a pair of inertial modes exhibit a nonlinear resonance with the tide, and (iii) the
nonresonant p-g instability which may arise as high-order pressure (p) and gravity (g) modes in the star
couple nonlinearly to the tide. In each case, we estimate the amount of additional energy loss that needs to
be associated with the dynamical tide in order for the effect to impact on an observed gravitational-wave
signal. We explore to what extent the involved neutron star physics may be considered known and how one
may be able to use observational data to constrain theory.
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I. INTRODUCTION

With the announcement of the first direct detection of
gravitational waves from the late inspiral phase of a
double neutron star system, GW170817 [1], we enter
an exciting new era for gravity, astrophysics and nuclear
physics. From the gravity perspective, binary merger
signals lend support for Einstein’s theory in the dynamical
strong field regime. From the astrophysics point-of-view,
one may anticipate that observed event rates will give
insight into the formation channel(s) for these systems [2].
Moreover, the positive identification of electromagnetic
counterparts to the merger events [3,4] confirms the
theory paradigm for short gamma-ray bursts [5,6] and
may shed light on the r-process nucleosynthesis (e.g.,
through a kilo-nova signature [7–16]). Finally, these
observations are of tremendous importance for nuclear
physics as they help unlock the secrets of the equation of
state for matter at supranuclear densities.
Neutron star binaries allow us to probe equation of state

physics in several unique ways, ranging from subtle to
dramatic. As the stars enter the sensitivity band of ground-
based detectors, finite-size/fluid effects come into play. For
a given binary separation, a, the interaction with a binary
companion (with mass M2) raises a tide of height

ϵ ≈
M2

M1

�
R1

a

�
3

ð1Þ

on the primary (with massM1 and radius R1). The response
of the star, in the form of the tidal deformability encoded in
the so-called Love numbers (which depend on the star’s

mass and radius) leaves a secular imprint on the gravita-
tional-wave signal [17–19]. In addition, the star responds
dynamically to the tidal interaction. As the binary sweeps
through the detector’s sensitivity band resonances with
various oscillation modes may become relevant. Notably,
even though it is not expected to exhibit a resonance before
the stars merge, the tidal excitation of the star’s funda-
mental f mode is likely to be significant [20]. This
represents an aspect of the dynamical tide. The different
tidal effects are expected to be subtle, but one would
nevertheless hope to match observations to theory predic-
tions to extract the stellar parameters (mass and radius for
each of the two binary companions) and hence constrain the
cold equation of state.
The final merger provides a contrast in complexity. The

violent merger dynamics requires full nonlinear simulations
(see [21] for a recent review of the state of the art),
implementing a challenging range of physics (from mag-
netohydrodynamics to neutrino transport). Nevertheless,
simulations [22–24] hint at robust signal features which
may eventually provide insight into thermal aspects of the
equation of state. However, detecting these features with
the current generation of instruments is a serious challenge
since the merger signal peaks at several kHz [25,26].
If we want to consider a realistic scenario for the first set

of binary neutron star detections, we can combine the fact
that no signals were observed in the initial LIGO era (which
sets a reasonable “upper limit” for likely signals) with the
sensitivity level of the first observation runs of the
advanced instruments [27]. This suggests that one would
expect the first signals to be suppressed by high-frequency
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instrument noise well below the merger frequency. Any
extraction of nuclear physics information then relies on
precise template matching for the inspiral phase. This
should be within reach as long as the only relevant feature
is the tidal compressibility. However, there are aspects of
the problem that may not (at least not any time soon) be
accessible to detailed modeling. The aim of this paper is to
explore (some of) the relevant issues, raise awareness of the
associated modeling challenges and outline an observation-
led approach that may (eventually) help constrain theoreti-
cal parameters from a given signal.
As an illustration of the range of possibilities, we

consider three dynamical effects associated with a star’s
tidal response. First, we revisit the problem of resonances,
where a given stellar oscillation mode grows as it becomes
resonant with the orbital frequency [28–30]. Our second
example is, as far as we are aware, novel for neutron stars:
We estimate the role of the elliptical instability [31–33] on
the orbital evolution. This is also a resonant phenomenon,
although in this case it is a pair of inertial modes that couple
to the tide. The third, and final, example is provided by the
so-called p-g instability [34,35]. This is a nonresonant
mechanism which is supposed to arise due to a strong
nonlinear coupling between high-order pressure (p) and
gravity (g) modes in the star’s core. It has been suggested
that this instability becomes active when the system evolves
beyond 50 Hz or so, i.e., shortly after the signal enters the
detector band, and that it grows to the point where it has
severe impact on the gravitational-wave phasing [36].
While it is clear from the detection of GW170817 that
the effect will not be strong enough to prevent detection, it
is far from easy to establish to what extent it may affect
parameter estimation. The p-g instability involves short
wavelength oscillation modes, and these are sensitive to the
internal physics.
In order to assess the relevance of dynamical effects

associated with the tidal interaction, we will make use of a
series of back-of-the-envelope level estimates. These may
not be particularly useful if one is interested in precise
statements, but they provide an immediate idea of issues
that may warrant more detailed attention. We consider the
energetics of additional mechanisms that may sap energy
from the binary orbit, and hence impact on the gravitational-
wave signal. As a simple measure, we focus on the number
of wave cycles in a signal between a frequency f ¼ fa,
when the signal first enters the detector band, and fb,
when it dives into the noise again. As a specific example,
we will consider the (potentially conservative) frequency
range from fa ≈ 30 Hz to fb ≈ 300 Hz in the following.
The idea is simple; once an additional mechanism leads

to an overall shift of about half a cycle in the waveform then
there would be no further accumulation of signal-to-noise
in a matched filter search [18]. Hence, if the total number of
cycles is N ¼ N ðfÞ (where f is the gravitational-wave
frequency) then a shift ΔN > 0.5 (or equivalently, a phase

shift ΔΦ ¼ 2πΔN of order a few radians) would suggest
that the effect could be distinguishable. This rough criterion
will be sufficient for our (somewhat qualitative) discussion.
Basically, we assume that an additional dynamical effect
would (i) suppress detectability and affect parameter
extraction with a given search template (that does account
for the effect) if ΔN > 0.5, but it should be safe to assume
that (ii) the effect will not be relevant if ΔN ≪ 1.
The ultimate aim of the discussion is to consider two

questions: Do we need to worry about “unmodeled” aspects
of the tidal problem? If so, to what extent can we use
observational data to constrain the involved theory?

II. INSPIRALING BINARIES

We take the leading-order gravitational radiation reaction
as our starting point. That is, we assume that gravitational-
wave emission drains energy from the orbit at a rate

Ėgw ¼ −
32MΩ
5c5

ðGMΩÞ7=3 ð2Þ

where the chirp mass is given by

M ¼ μ3=5M2=5 ¼ M1

�
q3

1þ q

�
1=5

ð3Þ

with the total mass M ¼ M1 þM2, reduced mass μ ¼
M1M2=M and mass ratio q ¼ M2=M1. In the case of a pair
of 1.4 M⊙ neutron stars (which we take as our canonical
example throughout the discussion) we haveM ¼ 1.2 M⊙.
As we are considering how we can use observations to

constrain the involved neutron star physics, it is important
to establish to what extent the various parameters are
already known. For the mass ratio q, we know from radio
observations that double neutron systems may be asym-
metric, as in the case of PSR J0453+1559 where the two
masses are 1.174 M⊙ and 1.559 M⊙ [37]. Given this,
it would not be surprising to find a mass ratio in the
range (taking the primary to be the heavier companion)
0.7 ≤ q ≤ 1.
The orbital frequency Ω follows from Kepler’s law

Ω2 ¼ GM
a3

; ð4Þ

which links the observed gravitational-wave frequency

f ¼ Ω
π

ð5Þ

to the orbital separation a.
Given the Newtonian orbital energy

Eorb ¼ EN ¼ −
GM1M2

2a
¼ −

M
2

ðGMΩÞ2=3; ð6Þ
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it follows that the orbit evolves in such a way that

_Ω
Ω

¼ −
3

2

_a
a
¼ 3

2

Ėorb

Eorb
≈
3

2

Ėgw

EN
¼ 96

5c5
ðGMΩÞ5=3Ω≡ 1

tD
ð7Þ

defines the inspiral time scale tD. That is, we have

tD ≈ 140

�
M

1.2 M⊙

�
−5=3

�
f

30 Hz

�
−8=3

s: ð8Þ

The two neutron stars will merge about 2 minutes after the
system enters our assumed frequency range. The result also
manifests the well-known fact that the leading order gravi-
tational-wave signal only encodes the chirp mass. However,
one would expect to be able to extract the individual masses
(and possibly the spins) from higher order post-Newtonian
corrections [38]. This is important as the stellar parameters
enter the discussion of the tidal response. These effects are,
of course, subtle, and a key question concerns to what extent
unmodeled features may limit the precision of the parameter
extraction. It is important to keep in mind that, while one
may expect to obtain fairly good estimates for the individual
masses, it will be more difficult to infer the individual spin
rates (the spin-spin and spin-orbit coupling effects are likely
to be weak).
As long as it is safe to ignore other aspects, the binary

signal would be associated with a total number of cycles,

N gw ¼
Z

tb

ta

fdt ¼
Z

fb

fa

f

ḟ
df ¼

Z
fb

fa

tDdf

¼ c5

32πðGMπfaÞ5=3
�
1 −

�
fa
fb

�
5=3

�
: ð9Þ

For our example frequency range the total number of cycles
would be N gw ≈ 2500.
Let us now consider the possibility that the tidal

dynamics leads to some additional change of orbital
energy, say at a rate Ėtide. This will lead to a change in
the number of wave cycles in the observed frequency
range. Specifically, with

Ėorb ¼ Ėgw þ Ėtide ð10Þ

we have

N ¼ 2

3

Z
fb

fa

Eorb

Ėorb
df ≈

Z
fb

fa

tD

�
1 −

Ėtide

Ėgw

�
df

¼ N gw þ ΔN ; ð11Þ

where the last step should be a good approximation if
Ėtide ≪ Ėgw. We see that the additional torque leads to a
contribution,

ΔN ¼ −
Z

fb

fa

tD

�
Ėtide

Ėgw

�
df: ð12Þ

This allows us to estimate the relevance of any mechanism
that is active through the observed frequency range. Note
that, even though one might intuitively expect an increase
in the rate of inspiral, e.g., a decrease in the number of
cycles, there may be situations where the opposite
happens and an additional mechanism pumps energy into
the orbit. In this case the number of cycles would
obviously increase. We discuss a particular example of
this later.
Moreover, we have not accounted for any changes to the

orbital energy associated with the tidal effect. If we do this,
say, by letting Er represent the deviation from the post-
Newtonian result,

Eorb ¼ EN þ Er; ð13Þ

then we arrive at

N ¼ 2

3

Z
fb

fa

Eorb

Ėorb
df ≈

Z
fb

fa

tD

�
1þ Er

EN
−
Ėtide

Ėgw

�
df: ð14Þ

As we will see later, the additional phase shift may be
important, but it is not all that easy to quantify for the
dynamical problems we will consider. To do this one would
need an explicit model for the interaction between the
tidally excited fluid motion and the orbital dynamics and
this would inevitably involve unknown “efficiency” factors.
We also need to consider the possibility of resonances,

where the additional energy loss is associated with a (more
or less) distinct frequency. In this case, we may rewrite (12)
as

ΔN ≈ −
Z

aðfbÞ

aðfaÞ
f
dEtide

da
1

Ėorb
da: ð15Þ

After integration, this leads to (cf. [29], noting the different
definition of tD)

ΔN ≈ −
�
fΔEtide

Ėorb

�
f¼fα

≈ −
�
3

2

ftDΔEtide

EN

�
f¼fα

; ð16Þ

whereΔEtide is the total energy transferred from the orbit to
the resonant mode, and the expression should be evaluated
at the resonance frequency f ¼ fα (where α is a label that
identifies the resonant mode).
As a useful comparison and illustration of the level of

uncertainty of the discussion, let us sketch the impact of the
tidal deformability. From the results of [18] we have the
quadrupole contribution (from one of the stars)
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2πΔN ≈ −
13

2

1

qð1þ qÞ4=3
�
c2R1

GM1

�
5=2

�
πf
Ω0

�
5=3

~k2 ð17Þ

with

Ω0 ¼
�
GM1

R3
1

�
1=2

≈ 2π × 2200 Hz

�
M1

1.4 M⊙

�
1=2

�
R1

10 km

�
−3=2

; ð18Þ

where ~k2 is a weighted average of the Love number,

~k2 ¼
1

26
ð1þ 12qÞk2: ð19Þ

Typical results, for an equal mass binary of Newtonian
n ¼ 1 polytropes (for which k2 ¼ 0.26), are shown in
Fig. 1. The figure illustrates that the tidal deformability
comes into play at late stages of inspiral. In the example
provided in the figure the effect would not be “detectable”
below f ≈ 400 Hz, i.e., it would become relevant outside
our chosen frequency range. Of course, we should keep in

mind that less massive neutron stars leave a stronger
imprint on the signal [18], cf. Fig. 1.
In order to arrive at (17) one has to, first of all, consider

the (formally 5th order post-Newtonian contribution) con-
tribution to the radiation reaction,

Ėtide ¼ Ėgw
4ð1þ 3qÞ
ð1þ qÞ5=3

�
πf
Ω0

�
10=3

k2; ð20Þ

and the corresponding contribution to the orbital energy
[18]. If we were to account for only the first of these, e.g.,
strictly follow the strategy that led to (12), then the final
result would differ by about a factor of 2 for the equal mass
case. In fact, the contribution to the orbital energy domi-
nates. As we do not expect the estimates in the following to
be accurate to factors of order unity, this may not be a major
concern. However, it is important to understand that this is
the level of “accuracy” we are working at. It is also worth
noting that this factor would sufficiently decrease the
impact of the tidal compressibility such that it would only
come into play at very high frequencies, cf. Fig. 1. This
demonstrates the importance of more precise modeling,
but, as we shall see, dynamical tides involve physics that
are sufficiently uncertain such that this may not (yet) be
within reach.

III. RESONANCES

Neutron stars have rich internal dynamics with different
sets of oscillation modes, more or less directly associated
with specific aspects of the physics [39]. The modes are
typically characterized in terms of a harmonic time
dependence eiωt and an expansion in spherical harmonics
Ylm, with l associated with the polar angle andm following
from the dependence on the azimuthal angle as eimφ. This
decomposition is “clean” for nonrotating stars, but rotation
couples the different harmonics, which makes a study of the
seismology of fast spinning neutron stars more challenging
[40]. However, binary systems that enter the sensitivity
band of ground-based gravitational-wave detectors will be
relatively old, so it seems reasonable to assume that the
stars would have had ample time to evolve and spin down
to modest rotation rates. The fastest known pulsar in a
double neutron star system, PSR J0737-3039A, currently
spins with a period of P ¼ 1=fs ¼ 0.0227 s [41]. If we
take the observed spin-down rate _P ¼ 1.76 × 10−18 and
assume the standard magnetic dipole braking index of
n ¼ 3 we can evolve this system into the distant future. We
then find that this pulsar would enter the LIGO band
spinning at a frequency fs ≈ 35 Hz. This may seem a high
rate of spin, but it is far below the break-up speed (see
below). At this rotation rate the star is nearly spherical so a
(slow-rotation) expansion (in Ylm) should be adequate. This
conclusion may, of course, change if a faster spinning
object were to be found in a neutron star binary. In this
context, it may be worth noting PSR J1807-2500B, which

0 200 400 600 800 1000
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FIG. 1. A schematic illustration of the impact of tidal deform-
ability on a binary neutron star signal. We show the estimated
shift in the number of gravitational wave cycles jΔN j as a
function of the gravitational-wave frequency f. The grey band
follows from (17) if we assume a Newtonian n ¼ 1 polytrope (for
which k2 ≈ 0.26), two equal 1.4 M⊙ neutron stars (thus doubling
the value of ΔN ), and the “reasonable” range of radii 10–14 km.
The dashed curves show how this band shifts if we consider the
(likely unrealistic) case of two 1.1 M⊙ stars. (For more detailed/
realistic models, see, for example, Fig. 4 in [18].) The dashed
horizontal line represents the indicative level of jΔN j ≈ 0.5
above which the effect will leave an imprint in a matched filter
search, and the vertical shaded region represents our example
frequency range between 30 and 300 Hz.
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spins at 239 Hz [42], but the nature of the binary partner in
this system is uncertain. For evolutionary reasons, as it
provides a natural explanation for the fast spin, one may
expect the companion to be a white dwarf.
The tidal interaction provides a driving force on the

stellar fluid, characterized by the time dependence eim
0ΦðtÞ

where ΦðtÞ ≈Ωt as long as the evolution is adiabatic. The
tidal driving is also expanded in harmonics, and the general
expression may lead to different couplings to the fluid
motion, especially if the orbit is eccentric. However, as we
are focusing on the main features, we will consider the
simplest case of a circular and coplanar orbit in the
following. In this case, the main tidal effect arises from
the quadrupole l ¼ 2 coupling, and we also have m ¼ m0.
We are then left with two distinct components. The
equilibrium tide is associated with m ¼ 0, while the
dynamical tide arises from m ¼ �2. In order to simplify
the discussion, we will also focus on the tidal response of
one of the stars. A realistic signal discussion would have to
combine the results for the two stars (see, for example,
[18]), but as we are not aiming to make a particularly
precise statement, we leave this for future work.

A. Nonrotating stars

Let us first consider the case of a nonrotating star, in
which case the differentm harmonics are degenerate. In this
case, we can use the results from [29],

ΔEtide ≈ −
π2

512

�
GM2

1

R1

�
ω̂1=3
α Q2

α

�
R1c2

GM1

�
5=2

q

�
2

1þ q

�
5=3

;

ð21Þ

where we have introduced the dimensionless mode fre-
quency ω̂α through

ωα ¼ ω̂αΩ0: ð22Þ

The remaining parameter, Qα, encodes the “overlap inte-
gral” which determines the strength of the tidal coupling to
particular stellar oscillation modes. We also have the
resonance condition

ωα ¼ 2πfα ¼ 2Ω ¼ 2πf: ð23Þ

It is important to note that, for the quadrupole case, the
oscillation frequency of the resonant mode (fα) is equal to
the observed gravitational-wave frequency (f).
If we introduce the resonance radius

aα ¼
�
4GM1ð1þ qÞ

ω2
α

�
1=3

; ð24Þ

it readily follows that

EN ¼ −
1

25=3

�
GM2

1

R1

�
ω̂2=3
α

q

ð1þ qÞ1=3 ð25Þ

and

ΔEtide

EN
≈

π2

128 × 21=3
ðπf̂αÞ−1=3Q2

α

�
R1c2

GM1

�
5=2

�
2

1þ q

�
4=3

;

ð26Þ

where f̂α ¼ ω̂α=2π. At resonance, we also have

ftD ¼ 5

96π
ðπf̂αÞ−5=3

�
c2R1

GM1

�
5=2 ð1þ qÞ1=3

q
; ð27Þ

and it follows from (16) that

ΔN ≈ −4 × 10−4f̂−2α Q2
α

�
c2R1

GM1

�
5 1

qð1þ qÞ : ð28Þ

As one might have expected, this is likely to be a small
effect. Still, it is instructive to consider to what extent the
different contributions can be considered known. We have
already discussed the expected range for the mass ratio q
(from radio observations). The star’s compactness is also
(although less so) constrained by observations. From x-ray
observations of accreting neutron stars one would expect
the radius of a 1.4 M⊙ star to lie in the range 10–14 km [43]
(we will take the lower end of this range as our canonical
case in the following). As the mass-radius curve tends to
rise steeply in the relevant mass range (for a typical
equation of state), we might assume the radius to be inside
this range for all plausible masses in a binary. (Note that
this argument does not account for the softening effect of
possible internal phase transitions.) This would constrain
the compactness to the range

0.12 ≤
GM1

c2R1

≤ 0.24: ð29Þ

This introduces an uncertainty of about a factor of 30 in the
above estimate for ΔN , illustrating the importance of
obtaining tighter constraints on the neutron star radius.
This is, of course, one of the main targets of the obser-
vations in the first place. One may hope to (eventually) get a
tighter radius constraint from the tidal compressibility. In
addition, a measurement of the neutron star radius to within
5% is a key science aim of the NICER mission which is
currently flying on the International Space Station [44].
With a narrower region of uncertainty for the stellar

compactness, one may be able to use observed deviations
from a pure radiation reaction inspiral to constrain the value
of Qα for any resonant mode in a given frequency range.
We illustrate this idea in Fig. 2. Imagine that one sets an
upper limit on the deviation from a post-Newtonian
radiation reaction inspiral of order ΔN ≤ 0.5 in a given

USING GRAVITATIONAL-WAVE DATA TO CONSTRAIN … PHYS. REV. D 97, 023016 (2018)

023016-5



frequency range, say f ¼ 100–150 Hz (note that one can
make this argument more precise by a Fischer matrix
analysis, see [45,46]). Then, we know from (28) (assuming
canonical neutron star parameters) that

Qα ≤ 10−2
�

f
100 Hz

�
jΔN j1=2: ð30Þ

This constraint is shown in Fig. 2. We see that the chances
of observing the imprint of a tidal resonance are better at
frequencies below a few tens of Hz. Moreover, given the
dependence on the stellar compactness, the effect would be
more prominent if the neutron star radius is large. In fact,
given a reliable theoretical calculation for Qα, one can turn
this argument into a constraint on the stellar radius.
In order to understand the wider implications of this kind

of constraint for neutron star physics, we need to consider
the nature of specific oscillation modes. For nonrotating
stars, the most likely set of modes to exhibit tidal resonance
are the gravity g modes. In a mature (cold) neutron star,

these modes are associated with internal composition
stratification [47]. If the motion of a moving fluid element
is faster than the nuclear reactions that would equilibrate
the fluid to its new surroundings, then the chemical
differences lead to a buoyancy that provides the restoring
force for these modes. In the simplest models, the g modes
are associated with the varying proton fraction. This
typically leads to mode frequencies below a few 100 Hz
and a dense spectrum of high overtone modes at lower
frequencies (see [39] for the current state of the art). The
lowest order (highest frequency) mode couples the strong-
est to the tide, with a typical value of the coupling constant
Qα ≈ 10−4–10−3 [29]. Most likely, this makes the effect too
weak to be detected by the current generation of instru-
ments, see Fig. 2.
The discussion is nevertheless interesting. The g modes

rely on physics beyond the bulk properties of the star,
reflecting how the strong interaction determines the com-
position of matter at high densities. The state of matter is
also important. For example, if the star’s core contains a
superfluid then the charged components (in the simplest
case, protons and electrons) can move relative to the
neutrons. As a result, as long as we assume that the
electrons and protons are electromagnetically coupled,
the origin of the buoyancy is removed and there will no
longer be any g modes [48]. This would obviously remove
any related resonances. However, there are twists to this
story. The composition of a neutron star core is more
complex than pure neutron-proton-electron matter. Close to
the nuclear saturation density the formation of muons
becomes energetically favorable. This leads to stratification
(now associated with the electron-muon fraction) also in a
superfluid star [49,50] which reinstates the composition g
modes. These new g modes are expected to have higher
frequencies, perhaps by a factor of a few, which means that
resonances become relevant at later stages of the inspiral.
The first estimates of the tidal coupling for these modes
[51] suggest that they may be associated with an increased
transfer of energy, but this is compensated for by the fact
that the inspiral is accelerated at the higher frequencies. As
a result, the estimated values of Qα are similar to those of
the original g modes in [29]. The example in Fig. 2 then
suggests that the higher frequency g-mode resonances are
likely to leave a weaker imprint on the gravitational-wave
signal.

B. Rotating stars

The resonance problem becomes more intricate for
rotating stars. First of all, we need to note that the resonance
condition involves the mode frequency in the inertial frame.
That is, we have (again for the quadrupole tide)

ωðiÞ
α ¼ 2Ω: ð31Þ

Secondly, rotation breaks the degeneracy associated with
the azimuthal angle and modes associated with different

50 100 150 200 250 300
f (Hz)

0.0001

0.001

0.01

Qα

10 km

14 km

17 km

FIG. 2. Constraints on Qα if a limit jΔN j ≤ 0.5 were to be
inferred from inspiral data. The thin black lines represent equal
mass 1.4 M⊙ binaries with neutron star radius 10 km (upper
curve) and 14 km (lower curve). The grey region represents the
expected radius range from x-ray observations [43]. As an
indication, the thick horizontal (red) line represents the largest
values ofQα for the g modes of a nonrotating star from [29]. This
should be taken as indicative of what is expected from theory
(with the caveats discussed in the main text). Finally, the shaded
vertical region relates to an example where the observational
constraint is obtained for a distinct frequency band (here taken to
be 100–150 Hz). This figure illustrates that the resonant modes of
a nonrotating star may be difficult to detect, but there could be a
relevant effect below 50 Hz or so, if the neutron star radius were
to be surprisingly large (the dashed curve shows the result for a
radius of 17 km). One should also keep in mind that rotation may
lead to slightly larger values of Qα, in which case the chance of
detection would improve.
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values of m become distinct (i.e., we need to separately
considerm ¼ �2). To leading order, the mode frequency is
then given by

ωðiÞ
α ¼ ωðrÞ

α −mΩs; ð32Þ

where ωðrÞ
α is the frequency of the mode in the rotating

frame and Ωs ¼ 2πfs is the spin of the star. If the star spins
rapidly, then the change in shape due to the centrifugal
force provides an additional correction, but (as we have
already suggested) it seems reasonable to argue that most
binary systems will be old enough that the neutron stars
would have slowed down significantly by the time they
become detectable with ground-based interferometers. The
relevant comparison is the break-up rate, well approxi-
mated by

ΩK ≈
2

3
ðπGρ̄Þ1=2 ¼ 1ffiffiffi

3
p Ω0; ð33Þ

where ρ̄ is the average density. Clearly, we have
Ωs=ΩK ≪ 1 even for the fastest known pulsar (PSR
J1748-2446ad at 716 Hz [52]). Hence, we will not consider
the quadratic rotational shape corrections. Nevertheless, it
is clear from (32) that low-frequency modes may be
significantly affected by the rotation.
The obvious fact that rotation adds parameters to the

problem (and that the individual spin rates will be difficult
to extract from the inspiral waveform) complicates any
effort to use an observed signal to constrain the physics.
Schematically, we need to replace (21) with [53]

ΔEtide ∼
ωα

ωα − Tα
ðWDQÞ2; ð34Þ

where Tα encodes the effect of the Coriolis force on the
fluid motion, W is a numerical factor arising from the
spherical harmonics expansion of the tidal field, and D
(the Wigner function) is another factor associated with the
rotation of the coordinate system to an axis orthogonal to
the orbital plane. These numerical factors are, in principle,
known once it is established which specific mode (and
harmonic) is being considered, but from the observational
point-of-view they are (most likely) part of the unknowns.
The main point is that one would have to disentangle the
different contributions in order to make a clear match
with theory and this is not going to be straightforward.
Nevertheless, it is worth noting qualitative features.
In particular, if there is a near cancellation, the denominator
in (34) could lead to an enhanced impact on ΔN . For
specific rotation rates one may find that the impact of
particular modes stands out. However, according to the
results of [53], the overall phase shift will still be below
0.01. The potential impact of this enhancement is clear
from Fig. 2.

The rotation-induced shift of the mode frequency (32)
may also make a given mode susceptible to the
Chandrasekhar-Friedman-Schutz instability, where the
oscillation is driven unstable by the emission of gravita-
tional waves [54]. The instability sets in when a retrograde
mode in the rotating frame becomes prograde in the inertial
frame. Effectively, the mode energy then becomes negative.
In an isolated star one would not expect the instability of g
modes to be particularly relevant because these modes are
not efficiently emitting gravitational waves and the insta-
bility does not overcome viscous damping [55]. The case of
tidal driving is different. The main impact of a mode being
formally unstable is that the growth of the mode pumps
energy back into the orbit. This would alter the sign of Ėtide,
slow down the inspiral, and lead to an increase in N rather
than a decrease. This is an important feature, which if
observed would provide exciting insight into the stellar
dynamics.
A spinning star also has a richer spectrum of oscillation

modes. The Coriolis force provides an additional restoring
force, which brings new sets of modes into existence [56].
These inertial modes, quite naturally, scale with the rotation
frequency. This means that one may easily confuse the
identification of an observed resonance, although it is
worth noting that, given an independent constraint on
the star’s spin, one could potentially rule out inertial modes
as they have to lie in the range −2Ωs ≤ ωðrÞ

α ≤ 2Ωs. The
first estimates of tidal inertial-mode excitation [53] sug-
gested that the impact would be minor, but a more recent
analysis [57] demonstrated that the gravitomagnetic cou-
pling enhances the importance of the inertial modes. In the
specific case of the r modes, the phase shift may amount
to [57]

ΔN ≈
0.1
2π

�
R1

10 km

�
4
�

M1

1.4 M⊙

�
−10=3

�
fs

100 Hz

�
2=3

: ð35Þ

Based on the available results, this may be the strongest
relevant mode resonance. As the r mode is generically
unstable to gravitational-wave emission [58], the main
resonance effect would then tend to slow down the inspiral.
Moreover, as the r-mode frequency is (not accounting for
relativistic effects) given by f ¼ 4fs=3, an observational
constraint on the star’s spin would directly indicate the
frequency of the associated resonance.
Finally, it is important to appreciate the competing nature

of the different restoring forces. Modes that are dominated
by buoyancy in a nonrotating star may become inertial
above some rotation rate (when the Coriolis force becomes
dominant) [59,60]. Such mixed inertia-gravity modes have
only very recently been considered in the tidal context [61].

IV. THE ELLIPTICAL INSTABILITY

As we have seen, the gravitational-wave signal from a
neutron star binary may exhibit features due to individual
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oscillation modes becoming resonant. The resonance
problem is conceptually straightforward, although it
obviously involves poorly understood aspects of neutron
star physics. However, the tidal problem may be more
subtle. In addition to individual mode resonances, we may
have to consider how nonlinearly coupled modes interact
with the tide. An example of this is the elliptical
instability. This is a parametric instability associated with
the fact that fluids that flow along elliptical flowlines tend
to be unstable [31–33]. In essence, the instability acts
through the nonlinear coupling of two inertial modes to
the equilibrium tide. Recent work argues that the mecha-
nism may be relevant for hot Jupiters [62,63], but the
problem has not (as far as we know) been considered for
binary neutron stars. Yet it is clearly relevant, at least
conceptually. The tide raised by a binary companion
deforms a neutron star, and if the star is spinning, the
internal fluid will flow along elliptical flow lines. The
elliptical instability may come into play.

A. Estimated time scales

In order to explore the elliptical instability for binary
neutron stars, we make use of order of magnitude estimates
from the literature. First of all, we note that the instability is
associated with inertial modes of the rotating star. These
modes are confined to the frequency range [56]

−2Ωs < ωðrÞ
α < 2Ωs ð36Þ

We can also think of the tidal bulge as a wave moving
around the star [33,62]. In the quadrupole case this would
correspond to a rotating frame frequency

ωðrÞ
tide ¼ 2ðΩ −ΩsÞ ð37Þ

Now consider a pair of inertial modes with frequency∓ ω0

that interact nonlinearly with the tide. This interaction gives
rise to nonlinear disturbances with frequency

ωnl ¼ ∓ω0 � ωðrÞ
tide: ð38Þ

We see that, if ωðrÞ
tide ¼ 2ω0, then the nonlinear coupling

amplifies the two original modes. This leads to the elliptical
instability.
This simple argument provides us with the necessary

condition for the instability. Since the original modes have
to lie in the inertial range (36), we must have

Ωs >
Ω
3

or −Ωs < Ω: ð39Þ

We will focus on the first case (corotation) from now on.
Once we establish that the instability may be active, we

need an estimate of the growth rate. From [62] we learn that
the maximum growth rate of the instability is given by

1

tel
≈

9

16
ϵjΩs −Ωj; ð40Þ

where the tidal bulge, ϵ, follows from (1). Making use of
Kepler’s law, we see that

ϵ ≈
q

1þ q
Ω2

�
R3
1

GM1

�
¼ 1

3

q
1þ q

�
Ω
ΩK

�
2

: ð41Þ

Thus, the final estimate for the growth time scale is

1

tel
≈

3

16

q
1þ q

�
Ω
ΩK

�
2

jΩs −Ωj: ð42Þ

Finally, at the instability threshold we have Ωs ¼ Ω=3, so
let us (for simplicity) assume that Ωs ≫ Ω. Then we have

1

tel
≈

3

16

q
1þ q

�
Ω
ΩK

�
2

Ωs

≈ 0.2
q

1þ q

�
f

100 Hz

�
2
�

fs
100 Hz

�
s−1: ð43Þ

In order to establish whether the elliptical instability
can be relevant for inspiraling neutron star binaries, we
compare the growth time to the orbital evolution. For
the instability to grow fast enough, we need tD ≫ tel.
Combining the estimated time scales, we have

tD
tel

≈ 2.4 × 10−2
1

ð1þ qÞ2=3
�
R1c2

GM1

�
5=2

×

�
Ωs

ΩK

��
Ω
ΩK

�
−2=3

≫ 1: ð44Þ

In the case of equal mass (canonical M1 ¼ 1.4 M⊙ and
R1 ¼ 10 km) neutron stars, we require

tD
tel

≈ 0.54

�
fs

100 Hz

��
f

100 Hz

�
−2=3

≫ 1; ð45Þ

that is, the elliptical instability would grow fast enough to
be “interesting” when

fs ≫ 185

�
f

100 Hz

�
2=3

Hz: ð46Þ

Is this inequality likely to be satisfied for real systems?
As already mentioned, we can extrapolate the evolution
for PSR J0737-3039A to the point where the system enters
the LIGO band. The pulsar would then spin at fs ≈ 35 Hz.
In this case there may be a narrow frequency range
where the elliptical instability can grow; see Fig. 3.
As-yet-unknown systems that enter the detector band
spinning at a faster rate may obviously be more signifi-
cantly affected by the instability.
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Of course, we need to keep in mind the necessary
criterion (39),

fs >
1

6
f ≈ 17

�
f

100 Hz

�
Hz: ð47Þ

This immediately shows that we need the neutron star to
spin faster than 5 Hz or so for the formal instability regime
to overlap our assumed signal frequency range (above
f ¼ 30 Hz). One would expect many systems to satisfy this
condition.
We also need to consider the impact of (shear) viscous

damping. As we do not have the velocity fields for the
unstable modes, and our discussion is at the back-of-the-
envelope level anyway, let us progress by means of a rough
estimate (see [64] for a similar argument). The kinetic
energy of an oscillation mode follows from

Ek ¼
1

2

Z
ρjδvj2dV; ð48Þ

where δv is the velocity perturbation, while the damping
due to shear viscosity is given by

Ė ≈ −2
Z

ηjδσj2dV; ð49Þ

where η is the shear viscosity coefficient and δσ ≈∇δv is
the shear associated with the perturbation. Replacing the
derivative with a characteristic length scale L of a given
oscillation, we have the time scale

tsv ≈ −
2Ek

Ė
≈
ρL2

2η
: ð50Þ

For low-order modes the angular derivative dominates and
we haveL ≈ πR1=lwhere l is the usual spherical harmonics
index. Meanwhile, for high overtones the radial derivative
dominates so we have L ≈ R1=n where n is the overtone
index of the mode. The upshot of this is that the viscous
damping time scale is estimated as

tsv ≈min

�
1

n2
;
π2

l2

�
ρR2

1

2η
≈
�
1

n2
;
π2

l2

�
3

8π

M1

R1η
; ð51Þ

where we have assumed a uniform density to arrive at the
last estimate. This result does not differ too much from
precise calculations for specific oscillation modes [64], so
we expect it to provide a good indication of the relevance of
viscosity.
First of all, we can use (51) to estimate when the

viscosity wipes out the elliptical instability. In a cold
(superfluid) neutron star, the most important damping is
likely to be due to (electron-electron scattering) shear
viscosity for which we have [65]

η ≈ 2 × 1018
ρ9=415

T2
9

g=cm s: ð52Þ

As we are considering low order inertial modes coupled to
the equilibrium tide, we take l ¼ 2 and arrive at the order of
magnitude estimate

tsv ≈ 103
�

M1

1.4 M⊙

�
−5=4

�
R1

10 km

�
23=4

�
T

106 K

�
2

s: ð53Þ

Combining this with (43), we see that for an equal mass
(canonical neutron star) system we need

tsv
tel

≈ 100

�
f

100 Hz

�
2
�

fs
100 Hz

��
T

106 K

�
2

> 1 ð54Þ

in order for the instability to overcome viscosity. This leads
to the condition

fs >

�
f

100 Hz

�
−2
�

T
106 K

�
−2

Hz: ð55Þ

This constraint is also illustrated in Fig. 3.
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FIG. 3. Comparing the different frequency constraints to see if
the elliptical instability may play a role for neutron star binaries.
The vertical axis is the spin frequency, fs, while the horizontal
one is the gravitational-wave frequency, f. The lower horizontal
dashed line represents PSR J0737-3039A (extrapolated to be at
35 Hz as it enters the LIGO sensitivity band). A system has to be
above all the other curves, arising from (46), (47), and (55)
(showing both T ¼ 106 K and 107 K), in order to be unstable.
These estimates suggest that a system like PSR J0737-3039A
may (briefly) exhibit the elliptical instability during the inspiral
phase. Any (at the moment fiducial) faster spinning pulsar could
be more significantly affected.
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B. Impact on the gravitational-wave signal

Having discussed the conditions under which the ellip-
tical instability may be active in a neutron star binary, let us
estimate the effect it may have. First of all, let us consider
the impact on the spinning star. In principle, [33,62,63] the
instability would tend to (i) circularize the binary and
(ii) synchronize the spin of the star with the orbit. However,
gravitational radiation reaction already leads to the orbital
ellipticity evolving in such a way that binaries are expected
to be circular by the time the signal enters the sensitivity
band of a ground-based detector. Given this, we only
consider the effect on the star’s spin.
The torque exerted on a spinning star by its companion

is [66]

J̇ ¼ 9

4

GR5
1

D
M2

2

a6
; ð56Þ

where J is the angular momentum of the star and the
dissipation function D encodes the energy released per
orbit, the main unknown parameter in the problem.
Introducing the moment of inertia

I ¼ ĨM1R2
1; ð57Þ

where Ĩ ≈ 0.261 for an n ¼ 1 polytrope [67], we see that
the star’s rotation frequency evolves in such a way that

_Ωs ≈ −
3

4

1

~ID

�
Ω
ΩK

�
2
�
M2

M

�
2

Ω2: ð58Þ

Next, we use the results of [63] to estimate the dissipation
function. Thus, we have

D ≈ 9χ−1
�
M
M1

��
ΩK

Ω

�
4

ð59Þ

where χ is unknown, but the results from [62,63] suggest
that it might be reasonable to take χ ≈ 10−2. Combining the
estimates, we have

_Ωs ≈ −
χ

12~I

�
M1M2

2

M3

��
Ω
ΩK

�
6

Ω2: ð60Þ

This provides us with an estimate of the synchronization
time scale,

ts ≈
Ωs

j _Ωsj
≈
12Ĩ
χ

�
M3

M1M2
2

��
ΩK

Ω

�
6 Ωs

Ω
1

Ω
: ð61Þ

It follows that (for an equal 1.4 M⊙ system)

ts
tD

≈ 3 × 107
�

fs
100 Hz

��
f

100 Hz

�
−16=3

≫ 1: ð62Þ

Perhaps not surprisingly, the elliptical instability will not be
able to synchronize the spin of the star to the orbit. In fact,
the effect is tiny. As an illustration, let us consider the
associated shift in the number of gravitational-wave cycles.
Assuming that the energy change associated with the
torque is lost from the orbital energy, we use

Ėtide ≈ −ĨM1R2
1Ωs

_Ωs ð63Þ

in (12). This leads to

Ėtide

Ėgw
≈ 0.2

Ĩχ

ð1þ qÞ7=3
�
c2R1

GM1

�
5=2

�
Ωs

ΩK

��
πf
Ω0

�
14=3

: ð64Þ

In the specific case of an equal mass (canonical) binary and
the assumed observed frequency range (ignoring the fact
that the instability is unlikely to be active through the entire
range) we have

ΔN ≈ −5 × 10−6χ

�
fs

100 Hz

�
: ð65Þ

It would seem safe to ignore (remember that χ is a small
number) the impact the elliptical instability will have on the
gravitational-wave signal. The mechanism is conceptually
interesting, but unlikely to leave a detectable imprint.
Nevertheless, the discussion serves as a reminder that pairs
of modes may couple nonlinearly to the tide. As it makes
the problem significantly more complex, it is important to
keep the possibility in mind.

C. Other binary systems

The conditions for the elliptical instability to operate are
more favorable if the neutron star spins rapidly. Hence, it
makes sense to consider if it could play a role in accreting
neutron stars in low-mass x-ray binaries, progenitors to the
observed millisecond radio pulsars. In these systems, the
neutron star spins at several 100 Hz and is accompanied by
a low-mass partner, so the typical mass ratio will be
something like q ≈ 0.1. Meanwhile, the orbital period
tends to be several hours. For example, the fastest known
accreting rotator, 4U1608-522, spins at 620 Hz and has an
orbital period of 12 hours [68]. Scaling (43) to typical
parameter values, we have

tel ≈ 66; 000

�
2π=Ω
1 hour

�
2
�

fs
500 Hz

�
−1

years: ð66Þ

That is, the growth time is short compared to other
evolutionary times, e.g., the average accretion spin-up or
cooling, but clearly far too long for the instability to
overcome viscosity. Hence, the elliptical instability is also
unlikely to be relevant for accreting neutron stars in low-
mass x-ray binaries.
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The final class of systems which may be of interest are
mixed binaries, with a neutron star spiraling into a more
massive black hole. In this case, the total mass of the system
may be much larger, but this does not have much effect on
our estimates unless we are dealing with an intermediate
mass black hole. It is easy to see that, cf. (44), the instability
growth time increases with the mass ratio. The instability
may still act in mixed binaries but, in order to compensate
for the increasing mass ratio, the star will have to spin
faster. Of course, we cannot say if this is realistic, as we
have not yet observed a pulsar with a black hole
companion.

V. THE P-G INSTABILITY

As our final example of dynamical mechanisms that may
affect the binary signal, we consider the so-called p-g
instability. It has been suggested that high-order p and g
modes of the star couple strongly to the equilibrium tide
[34]. This is a (supposedly) nonresonant mechanism, which
means that it would not be restricted to a set frequency
range. The available estimates [36] indicate that the
instability sets in at f ≈ 50 Hz and that it could have a
severe impact on the emerging signal. Hence, we need to
take the possibility seriously. This involves better under-
standing the underlying mechanism and exploring exactly
what effect the instability may have. While we are not
(currently) in a position to comment on the viability of the
p-g instability (as it relies on the details of the nonlinear
mode coupling [34]), we can nevertheless explore to what
extent observations may constrain the theory.
In the spirit of our estimates for the elliptical instability,

we follow [36] and assume that the p-g instability grows at
a rate,

1

tpg
≈ 2λϵΩ0 ¼

2λq
1þ q

�
R3
1

GM1

�
1=2

Ω2; ð67Þ

i.e., for our canonical system we have

1

tpg
≈ 30λ

�
f

100 Hz

�
2

s−1; ð68Þ

where the tidal bulge ϵ is given by (1). We assume that the
instability acts above f ∼ 50 Hz, although the exact cutoff
frequency is uncertain (it depends on the damping of high-
order g modes, and the star’s magnetic field may also have
significant influence as these are short length-scale modes).
The function λðaÞ is slowly varying and expected to lie in
the range 0.1–1 [36].
Let us, first of all, establish that the instability grows fast

enough to be relevant. As in the case of the elliptical
instability, this involves making sure that the growth time is
short compared to the inspiral. In this case, we have

tD
tpg

≈
5λ

48

1

ð1þ qÞ2=3
�
c2R1

GM1

�
5=2

�
Ω0

Ω

�
2=3

≈ 30λ

�
100 Hz

f

�
2=3

: ð69Þ

That is, for the suggested range of values for λ, the
instability should grow significantly during the inspiral
(especially since it does not require a specific resonant
frequency match).
Of course, the instability also needs to overcome viscous

damping. In this case, we are dealing with high-order
modes, so we use

tsv ≈ 2 × 10−4
�
103

n

�
2
�

M1

1.4 M⊙

�
−5=4

×

�
R1

10 km

�
13=4

�
T

106 K

�
2

s; ð70Þ

which leads to the ratio

tsv
tpg

≈ 3 × 10−3λ

�
103

n

�
2
�

f
100 Hz

�
2
�

T
106 K

�
2

: ð71Þ

As the instability needs to overcome the viscous damping,
we arrive at the condition

f >
1800

λ1=2

�
n
103

��
T

106 K

�
−1

Hz: ð72Þ

This estimate suggests that the instability may only act
during the late stages of inspiral (assuming the temperature
expected for a mature neutron star and high-order modes).
In order for the mechanism to be active inside our assumed
frequency range (below 300 Hz), the neutron star would
have to be relatively hot. A more detailed analysis of the
viscous damping of the high-order (large n) modes will be
required to establish the actual instability range.
Despite this (potentially serious) caveat, let us estimate

the impact the p-g instability may have on the inspiral
signal. In order to do this, we also need to estimate the rate
at which energy is drained from the orbit. Again following
[36], we use

Ėtide ≈ −10−8
Nβ

tpg

�
GM2

1

R1

�
; ð73Þ

where N is the number of unstable modes. The basic idea
[36] is that order N ¼ 103–104 modes may become
unstable. This would clearly enhance the impact of the
instability, but whether the idea of many modes actually
growing to a large amplitude at the same time is viable is
not at all clear. The parameter β ≤ 1 encodes our ignorance
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of the saturation mechanism. The upper limit represents an
estimate for saturation due to wave breaking, and we need
to keep in mind that it could well be that β ≪ 1.
After a bit of algebra we arrive at

Ėtide

Ėgw
≈ 3 × 10−9

Nβλ

qð1þ qÞ1=3
�
c2R1

GM1

�
5=2

�
Ω0

πf

�
4=3

: ð74Þ

From this estimate it is clear that one can only expect to
constrain the product Nβλ with observations. Combining
with tD and integrating, we find that (again, for a canonical
equal mass system and assuming that the instability
operates from f ¼ f0 ¼ 50 Hz up to the observed cutoff
frequency fb)

ΔN ≈ −3 × 10−2Nβλ

�
50 Hz
f0

�
3
�
1 −

�
f0
fb

�
3
�
: ð75Þ

We clearly need the number of excited modes (N) to be
significant in order for the effect to be detectable, but the
conclusion is sensitive to many unknowns. In particular,
the estimate for ΔN depends strongly on the frequency at
which the instability reaches the saturation amplitude.
In essence, while an observed shift in gravitational-wave
phasing could be attributed to the p-g instability, it is not
clear which part of the (uncertain) theory the absence of

the effect would constrain. Another reason to be cautious is
illustrated in the right-hand panel of Fig. 4. As the most
dramatic change in gravitational-wave cycles is associated
with a fairly narrow frequency range, the effect may be
mistaken for a mode resonance (although the r-mode
signature shown in Fig. 4 would be distinct, as it leads
to an increase in ΔN rather than a decrease).

VI. CONCLUDING REMARKS

We have considered three distinct mechanisms involving
dynamical tides from an “observational” perspective. The
motivation for the discussion was to clarify how different
aspects of neutron star physics impact on the problem and
outline a strategy for how one may be able to constrain this
physics with observations. This serves two important pur-
poses. First of all, we gain insight into the extent to which
the different mechanisms are within reach of the precise
modeling required for a template-based gravitational-wave
search. Secondly, we learn that we may be able to make
progress even though the details are uncertain.
As an example, let us consider the case of mode

resonances. Our estimates show that such resonances
may be difficult to distinguish even with the advanced
generation of detectors. However, our understanding is
sufficiently uncertain that we cannot rule out the possibility.
Therefore, let us consider the possible impact on the signal.
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FIG. 4. A schematic illustration of the impact the p-g instability may have on a binary neutron star signal. Left panel: The estimated
shift in the accumulated number of gravitational wave cycles jΔN j as a function of the gravitational-wave frequency f. The grey band
recalls the result for the tidal compressibility from Fig. 1. The dashed horizontal line represents the indicative level of jΔN j ≈ 0.5 above
which the effect would leave an imprint in a matched filter search. The solid curves show the estimate effect of the p-g instability [taking
f ¼ fb in (75)]. The curves represent (taking the unknown parameters λ ¼ β ¼ 1 for simplicity), cases where N ¼ 1, 10, and 25 modes
(as indicated) are excited by the instability. Given the uncertainties in the model, these estimates should be taken with a fair bit of
caution. Finally, the shaded region at low frequencies represents the estimated level of resonant r modes, given by (35). Right panel: The
same, but for jdΔN =dfj. This provides a clearer idea of how one can distinguish between the two mechanisms by comparing the effect
in a sequence of frequency ranges (time windows). A more realistic model of the p-g instability would account for the finite growth time,
which would smooth out the curves, but we would still expect them to be strongly peaked.
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We know that we are dealing with a resonance, so the
impact on the signal should be associated with a specific
frequency range. If we were to identify such an imprint,
then we would like to identify the specific mode involved
(which in turn may constrain the star’s internal composi-
tion). This could also be tricky, especially if that star is
spinning. Given that it will be difficult to obtain tight
constraints on the individual rotation rates from the
gravitational-wave signal, the rotational corrections to
low-frequency modes (32) introduce significant uncer-
tainty. Nevertheless, one may be able to rule out resonances
associated with inertial modes. Given an upper limit on the
star’s spin, and the fact that an inertial mode must lie in the
inertial range (36), we know that any associated (quadru-
pole mode) resonances (associated with the inertial frame
frequency) must appear below

f ≈
2Ωs

π
: ð76Þ

In other words, there is a frequency cutoff above which
there will be no pure inertial modes.
Perhaps the most interesting feature one may hope to

extract involves modes that are driven unstable by gravi-
tational-wave emission (like the r modes). In this case one
would expect the inspiral to slow down rather than speed
up. Such a feature would be tremendously exciting and, as
it is a qualitative aspect, may perhaps be within easier reach
than a tight constraint on a given resonance.
Our discussion of the elliptical instability highlighted the

possibility of modes forming a nonlinear resonance with
the tide. This raises a warning flag, at least in principle, as it
introduces complications that have not yet been explored in
much detail. The back-of-the-envelope estimates for the
elliptical instability suggest that it should be safe to ignore
its impact on a binary neutron star signal, but this does not
mean that an analogous mechanism could not play a role.
We need to keep in mind that the neutron star seismology
problem is very rich.
Finally, we considered the nonlinear and nonresonant

p-g instability. Without going into specific detail (which is
difficult given the current level of understanding of the
mechanism) we outlined why one may be concerned about
this instability acting in an inspiraling binary. Basically, if

the nonlinear coupling between the tide and the high-order
p and g modes is, indeed, as strong as been argued [34],
then the instability would rapidly grow to a large amplitude.
If the associated saturation amplitude is sufficiently large,
this may leave a detectable imprint on the inspiral signal.
However, as we have highlighted, this argument involves a
number of unknowns. In order to address these uncertain-
ties, the underlying mechanism must be modeled at a more
detailed level, but this is difficult given the intricate nature
of the nonlinear mode-coupling problem [69,70] and the
need to model the neutron star interior at an adequate level
of realism. As long as such results are outstanding, we may
still consider to what extent the imprint of the p-g instability
would be distinct from that of the other mechanisms we
have considered. The key to this issue may be associated
with the distinct difference in jdΔN =dfj; see the right-
hand panel of Fig. 4. The effect of the tidal compressibility
increases as f2=3, while the estimate for the p-g instability
falls sharply as of f−4 (after reaching saturation). In
essence, one ought to be able to tell the difference by
comparing data for a sequence of frequency ranges (time
windows). The sharp feature of the p-g instability should be
distinct from the gradual increase associated with the tidal
compressibility. Of course, as the p-g feature is associated
with a finite frequency range, one may still confuse it with a
mode resonance.
Having outlined the different resonant mechanisms and

given the results in dimensionless form, our main con-
clusion is simple. There is a lot of work to be done on
the modeling side. However, the problem involves major
unknowns, like the interior composition, the state of matter,
nonlinear dynamics, et cetera, and these will be difficult
to resolve. This motivates us to consider the problem from
an “observational” point-of-view. As we enter this new era
of neutron-star gravitational-wave astronomy, it may well
be that observers will soon lend their struggling theory
colleagues a helping hand.
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