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Quasiequilibrium models of uniformly rotating axisymmetric and triaxial quark stars are computed in a
general-relativistic gravity scenario. The Isenberg-Wilson-Mathews (IWM) formulation is employed and
the Compact Object Calculator (COCAL) code is extended to treat rotating stars with finite surface density
and new equations of state (EOSs). Besides the MIT bag model for quark matter which is composed of
deconfined quarks, we examine a new EOS proposed by Lai and Xu that is based on quark clustering and
results in a stiff EOS that can support masses up to 3.3 M⊙ in the case we considered. We perform
convergence tests for our new code to evaluate the effect of finite surface density in the accuracy of our
solutions and construct sequences of solutions for both small and high compactness. The onset of secular
instability due to viscous dissipation is identified and possible implications are discussed. An estimate of
the gravitational wave amplitude and luminosity based on quadrupole formulas is presented and
comparison with neutron stars is discussed.
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I. INTRODUCTION

The recent gravitational-wave (GW) event GW170817,
together with accompanying electromagnetic emission
observations [1,2] from a binary neutron star (BNS)
merger, has opened a brand new multimessenger observa-
tion era for us to explore the Universe. Apart from
enriching our knowledge on origins of short gamma-ray
bursts [3] and nucleosynthesis associated with BNS merg-
ers [4,5], it also provides an effective way for us to
constrain the equation of state (EOS) of neutron stars
(NSs). In addition to systems such as binary black-hole
mergers and BNS mergers, rapidly rotating compact stars
have also been considered as important candidates of GW
sources [6], which could be detected by ground-based GW
observatories [7–11] and help us understand the nature of
strong interaction of dense matter.
It has been a long time since the equilibrium models of

self-gravitating, uniformly rotating, incompressible fluid
stars were systematically studied in a Newtonian gravity
scheme [12]. Depending on the rotational kinetic energy,
the configuration could be axisymmetric Maclaurin ellip-
soids as well as nonaxisymmetric ellipsoids, such as
Jacobian (triaxial) ellipsoids. For compact stars that we
are interested in for GW astronomy, however, general

relativity is required to replace Newtonian gravity. The field
of relativistic rotating stars has been studied for many
years [13,14].
A rotating NS will spontaneously break its axial sym-

metry if the rotational kinetic energy to gravitational
binding energy ratio, T=jWj, exceeds a critical value.
This instability can either be of secular type [15–18] or
dynamical [19–27], depending on the process driving the
instability and with only small modifications if a magneti-
zation is present [28–30] (see [31] for a review). A high
T=jWj ratio can also be reached for a newly born rotating
compact star during a core collapse supernova or for a NS
which is spun up by accretion [32–36].
Quasiequilibrium figures of triaxially rotating NSs have

also been created and studied in full general relativity
[37,38]. In this case, the bifurcation from an axisymmetric
to triaxial configuration happens very close to the mass-
shedding limit, and, for soft NS EOSs or for NSs with large
compactness, the triaxial sequence could totally vanish
[16,18,39–41]. As a result, it is presently unclear whether
triaxial configurations of NSs can actually be realized in
practice.
On the other hand, it is worth noting that the EOS of

compact stars is still a matter of lively debate since
astronomical observations are not sufficient to rule out
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many of the nuclear-physics EOSs that are compatible with
the observations. As a result, besides the popular idea of
NSs, other models for compact stars are possible and have
been considered in the past. A particularly well-developed
literature is the one concerned with strange quark stars
(QSs), since it was long conjectured that strange quark
matter composed of deconfined up, down, and strange
quarks could be absolutely stable [42,43]. There is also
possible observational evidence indicating the existence of
QSs (for a recent example, see [44]). Additionally, the
small tidal deformability of QSs is favored by the obser-
vation of GW170817 [45] and possible models with QS
merger or QS formations have also been suggested to
explain the electromagnetic counterparts for a short
gamma-ray burst (cf. [45,46]).
Following this possibility, a large effort has been

developed to calculate equilibrium configurations of
QSs, starting from the first attempts [47–49]. At present,
both uniformly rotating [50–52] and differentially rotating
QSs [53] have been studied in full general relativity. Unlike
NSs, which are bound by self-gravity, QSs are self-bound
by strong interaction. Consequently, rotating QSs can reach
a much larger T=jWj ratio compared with NSs and the
triaxial instability could play a more important role
[50,54,55]. The triaxial bar mode (Jacobi-like) instability
for the MIT bag-model EOS has been investigated in a
general-relativistic framework [56].
We here use the Compact Object CALculator code,

COCAL, to build general-relativistic triaxial QS solution
sequences using different EOS models. COCAL is a code to
calculate general-relativistic equilibrium and quasiequili-
brium solutions for binary compact stars (black hole and
NS) as well as rotating (uniformly or differentially) NSs
[37,38,57–60]. The part of the COCAL code handling the
calculation of the EOSs was originally designed for piece-
wise polytropic EOSs. We have here extended the code to
include the polynomial type of EOSs, as those that can be
used to describe QSs. In doing so, the trivial relationship
between the thermodynamic quantities for a piecewise
polytrope [e.g., see Eqs. (64)–(68) in [60]] is lost and
now one has to apply root-finding methods. Another issue
is related to the surface fitted coordinates that are used in
COCAL to track the surface of the star. For NSs, the surface
was identified as the place where the rest-mass density goes
to zero or where the specific enthalpy becomes 1. This is no
longer generally true for a self-bound QS and a different
approach needs to be developed. The nonlinear algebraic
system that determines the angular velocity, the constant
from the Euler equation, and the renormalization constant
of the spherical grid has to be modified in order to
accommodate the arbitrary surface enthalpy.
We here compute solutions for both axisymmetric and

triaxial rotating QSs with the new code, as well as
sequences with various QS EOSs and different compact-
nesses. We checked our new implementation for those

cases where previous studies have been possible [37], and
we confirm the accuracy of our new code. We discuss the
astrophysical implications of the quantities of rotating QSs
at the bifurcation point. For instance, the spin frequency at
the bifurcation point could be a more realistic spin-up limit
for compact stars rather than the mass-shedding limit,
which relates to the fastest spinning pulsar we might be
able to observe. The GW strain and luminosity estimates
for our models are given, while full numerical simulations
are left for the future (see [61] for recent simulations
involving triaxial NSs).
The structure of this paper is organized as follows.

In Sec. II we discuss the formulation we used and the field
equations (Sec. II A), the hydrodynamics (Sec. II B), and
the EOS part (Sec. II C). In order to test the behavior of the
modified code, we have performed convergence tests with
five resolutions and compared with rotating NS solutions
built by the original COCAL code. These tests can be found
in Sec. III. Triaxially deformed rotating QS sequences for
different compactnesses are presented in Sec. IV, while the
implications for the astrophysical observations of this work
are presented in Sec. VI. Hereafter, we use units with G ¼
c ¼ M⊙ ¼ 1 unless otherwise stated; a conversion table to
the standard cgs units can be found, for instance, in [62].

II. FORMULATION AND NUMERICAL METHOD

A. Field equations

In order to solve the field equations numerically, the
Isenberg-Wilson-Mathews (IWM) formulation [63–65] is
employed. In a coordinate chart ft; xig, the 3þ 1 decom-
position of the spacetime metric gives

ds2 ¼ −α2dt2 þ ψ4δijðdxi þ βidtÞðdxj þ βjdtÞ; ð1Þ

where α; βi are the lapse and shift vector (the kinematical
quantities), while γij ¼ ψ4δij is the IWM approximation
for the three-metric.
The extrinsic curvature of the foliation is defined by

Kab ≔ −
1

2α
∂tγab þ

1

2α
£βγab; ð2Þ

and a maximal slicing condition K ¼ 0 is assumed.
Decomposing the Einstein equations with respect to the

normal nα of foliation, we get the following five equations
in terms of the five metric coefficients fψ ; βa;αg on the
initial slice Σ0:

ðGαβ − 8πTαβÞnαnβ ¼ 0; ð3Þ

ðGαβ − 8πTαβÞγiαnβ ¼ 0; ð4Þ

ðGαβ − 8πTαβÞ
�
γαβ þ 1

2
nαnβ

�
¼ 0; ð5Þ
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where the first and second equations are the Hamiltonian
and momentum constraints, respectively. Here γαβ ¼ gαβ þ
nαnβ is the projection tensor onto the spatial slices. These
equations can be written in the form of elliptic equations
with the nonlinear source terms, respectively,

∇2ψ ¼ −
ψ5

8
AabAab − 2πψ5ρH; ð6Þ

∇2βa þ 1

3
∂a∂bβ

b ¼ −2αAab∂b ln
ψ6

α
þ 16παja; ð7Þ

∇2ðαψÞ ¼ 7

8
αψ5AabAab þ 2παψ5ðρH þ 2SÞ; ð8Þ

where Aij ¼ Kij ¼ ψ−4ð∂iβj þ ∂jβi − 2
3
δij∂kβ

kÞ=2α, and
the source terms of matter are defined by ρH ≔ Tαβnαnβ,
ji ≔ −Tαβγ

iαnβ, and S ≔ Tαβγ
αβ.

The above set of equations must be supplied with
boundary conditions at infinity. Since we are working in
the inertial frame and we impose asymptotic flatness, we
must have

lim
r→∞

ψ ¼ 1; lim
r→∞

α ¼ 1; lim
r→∞

βi ¼ 0: ð9Þ

B. Hydrostatic equilibrium

The hydrostatic equation for a perfect fluid in quasie-
quilibrium can be derived from the relativistic Euler
equation [62]

uβ∇βðhuαÞ þ∇αh ¼ 0; ð10Þ
where uα ¼ utð1; viÞ ¼ utð1;ΩϕiÞ is the four-velocity of
the fluid, with ϕi ¼ ð−y; x; 0Þ, and h is the specific
enthalpy defined by h ≔ ðϵþ pÞ=ρ (ρ is the rest-mass
density and ϵ the total energy density).
When the symmetry along a helical Killing vector kα ¼

tα þ Ωϕα is imposed for the fluid variables, which is
approximately true also in the case for a rotating non-
axisymmetric star in quasiequilibrium, the integral of the
Euler equation becomes

h
ut

¼ E; ð11Þ

where E is a constant. From the normalization of the four-
velocity uαuα ¼ −1, one obtains

ut ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 − ωaω

a
p ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α2 − ψ4δabω
aωb

p ; ð12Þ

where ωa ¼ βa þ Ωϕa. The fluid sources of Eqs. (6)–(8),
i.e., ρH, ja, and S, are defined in terms of the energy-
momentum tensor in the previous section. In terms of the
fluid and field variables, they can be written as [62]

ρH ¼ ρ½hðαutÞ2 − q�; ð13Þ

ji ¼ ρhαðutÞ2γiαuα; ð14Þ

S ¼ ρhðαutÞ2 − ρhþ 3ρq; ð15Þ

in which q ≔ p=ρ is the relativistic analogue of the Emden
function. Here ut is related to h through Eq. (11).
Therefore, in order to close the system, an additional
relationship is needed between the specific enthalpy, the
pressure, and the rest-mass density of the fluid, i.e., an
EOS. Once such a relation is available, to solve the field
equations [Eqs. (6)–(8)] and the hydrostatic equation
[Eq. (11)] one has to find the two constants fΩ; Eg that
appear in all of them. This procedure is described in detail,
for example, in Ref. [60].

C. Equation of state

In this work, we have considered two types of EOS for
QSs. One of them is the MIT bag-model EOS [66], since it
is the most widely used EOS for QSs. In the case when
strange quark mass is neglected, the pressure is related to
total energy density according to

p ¼ σðϵ − ϵsÞ; ð16Þ

where σ; ϵs are two constants, the second being the total
energy density at the surface. Related to ϵs is the so-called
bag constant, B ¼ ϵs=4. In this work, and following [67],
the simplest MIT bag-model EOS has been employed,
where σ ¼ 1=3 and B1=4 ¼ 138 MeV.
Besides the MIT bag-model EOS, we have also consid-

ered another QS EOS suggested by Lai and Xu [68], which
we will refer to as the LX EOS hereafter. Unlike the
conventional QS models (e.g., the MIT bag-model EOS)
which are composed of deconfined quarks, Lai and Xu [68]
suggested that quark clustering is possible at the density of
a cold compact star since the coupling of strong interaction
is still decent at such an energy scale. Due to the non-
perturbative effect of strong interaction at low energy scales
and the many-body problem, it is very difficult to derive the
EOS of such a quark-cluster star1 from first principles.
Lai and Xu attempted to approach the EOS of such a

quark-cluster star with phenomenological models, i.e., to
compare the intercluster potential with the interaction
between inert molecules (a similar approach has also been
discussed in [70]). They also take the lattice effects into
account as the potential could be deep enough to trap the
quark clusters. Combining the intercluster potential and
the lattice thermodynamics, they have derived an EOS in
the following form:

1Such a quark-cluster star has also been named a strangeon
star in Ref. [69].
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p ¼ 4U0ð12.4r120 n5 − 8.4r60n
3Þ þ 1

8
ð6π2Þ13ℏcn4

3; ð17Þ

where ℏ is the reduced Planck constant. The parameters in
this expression,U0 and r0, are the depth of the potential and
characteristic range of the interaction, respectively. The
EOS is also dependent on the number of quarks in each
cluster (Nq) since it relates the energy density (ϵ) and rest-
mass density (ρ) to the number density of quark clusters
[n in Eq. (17)]. Similarly to the MIT bag-model EOS case,
we use the rest-mass density parameter, which is

ρ ¼ mu
Nq

3
n; ð18Þ

where mu ¼ 931 MeV=c2 is the atomic mass unit. While
several different choices of parameters are considered in
Ref. [68], in our work we restrict our attention to U0 ¼
50 MeV and for Nq ¼ 18. We also note that although it is
not as obvious as for the MIT bag-model EOS, the LX EOS
also has a nonzero surface density since Eq. (17) has a
unique zero root when the number density is positive.
Being a stiff EOS, the LX EOS is favored by the

discovery of massive pulsars [71–73]. The rest-mass
density and mass-radius relationships for spherical models
can be seen in Fig. 1, and the characteristics of the
maximum mass models are reported in Table I. The LX
EOS has also been discussed in relation with the possibility
of understanding some puzzling observations related to
compact stars, such as the energy release during pulsar
glitches [74], the peculiar x-ray flares [75], and the optical/
UV excess of X-ray-dim isolated NSs [76]. Particularly, a
solid QS model has been suggested in order to understand

those observations [77]. However, as pointed out in [74],
the critical strain of such a star is very small. A starquake
will be induced when the relative difference in ellipticity is
10−6, for most, between the actual configuration of the star
and the configuration as if the star were a perfect fluid. This
is consistent with the pulsar glitch observations on Vela.
Therefore, we find it a good approximation to calculate the
quasiequilibrium configuration of such a star with perfect
fluid assumption.
Understanding the models and properties of the QS

EOSs that wewant to consider, we can modify the EOS part
of the simulation code, which was originally designed for
NS models, accordingly.
As mentioned above, in the case of NSs, a piecewise-

polytropic EOS is usually assumed to describe the EOS
[62,78]. In each piece, the pressure and rest-mass density
are related as

pi ¼ κiρ
Γi ¼ κiρ

1þ1=ni ; i ¼ 1; 2;…; N: ð19Þ
For QSs, due to the nonzero surface density and nonzero

energy density integration constant, we will assume that the
EOS is generally a polynomial,

p ¼
XN
i¼1

κiρ
Γi : ð20Þ

Given the relationship between p and ρ, one can apply
the first law of thermodynamics to obtain other quantities
such as the energy density and the specific enthalpy. In the
zero-temperature case, the first law of thermodynamics can
be expressed as [62]

dϵ ¼ ϵþ p
ρ

dρ or d

�
ϵ

ρ

�
¼ p

ρ2
dρ; ð21Þ

which can be integrated to obtain the total energy density.
The integral constant is usually chosen to be 1, since when
there is no internal energy, the energy density and the rest-
mass density coincide (apart from the square of the speed
of light). However, for QS EOSs (like in [70] and the MIT
bag-model EOS), the integral constant is different from
unity and needs to be properly taken into account.
In this case, the energy density and specific enthalpy are

related to the rest-mass density by

FIG. 1. The Tolman-Oppenheimer-Volkoff (TOV) solution
sequences for the MIT bag-model EOS (red solid line) and
LX EOS (blue dashed line), respectively. The left panel shows the
mass-central density relationship for each model and the right
panel is the mass-radius diagram. The bag constant we apply in
this work for the MIT bag-model EOS satisfies the two-solar-
mass constraint from observations.

TABLE I. Pressure, energy density, rest-mass density, gravita-
tional mass, and compactness at the maximum mass of spherical
solutions for the two EOSs in this work.G ¼ c ¼ M⊙ ¼ 1 unit is
used. To convert to cgs units, use the fact that 1 ¼ 1.477km ¼
4.927 × 10−6s ¼ 1.989 × 1033g

EOS ðp=ρÞc ϵc ρc M C

MIT 0.2940 2.609 × 10−3 2.342 × 10−3 2.217 0.2706
LX 2.326 2.451 × 10−3 1.744 × 10−3 3.325 0.3956
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ϵ ¼
XN
i¼1

κi
Γi − 1

ρΓi þ ρð1þ CÞ; ð22Þ

h ¼ ϵþ p
ρ

¼
XN
i¼1

Γiκi
Γi − 1

ρΓi−1 þ 1þ C: ð23Þ

Here C is the integral constant we mentioned above. It is
usually taken to be zero for NS models. Here it is
introduced again in order to accommodate stars that have
different surface limits for the thermodynamic variables.
The nonzero surface density of QSs requires a different

boundary condition in our simulation. For typical NSs
when we adjust the position of the surface, we are actually
locating the points where the specific enthalpy is 1. For
QSs, the surface identification will be at values of the
specific enthalpy different from unity and consistent with
Eq. (23). What we typically use as the input parameter is
the surface rest-mass density ρs, from which we then
calculate hs using Eq. (23).
As an example, for the MIT bag-model EOS the first law

at zero temperature implies

ϵ ¼ 1

1þ σ
ðC̄ρ1þσ þ σϵsÞ; ð24Þ

p ¼ σ

1þ σ
ðC̄ρ1þσ − ϵsÞ; ð25Þ

h ¼ C̄ρσ; ð26Þ

where C̄ is a constant of integration. The above EOS is of
the form (20) with

κ1 ¼
σC̄

1þ σ
; Γ1 ¼ 1þ σ;

κ2 ¼ −
σϵs
1þ σ

; Γ2 ¼ 0; ð27Þ

and C ¼ −1. Having all thermodynamical variables in
terms of the rest-mass density is convenient from the
computational point of view since this is one of the
fundamental variables used in the COCAL code; therefore,
the modifications with respect to the EOS will be minimal.
Given a fixed choice of σ and B for the MIT bag-model

EOS, one can obtain a unique solution of the field
equations under hydrostatic equilibrium (see Secs. II A
and II B). In other words, the relationship between the
gravitational mass versus the central energy density, the
mass-radius relationship, and the spacetime metric will not
depend on the coefficient C̄, as it is eliminated from
Eq. (16) (a similar argument can be found in [79,80]).
At the same time, it will indeed affect the rest mass and,
hence, the binding energy of the QS, since it relates the rest-
mass density and the number density of the components.
Hence, a reasonable choice for C̄ will still be helpful,

although it will not affect anything that we are interested
in for this work. Here we choose C̄ such that the EOS
corresponds to the a4 ¼ 0.8 model as in [81] and we
assume a rest mass of 931 MeV=c2 for each baryon number
(nb ¼ nq=3, where nq is the number density of quarks).
Any other choices for C̄ are in principle possible and they
will not affect our solution except for the rest mass of the
star. Actual values of these constants can be found in
Table II in cgs units.
In Eqs. (24) and (25) we have employed a relationship

which is quite similar to the explicit form of the MIT bag
model. By factoring out the rest mass, those two equations
can be rewritten as a function of number density instead of
rest-mass density. However, one clarification we want to
discuss at this point is that the choice of using Eqs. (24) and
(25) is not essential. Moreover, Eqs. (24) and (25) are
related by the first law of thermodynamics [see Eq. (21)],
which is not essential either. We can describe the MIT EOS
Eq. (16), in a parametric form ðpðρÞ; ϵðρÞÞwith an arbitrary
parameter ρ, as long as the functions pðρÞ and ϵðρÞ satisfy
Eq. (16). In doing so we choose to satisfy Eq. (21) and
therefore arrive at Eqs. (24) and (25). As one can see from
Eqs. (13)–(15), the fluid terms that appear are qρ ¼ p and
hρ ¼ ϵþ p. Thus, for the MIT bag-model EOS, the only
thermodynamic variable that appears in the field equations
is ϵ. Every model thus calculated will be uniquely defined
by a deformation parameter and the central total energy
density. The scaling constant, which is analogous to scaling
as κn=2 for NSs [62], is here ϵ−1=2s .

TABLE II. Quark EOS parameters in cgs units for the MIT and
LX EOSs, respectively. ρnuc is the nuclear saturation density
which is chosen to be 2.67 × 1014 g cm−3. Unlike NSs which
have a surface enthalpy hs ¼ 1, for QSs this value is an input
parameter for a specific model. In practice one inputs the rest-
mass density at the surface ρs and then hs is computed from the
EOS. The constant C is the integration constant of the first law
and determines the limit of the thermodynamic variables at the
surface of the star.

MIT bag-model EOS

C ¼ −c2 ρs ¼ 1.4ρnuc hs ¼ 0.896 974 78c2

N ¼ 2 κi Γi

i ¼ 1 2.797 790 7 × 1015 4
3

i ¼ 2 −7.527 976 8 × 1034 0

LX EOS

C ¼ 0 ρs ¼ 2.0ρnuc hs ¼ 0.968 286 75c2

N ¼ 3 κi Γi

i ¼ 1 2.082 470 6 × 10−39 5
i ¼ 2 −6.155 937 5 × 10−10 3
i ¼ 3 7.130 722 6 × 1013 4

3
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Before concluding this discussion on the EOSs, we
should mention that although a polynomial-type EOS is
implemented for the calculation of QSs with a finite surface
density, the developments in the new version of COCAL

allow us to calculate any compact star with an EOS that
can be described by a polynomial function, including NSs
and hybrid stars. For instance, some phenomenological
approaches suggested recently in Ref. [82] also result in a
polynomial-type EOS, which can be computed straight-
forwardly with the new code.

III. CODE TESTS

The working properties of the COCAL code for single
rotating stars is presented in detail in previous works, e.g.,
[37,38],2 so that here we will only mention the most
important quantities that are used in our simulations.
The method has its origins in the works of Ostriker and
Mark [83], who used it to compute Newtonian stars, and
the works of Komatsu et al. [84], who devised a stable
numerical algorithm and obtained first axisymmetric
general-relativistic rotating stars. From this latest work,
the method is commonly referred to as the KEH method
and consists of an integral representation of the Poisson
equation commonly referred to as the representation for-
mula. Since we have only one computational domain with
trivial boundary conditions at infinity, the Green’s function
is Gðx; x0Þ ¼ 1=jx − x0j and is expanded as a series of the
associated Legendre polynomials and trigonometric func-
tions. The maximum number of terms included in this
expansion is given as L in Table III.
This approach is used to compute the gravitational fields

fα;ψ ; βig while hydrostatic equilibrium is achieved
through Eq. (11). At every step in the iteration to reach
the solution at the desired accuracy, three constants need to
be computed. The first one is the angular velocity of the
star, Ω; the second one is the constant from the Euler
integral, E, in Eq. (11); and, finally, the third constant is R0,
a normalization factor for the whole domain where the
equations are solved.3 At every step during the iteration, the
nonlinear equation with respect to these three constants is
solved typically by evaluating Eq. (11) at three points in
the star. For axisymmetric configurations, we use the center
of the star and two points on the surface, one on the positive
x-axis and one at the North pole of the stellar model. An
axisymmetric equilibrium is achieved by setting the ratio
between the polar axis over the equatorial radius along the
x-axis. For triaxial configurations, on the other hand, the
three points are the center of the star together with two
points again on the surface, one at the positive x-axis, and

one on the positive y-axis. Each triaxial solution has a fixed
ratio of the radius on the y-axis over the radius of the x-axis.
From a numerical point of view, COCAL is a finite-

difference code that uses spherical coordinates ðr; θ;ϕÞ ∈
½0; rb� × ½0; π� × ½0; 2π�4 and the basic parameters are
summarized in Table III. In the angular directions θ;ϕ,
the discretization is uniform, i.e., Δθ ¼ π=Nθ and
Δϕ ¼ 2π=Nϕ. In the radial direction, the grid is uniform
until point rc with Δri ¼ rc=Nm

r , and in the interval ½rc; rb�
the radial grid is nonuniform and follows a geometric series
law [37]. While field variables are evaluated at the grid-
points, source terms under the integrals are evaluated at
midpoints between two successive gridpoints since the
corresponding integrals use the midpoint rule. For integra-
tions in r and ϕ, we use a second-order midpoint rule. For
integrations in θ we use a fourth-order midpoint rule. This
was proven necessary to keep second-order convergence at
the region of maximum field strength [58]. Derivatives at
midpoints are calculated using a second-order rule for the
angular variables θ;ϕ, and a third-order rule for the radial
variable r (again for keeping second-order convergence in
the same regions [57]). Derivatives evaluated at gridpoints
always use a fourth-order formula in all variables.
It is worth noting that, since for QSs the relationship

between the specific enthalpy and the rest-mass density
follows a general polynomial function [cf., Eq. (23)], a
root-finding method needs to be employed when calculat-
ing the thermodynamical quantities from the enthalpy. The
regular polynomial expression of the specific enthalpy with
respect to rest-mass density allows us to use a Newton-
Raphson method as the derivative can also be expressed
easily. In view of this, the computational costs with a QS
EOS are not significantly larger than those with a NS EOS.
However, in order to guarantee a solution of rest-mass
density when the specific enthalpy is given, a bisection
root-finding method needs to be employed if the Newton-
Raphson method does not converge sufficiently rapidly.
In this case, the initial range of the bisection method is set
to be the specific enthalpy corresponding to the rest-mass
densities at the stellar center and at the surface, respectively.
In previous works [37,38,58,85], the COCAL code has

been extensively tested, both with respect to its conver-
gence properties and with respect to actual evolutions with
other well-established codes [85].
In what follows we report the convergence tests we have

performed in order to investigate the properties of the code
under these new conditions. Before doing that, we note that
special care is needed when using a root-finding method to
calculate thermodynamical quantities for a given specific
enthalpy in the case of rotating QSs. In particular, it is
crucial to consider what the accuracy set is during the root-
finding step. Of course, it is possible to require that the

2See [57–60] for the general binary case.
3We recall that COCAL uses normalized variables x̂i ≔ xi=R0.

The quantities listed in Table IV refer to those and should be
denoted by a hat. For simplicity, however, we have omitted these
hats in the table.

4Note that the field equations for the shift vector Eq. (7) are
expressed in Cartesian coordinates.
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accuracy in the root-finding step be much higher than the
other convergence criteria in the code to guarantee an
accurate result. In this way, however, the computational
costs will increase considerably, since the thermodynamical
quantities need to be calculated at every gridpoint and at
every iteration. We found that an accuracy of 10−10 for the
thermodynamic variables solutions neither compromises
the accuracy of the solutions nor slows down the code
significantly.

A. Comparison with rotating NSs

Although the newly developed code presented here is
intended for QS EOSs, it can also be used to produce
rotating NSs if one restricts the EOS to a single polytrope.
This can be accomplished by setting the polynomial terms
to be only 1, the surface rest-mass density ρs ¼ 0 and the
energy integral constant C ¼ 0. In this case, Eq. (20)
becomes

p ¼ κρΓ ¼ κρ1þ1=n; ð28Þ
and the relationship between the energy density, the specific
enthalpy, and the rest-mass density [Eqs. (22) and (23)] will
be exactly the same as that for a polytropic NS.
We choose a stiff EOS with n ¼ 0.3 and produce

axisymmetric solution sequences for small and high com-
pactness C ≔ MADM=R ¼ 0.1, 0.2, and MADM is the corre-
sponding Arnowitt-Deser-Misner (ADM) mass for a
nonrotating model, both with the original rotating-NS and
the modified rotating-QS solver. The grid-structure param-
eters used are Nr ¼ 240, Nm

r ¼ 80, Nf
r ¼ 64, Nθ ¼ 96,

Nϕ ¼ 192, L ¼ 12, rb ¼ 104, and rc ¼ 1.25 (see
Table III). Overall, we have found that the relative difference
in all physical quantities is of the order of 10−6, which iswhat
is expected since the criteria for convergence in COCAL are
that the relative difference in metric and fluid variables
between two successive iterations is less than 10−6.

B. Convergence test for rotating QSs

For the convergence analysis in this work we use the five
resolutions shown in Table IV. The outer boundary of the

domain is placed at rb ¼ 106, while the surface of the star is
always inside the sphere r ¼ 1. The radius along the x-axis
is exactly r ¼ 1 in the normalized variables. There are
exactly Nf

r intervals along the radii in the x, y, and z
directions. The number of Legendre terms used in the
expansions is kept constant (L ¼ 12) in all resolutions
since convergence with respect to those has already been
investigated in [86]. When going from the low-resolution
setup H2.0 to the high-resolution one H4.0, the spacings
Δr;Δθ;Δϕ decrease as 2=3; 3=4; 2=3; 3=4.
As a result, if we denote as fμ, fν a quantity evaluated at

two different resolutions, then

fμ − fν ≈ A

��
Δμ

Δν

�
n
− 1

�
Δn

ν ; ð29Þ

where A is a constant and Δμ is the grid separation at
resolution Hμ. Choosing the combinations fH3.0 − fH2.0,
fH3.5 − fH2.5, and fH4.0 − fH3.0 so that we have Δμ=Δν ¼
1=2 and normalizing by fH4.0, we plot in Fig. 2 the relative
error with respect to the grid spacing for Ω, MADM, J,
T=jWj, M0, and the eccentricity e ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðR̄z=R̄xÞ2

p
, both

for the LX EOS (left panel) and for the MIT bag-model
EOS (right plot). The deformation is kept at Rz=Rx ¼ 0.75
for both EOSs, while the central densities are ϵc ¼ 1.301 ×
10−3 and ϵc ¼ 7.361 × 10−4 for the LX and MIT bag-
model EOS, respectively. The dashed black line reports a
reference first-order convergence, while the solid black line
refers to a second-order convergence.
Note that quantities like the ADM mass, the angular

velocity and the eccentricity converge to second order,
while quantities like the angular momentum, the ratio
T=jWj, and the rest mass converge to an order that is
closer to first. Furthermore, Fig. 2 shows that some
quantities (e.g., the ADM mass of the LX EOS) show a
convergence order that is larger than second, but this is an
artifact of the specific deformation. In general, we found
second-order convergence in MADM;Ω, and e, and at least
first order for J; T=jWj, and M0.
Note also that the two panels in Fig. 2 are very similar,

even though the EOSs are quite different, with the MIT
bag-model EOS being relatively soft (i.e., p ∝ ρ4=3), while
the LX EOS is comparatively stiff (i.e., p ∝ ρ5). Hence, the

TABLE III. Summary of parameters used for rotating star
configurations.

ra: Radial coordinate where the grid ri starts.
rb: Radial coordinate where the grid ri ends.
rc: Radial coordinate between ra and rb where the grid changes

from equidistant to nonequidistant.
Nr: Total number of intervals Δri between ra and rb.
Nm

r :Number of intervals Δri in ½0; rc�.
Nf

r: Number of intervals Δri in ½0; Rðθ;ϕÞ�.
Nθ: Total number of intervals Δθi for θ ∈ ½0; π�.
Nϕ:Total number of intervals Δϕi for ϕ ∈ ½0; 2π�.
L: Number of multipoles in the Legendre expansion.

TABLE IV. Five different resolutions used for convergence
tests. Parameters are shown in Table III. The number of points
that covers the largest star radius is Nf

r.

Type ra rb rc Nr Nm
r Nf

r Nθ Nϕ L

H2.0 0 106 1.25 192 80 64 48 48 12
H2.5 0 106 1.25 288 120 96 72 72 12
H3.0 0 106 1.25 384 160 128 96 96 12
H3.5 0 106 1.25 576 240 192 144 144 12
H4.0 0 106 1.25 768 320 256 192 192 12
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overall larger error that is reported in Fig. 2 when compared
to the corresponding Fig. 1 in Ref. [37] is mostly due to the
finite rest-mass density at the stellar surface. In the original
rotating-NS code, in fact, the surface was determined
through a first-order interpolation scheme. This approach,
however, is not sufficiently accurate for rotating QSs and
would not lead to the desired convergence order unless the
surface finder scheme was upgraded to second order.

IV. TRIAXIAL SOLUTIONS

The onset of a secular instability to triaxial solutions for
the MIT bag-model EOS stars has been studied previously
via a similar method in Ref. [56]. Surface-fitted coordinates
have been used to accurately describe the discontinuous
density at the surface of the star, and a set of equations
similar to the one of the conformal flat approximation used
here was solved. In order to find the secular bar-mode
instability point, the authors of Ref. [56] performed a
perturbation on the lapse function of an axisymmetric
solution and built a series of triaxial quasiequilibrium
configurations to see whether this perturbation is damped
or grows.
Here, we build quasiequilibrium sequences with constant

rest mass (axisymmetric and triaxial) for both the MIT bag-
model EOS and the LX EOS. We begin with the axisym-
metric sequence in which we calculate a series of solutions
with varying parameters, i.e., the parameters that determine
the compactness (e.g., the central rest-mass density ρc) and
the rotation (Rz=Rx). In doing so, we impose axisymmetry
as a separate condition and manage to reach eccentricities
as high as e≃ 0.96 for Rz=Rx ¼ 0.2656 and compactness
C ¼ 0.1. In order to access the triaxial branch of solutions,
we recompute the above sequence of solutions but this
time without imposing axisymmetry. As the rotation rate

increases (Rz=Rx decreases), the triaxial deformation
(Ry=Rx < 1) is spontaneously triggered, since at a large
rotation rate the triaxial configuration possesses lower total
energy and is therefore favored over the axisymmetric
solution. This approach is different from the approach
followed in Ref. [17], where the triaxialm ¼ 2 perturbation
was triggered after a suitable modification of a metric
potential.
We keep decreasing Rz=Rx to reach the mass-shedding

limit with the triaxial configuration. We can then move
along the triaxial solution sequence by increasing Ry=Rx,
which now acts as the new rotating parameter. The
sequence is then terminated close to the axisymmetric
sequence. The bifurcation point can be found by extrapo-
lating this triaxial sequence towards the axisymmetric
solutions. The largest triaxial deformation calculated in
this work, for both the MIT bag-model EOS and the LX
EOS, is Ry=Rx ¼ 0.5078 for the C ¼ 0.1 case (a three-
dimensional image of the surface for this solution is shown
in Fig. 3), Ry=Rx ¼ 0.5234 for C ¼ 0.15, and Ry=Rx ¼
0.6757 for C ¼ 0.2. Similar to NSs [37], the end point of the
triaxial sequence happens in lower eccentricities as the
compactness increases.
In Figs. 4 and 5, the relation between the T=jWj ratio

versus the eccentricity of the star has been plotted for three
different compactnesses (C ¼ 0.1; 0.15, and 0.2) for both
the MIT bag-model EOS and the LX EOS. Unlike in a
Newtonian incompressible star, for which the bifurcation to
triaxial deformation happens at ðT=jWjÞcrit;Newt ≃ 0.1375
for any compactness, in general relativity the bifurcation
point depends on the compactness. According to [17],

�
T
jWj

�
crit

¼
�

T
jWj

�
crit;Newt

þ 0.126Cð1þ CÞ: ð30Þ

FIG. 2. Normalized differences jðfH3.0 − fH2.0Þ=fH4.0j, jðfH3.5 − fH2.5Þ=fH4.0j, and jðfH4.0 − fH3.0Þ=fH4.0j are plotted forΩ,MADM, J,
T=jWj,M0, and e ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðR̄z=R̄xÞ2

p
against the resolutionsΔH3.0,ΔH2.5, and ΔH2.0. The black solid line is proportional toΔ2, while the

black dashed line is proportional to Δ. The left panel refers to the LX EOS (Table II) with central rest-mass density ϵc ¼ 1.301 × 10−3

and axis ratio in the coordinate length Rz=Rx ¼ 0.75. The right panel is the same but for the MIT bag-model EOS with ϵc ¼
7.361 × 10−4 and the same deformation as the LX plot.
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This relation holds true not only forNSs but also forQSswith
the MIT bag-model EOS (see Fig. 1 of [56]). The largest
T=jWj for the onset of secular instability is found to be≃0.17
for rotating QSs in the configurations that we considered for
both theMIT bag-model EOS and the LXEOS, and it will be
even larger for higher compactnesses. Both the LX EOS and
the MIT bag-model EOS in our calculations follow this
relationshipwithin amaximumerror of 3%. This implies that
the secular instability to a “Jacobi-type” ellipsoidal figure in
general relativity is not particularly affected by the stiffness
of the EOS for quark matter.

It is worth noting that when compared with the rotating
NSs calculated in Ref. [38], rotating QSs have longer
triaxial sequences. In other words, the triaxial sequence of
rotating QSs terminates at larger eccentricity as well as
larger triaxial deformation (in other words, smaller Ry=Rx
ratio). A rotating NS with Γ ¼ 4 and compactness C ¼ 0.1
bifurcates from axisymmetry at e≃ 0.825 and can rotate
fast enough to reach eccentricities e < 0.9 (see Fig. 6 in
[38]). For the QS models considered here and both EOSs,
we have a bifurcation point at e≃ 0.825 and the mass-
shedding limit at e≃ 0.93. For more compact NSs with
C ¼ 0.2, the bifurcation point happens at e≃ 0.835 and the
mass shedding limit at e≃ 0.88. The corresponding com-
pactness QS models bifurcate at e≃ 0.83 and rotate as fast
as e≃ 0.89.
A few remarks are useful to make at this point. First, we

note that these values of eccentricity are strictly valid under
the assumption of the conformal flatness approximation,
which is however accurate for smaller compactnesses. These
estimates are less accurate when the compactness increases
and are slightly different when adopting more accurate
formulations, such as the waveless approximation (see
Fig. 6 in [38]). Second, another difference between triaxial
NSs and QSs is that for triaxial NSs, the ratio T=jWj is
essentially constant along the triaxial sequence, especially
for higher compactnesses (for lower compactnesses there is
an increase towards the mass-shedding limit, but this is very
slight). For rotating triaxial QSs, on the other hand, although
this qualitative behavior is still true, a greater curvature
towards higherT=jWj ratios can be seen. For example, for the
C ¼ 0.1 models mentioned above, the difference between
the critical value of T=jWj and the one at the mass-shedding
limit is ðT=jWjÞms − ðT=jWjÞcrit ≃ 0.0015 for NSswhile it is

FIG. 3. Illustration of the three-dimensional surface of a QS
solution with the largest triaxial deformation for the MIT bag
model with corresponding spherical compactness C ¼ 0.2. The
axis ratio Ry=Rx is 0.6757 and Rz=Rx ¼ 0.4375. The solid black
lines on the surface correspond to fixed values of the latitude
angle and the fact that they are not parallel is a result of the triaxial
deformation.

FIG. 4. Left: T=jWj versus eccentricity e ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðR̄z=R̄xÞ2

p
(in proper length) for MIT bag-model EOS sequences. Solid curves are

axisymmetric solution sequences and dashed curves are triaxial solution sequences that correspond to C ¼ M=R ¼ 0.2 (green curves),
0.15 (red curves), and 0.1 (blue curves), respectively. Note that M is the spherical ADM mass. Right: Magnification of the region near
the onset of the triaxial solutions marked with empty symbols, while filled symbols mark the models at the mass-shedding limit.
Solutions labeled with ML are axisymmetric solutions (Maclaurin spheroids), while those labeled JB are triaxial solutions (Jacobi
ellipsoids).
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0.0137 for QSs. Third, in Ref. [56] it has been shown that at
the bifurcation point the relation between the scaled angular

frequency, f=ϵ̄1=2s , where ϵ̄s ¼ ϵs=ðc21014 g cm−3), and the

scaled gravitational mass MADMϵ̄
1=2
s depends only very

weakly on the bag constant. If we consider models with
the compactness C ¼ 0.1 model (see top line in Table V),

MADMϵ̄
1=2
s ¼ 1.193 M⊙ and f=ϵ̄1=2s ¼ 495.9 Hz, while the

scaled bifurcation frequency for such a scaled mass model is
roughly 492–494 Hz as deduced from Fig. 7 in [56].
Similarly, for the C ¼ 0.15 models, the renormalized
ADM mass and frequency are 2.140 M⊙ and 527.2 Hz,
while the corresponding range is 523–527 Hz in Ref. [56];
finally, for the C ¼ 0.2 case, the values are 3.168 M⊙ and
565.0 Hz, respectively, while the range 558–566 Hz is found
in [56]. Overall, the comparison of these threevalues shows a
very good agreement with the results presented in Fig. 7
of Ref. [56].

In order to understand the rotation properties of the
triaxial solutions, we also report quantities such as dimen-
sionless spin and dimensionless angular momentum in
Figs. 6–8. The dimensionless spin as a function of the
eccentricity for the MIT bag model and LX model are
shown in Figs. 6 and 7, respectively. The left panel of Fig. 8
reports the spin angular momentum as a function of the
eccentricity for the LX EOS. Similar to T=jWj, the angular
momentum increases with the eccentricity. The main
difference is that the relative positioning of the curves as
a function of compactness is reversed when compared with
the T=jWj plots. In other words, for a given eccentricity the
greatest angular momentum is achieved for the smallest
compactness, while the greatest T=jWj for the largest one.
This is true both for axisymmetric and triaxial solutions.
Also as we can see from the right panel of Fig. 8, more
compact objects can reach greater rotational frequencies,
while less compact objects can reach larger angular

FIG. 5. The same as Fig. 4 but for the LX EOS sequences.

TABLE V. Quantities at the point of bifurcation of triaxial sequences from axisymmetric ones for the two EOSs considered. The
compactness of the spherical star with the same rest mass, i.e. C, is the model parameter. Rx is the equatorial radius, and Rz=Rx is the ratio
of the polar to the equatorial radius. Each has two values; one is measured in the coordinate length, and the other in parentheses is
measured in proper length. ϵc is the energy density at the center of the compact star, Ω is the angular velocity. In the last three rows, we
report the bifurcation point of simple polytropes with polytropic index n as computed in [37] for comparison. Note that we have chosen
appropriate values for κ such that the TOV maximum mass for those polytropic EOSs reaches 2.5 M⊙. The definitions of MADM, J,
T=jWj, and I can be found in Appendix A of [60]. Zp is the polar redshift.

EOS C Rx Rz=Rx ϵc Ω MADM J T=jWj I Zp

MIT 0.1 7.021 (8.077) 0.5647 (0.5693) 6.200 × 10−4 0.028 08 0.6515 0.4580 0.1520 16.31 0.1343
MIT 0.15 7.962 (9.922) 0.5565 (0.5640) 6.811 × 10−4 0.029 85 1.169 1.293 0.1609 43.30 0.2231
MIT 0.2 8.415 (11.43) 0.5478 (0.5590) 7.696 × 10−4 0.031 99 1.731 2.649 0.1706 82.83 0.3308
LX 0.1 5.698 (6.557) 0.5644 (0.5689) 9.144 × 10−4 0.034 51 0.5312 0.3039 0.1518 8.805 0.1343
LX 0.15 6.515 (8.130) 0.5566 (0.5639) 9.542 × 10−4 0.036 30 0.9686 0.8850 0.1607 24.38 0.2251
LX 0.2 6.972 (9.528) 0.5469 (0.5574) 9.977 × 10−4 0.038 38 1.481 1.932 0.1715 50.34 0.3401
n ¼ 0.3 0.1 6.624 (7.634) 0.5634(0.5693) 9.221 × 10−4 0.031 80 0.5841 0.3708 0.1507 11.66 0.1328
n ¼ 0.3 0.2 7.312 (9.979) 0.5394(0.5535) 1.243 × 10−3 0.039 26 1.435 1.835 0.1688 46.72 0.3311
n ¼ 0.5 0.1 10.30 (11.83) 0.5461(0.5536) 5.153 × 10−4 0.021 97 0.8416 0.7644 0.1493 34.80 0.1281
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momenta, which can exceed unity. According to Figs. 6
and 7, as well as the right panel of Fig. 8, triaxial sequences
lose angular velocity and gain spin angular momentum as
one moves towards the mass-shedding limit.
An obviously interesting property of triaxially rotating

compact stars is that they can act as strong sources of GWs.
A full general-relativistic evolution needs to be employed
in order to determine accurately the details of the GW
emission from such triaxially rotating stars and this is
beyond the scope of this paper (see however Ref. [61] for
the case of NSs). At the same time, we can apply the
quadrupole formula to make reasonable estimates using
the quasiequilibrium initial data we have computed. The
relationship between the normalized GW strain and the
eccentricity of the star is shown in the top panel of Fig. 9.
Compared with the results of the triaxially rotating NSs

FIG. 6. Plots ofΩMADM versus eccentricity for MIT bag-model
sequences. Solid curves are axisymmetric solution sequences and
dashed curves are triaxial solution sequences that correspond to
C ¼ M=R ¼ 0.2 (top green curve), 0.15 (middle red curve), and
0.1 (bottom blue curve), respectively. Note thatM is the spherical
ADM mass.

FIG. 7. The same as Fig. 6 but for the LX EOS sequences.

FIG. 8. Spin angular momentum versus the eccentricity and angular velocity for the LX EOS sequences. Dashed curves and solid
curves from the top to the bottom in each panel correspond to C ¼ 0.2 (green), 0.15 (red), and 0.1 (blue), respectively.

FIG. 9. Estimate of the GW strain amplitude for the C ¼ 0.2
triaxial sequence for both the MIT bag-model EOS (blue solid
curve) and the LX EOS (red dashed curve). The quantities are
estimated according to the quadrupole formula. Shown is the GW
strain for the l ¼ m ¼ 2 mode normalized by the distance D and
the ADM mass MADM of the source.
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calculated in [61], we find that the GW strain for QSs are
several times larger for similar values of compactness. For
example, model G4C025 in [61] with e ¼ 0.8685 radiates
GW with normalized strain 0.007 357, while the corre-
sponding amplitude for both the MIT bag-model EOS and
the LX EOS is around 0.025 with the same eccentricity (see
Fig. 9). Also shown in Fig. 9 for the two EOSs considered
are the relations between the strain and the eccentricity,
which are very similar and both essentially linear.

V. TRIAXIAL SUPRAMASSIVE SOLUTIONS

Besides the constant rest-mass sequences mentioned
above, we have also built sequences with constant central
rest-mass density for both the MIT bag-model EOS and the
LX EOS. We recall that when fixing the central rest-mass
density, the mass of the solutions will increase as the axis
ratio Rz=Rx decreases. Furthermore, since we do not
impose axisymmetry, the triaxial deformation will be
spontaneously triggered when T=jWj is large enough.
Therefore, with such calculations we can determine
whether triaxial supramassive QSs, i.e., triaxial solutions
with ADM mass larger than the TOV maximum mass
(MTOV) exist and the properties of such solutions.5 (Note
that all models shown in Figs. 4–8 are not supramassive).
According to [89], triaxial supramassive NS does exist

for the case with polytropic EOS in the range Γ≳ 4.
Furthermore, for the case with a two-segment piecewise
polytropic EOS, sequences of triaxial supramassive NS
solutions become longer, and hence the existence of
supramassive triaxial NSs becomes evident, when the
EOS of the lower density region is stiff (Γ ¼ 4) and the
higher density region is soft (Γ ¼ 2.5) [89]. Therefore, it is
likely that the triaxial supramassive QS also exists because
the QS EOS used in this paper has an analogous property;
namely, the effective Γ is smaller (softer) in the higher
density region and larger (stiffer) in the lower density
region (for the MIT model, see [51]). Besides having an

interest of its own, determining the existence of such
solutions could be relevant to establish whether a BNS
merger could lead to the formation of such an object.
Based on current mass measurement constraints [72,73]
and on known BNS systems, the mass of the postmerger
product will very likely be larger than MTOV.
In order to study this, we have fixed the central rest-mass

density close to the value corresponding to MTOV and built
rotating solution sequences for both the MIT bag-model
EOS and the LX EOS, respectively. In this way, we were
indeed able to find triaxial supramassive solutions for both
EOSs, reporting in Table VI the solutions with largest
triaxial deformation, i.e., the smallest ratio Ry=Rx.
Finally, we note that although such models have large

compactnesses and we are aware that the IWM formalism
becomes increasingly inaccurate for large compactnesses
(i.e., with C ≳ 0.3), we also believe that the associated
∼3% errors will not change the qualitative result, namely,
that triaxial supramassive QS models exist for the EOSs
considered here. At the same time, we plan to reinvestigate
this point in the future, when more accurate methods, such
as waveless formulation, will be employed to compute QS
solutions.

VI. CONCLUSION

We have presented a new version of the COCAL code to
compute axisymmetric and triaxial solutions of uniformly
rotating QSs in general relativity with two EOSs, i.e., the
MIT bag model and the LX EOS. Comparisons have been
made with NSs as well. Overall, three main properties are
found when comparing solution sequences of QSs with of
NSs. Firstly, QSs generally have a longer triaxial sequences
of solutions than NSs. In other words, QSs can reach a
larger triaxial deformation (or smaller Ry=Rx ratio) before
terminating the sequence at the mass-shedding limit; this is
mostly due to the larger T=jWj ratio that can be attained by
QSs. Secondly, when considering similar triaxial configu-
rations, QSs are (slightly) more efficient GW sources; this
is mostly due to the finite surface rest-mass density and
hence larger mass quadrupole for QSs. Thirdly, triaxial
supramassive solutions can be found for QSs as well; this is
again due to the fact that larger values of the T=jWj ratio
can be sustained before reaching the mass-shedding limit.
Besides having an interest of its own within solutions

of self-gravitating objects in general relativity, triaxially

TABLE VI. Quantities of triaxial supramassive QS solutions with the largest triaxial deformation (smallest Ry=Rx ratio) in our
calculations. The above quantities are defined in the same way as in Table V. The TOV maximum mass of each EOS is also shown as a
comparison. Because of the limitation of IWM formulation, there might be ∼3% errors on the quantities listed above (see related
discussions in Sec. V).

EOS Rz=Rx Ry=Rx Rx ϵc Ω MADM J T=jWj I MTOV

MIT 0.4375 (0.4713) 0.7657 (0.7938) 9.978 (16.32) 1.259 × 10−3 0.038 70 2.862 6.847 0.1839 173.1 2.217
LX 0.4375 (0.4912) 0.7586 (0.8104) 7.660 (16.49) 1.348 × 10−3 0.050 01 3.727 11.30 0.1948 222.1 3.325

5We recall that for NSs, a universal relation has been found
between MTOV and the maximum mass that can be sustained by
axisymmetric solutions in uniform rotation, Mmax (see also [87]
for the case of differentially rotating stars). More specifically,
Breu and Rezzolla [88] found that Mmax≃ ð1.203�0.022ÞMTOV
for a large class of EOSs; we expect a similar universal behavior
to be present also for QSs, although the scaling between Mmax
and MTOV is likely to be different.

ZHOU, TSOKAROS, REZZOLLA, XU, and URYŪ PHYS. REV. D 97, 023013 (2018)

023013-12



rotating compact stars are important sources for ground-
based GW observatories. Our calculations have shown that
for rotating QSs with different EOSs, the bifurcation point
to the triaxial sequence happens at a spin period of ∼1 ms,
so that the corresponding GW frequency is ∼2 kHz and
hence within the band of GW observatories such as
Advanced LIGO or Virgo. Indeed, exploiting the largest
triaxial deformation solution obtained in our calculations,
the GW strain amplitude can be as large as 10−23 at a
distance of ∼30 Mpc.
Although this is an interesting prospect, it is still

unclear whether such triaxial configurations can be
produced in practice, since the radiation-reaction time
scales needed for the triggering of the secular triaxial
instability are still very uncertain, as are the other
mechanisms that could contrast the instability. For exam-
ple, if the triaxial deformation is induced in an isolated
star, e.g., a newly born fast rotating star, GW radiation
may take away the excess angular momentum very rapidly
so that the star would go back to the axisymmetric
sequence again after the T=jWj ratio drops below the
critical value. Similarly, when considering stars in binary
systems, there is the prospect that an accreting system,
such as the one spinning up pulsars, could drive the
accreting compact star to exceed the critical T=jWj ratio,
hence leading to a break of axisymmetry. In this process,
which is also known as forced GW emission, the triaxial
deformation can be maintained via the angular momentum
supplied by the accreted matter. Notwithstanding the large
uncertainties involved with the details of this picture, such
as the presence or absence of a bifurcation point or the
realistic degree of deformation attained by the unstable
stars, the fact that these details depend sensitively on the
EOS [89] suggests that a detection of this type of signal
could serve as an important probe for distinguishing the
EOS of compact stars.
Finally, we note that the triaxial configurations could

also be invoked to explain the spin-up limit for rotating
compact stars, which is far smaller than the mass-shedding
limit. The results presented here and in Ref. [37] suggest
that when triaxial deformations are taken into account, the
rotational period of a compact star actually decreases as it
gains angular momentum, e.g., by accretion, along the

triaxial sequence. As a result, the “spin-up” process
provided by the accretion of matter onto the pulsar can
actually spin down the pulsar if the bifurcation point is
reached. In this case, no accreting pulsar could spin up
faster than the period at the bifurcation point. Of course,
depending on the microphysical properties of the QS (e.g.,
the magnitude of the shear viscosity or of the breaking
strain in the crust), it is also possible that other mecha-
nisms of emission of gravitational waves (e.g., other
dynamical instabilities such as the bar-mode instability
[24,27] or the r-mode instability [90–92], or nonzero
ellipticities) could intervene at lower spinning frequencies
and therefore before the onset of instability to a triaxial
deformation is reached [6,33]. As a result, the search for
fast spinning pulsars with more powerful radio telescopes,
such as the Square Kilometre Array (SKA) and the Five-
Hundred-Meter Aperture Spherical Radio Telescope
(FAST) [93,94], could provide important clues about
the properties of pulsars and test the validity of the solid
QS assumption [77].
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