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We examine the role of hyperons in a neutron star based on the relativistic mean field approach. For

nuclear matter below 1.5 times the normal nuclear density we constrain the model parameters by using the

symmetric nuclear matter properties and theoretical investigations for neutron matter in the literature. We

then extend the model to higher densities by including hyperons and isoscalar vector mesons that contain

strangeness degree of freedom. We confirm that the ¢» meson induces a A repulsive force and hardens the

equation of state. The hardening arising from the ¢» meson compensates the softening from the existence of
hyperons. The flavor SU(3) and spin-flavor SU(6) relations are examined as well. We found that the
coupling constants fitted by neutron matter properties could yield high enough maximum mass of a neutron

star and the obtained results satisfy both the mass and radius constraints. The onset of the hyperon direct
Urca process in neutron stars is also investigated using our parametrization.
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I. INTRODUCTION

A neutron star is a massive and dense stellar object whose
major constituents are neutrons. Due to the fermionic nature
of neutrons, protons and electrons are also allowed to exist
under the condition of charge neutrality. It was widely
accepted that the canonical mass of a neutron star is about
1.4M ., where M is the solar mass, and the radius is around
10 km [1,2]. But the recent measurements suggested that the
upper limit of the neutron star mass could be larger than
2 M [3.,4]. Such a compact object would have high nuclear
matter density up to several times the nuclear saturation
density (1, = 0.16 fm™3) in the core. In such a dense matter,
it is natural to expect that non-nucleonic degrees of freedom
may come out and various equations of state for a neutron
star have been suggested. For instance, since the average
distance between nucleons could be smaller than the de
Brogile wave length of quarks, there may exist quark matter
in the core of a neutron star [5-7]. On the other hand,
because of the bosonic nature of mesons, pion condensation
[8,9] and kaon condensation [10—-12] were suggested to be
formed in the core of a neutron star as examples of Bose-
Einstein condensation. In principle, such ideas could be
tested by future observations, such as x-ray observation in
low-mass x-ray binaries and gravitational wave detections
from neutron star binary mergers.
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Concerning the hadronic degrees of freedom, hadrons
with strangeness are likely to be formed because hyperon
matter is energetically favorable than pure nucleon matter.
In general, the presence of hyperons makes the equation of
state (EOS) softer than that without hyperon degrees of
freedom, which reduces the maximum mass of neutron
stars. Therefore, softening of the EOS might be incompat-
ible with the recent observation of 2.0M, neutron stars,
namely, PSR J1614-2230 and PSR J0348 + 0432 [3,4].
The question on the existence of hyperons in the core of
neutron star is paraphrased as the “hyperon puzzle” and
understanding the structure of a neutron star with strange-
ness degree of freedom now becomes one of major research
topics in neutron star physics. For example, three-body
repulsive forces among baryons was suggested as a
mechanism to compensate the softening of EOS in
Refs. [13-16]. In the presence of hyperons in nuclear
matter, the softening of EOS may be compensated by YNN,
YYN, and YYY interactions, where Y stands for a hyperon,
besides the three-body NNN interaction. The authors of
Refs. [14,15] proposed the multi-Pomeron exchange poten-
tial to obtain three-body repulsive force on top of the soft
core interactions for having large neutron star mass. Based
on quantum Monte Carlo simulations it was claimed that
the phenomenological ANN potential can make the thresh-
old density for hyperon population much higher than that of
the neutron star core [16]. Hyperon puzzle may also be
evaded by the onset of quark matter in the compact star. The
transition from massive hadron stars to strange quark stars
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suggests two coexisting families of compact stars, and the
strangeness of hyperons is dissolved into the deconfined
quark matter [17-19].

The investigation on the role of hyperons to neutron
star mass and radii has a long history starting in the 1960s
[20-24]. Most of theoretical investigations are based on the
relativistic mean field (RMF) approach [25-31]." Due to
the limitations in the observations, however, mainly neu-
tron star mass has been studied and the research focus was
on the change of the neutron star mass. Throughout
extensive studies, both relativistic and nonrelativistic
approaches seem to find conditions to fulfill the observed
maximum mass constraint of neutron stars [27-
29,31,35,36]. From the recent analyses of the x-ray burst
from neutron star binaries classified as low-mass x-ray
binaries (LMXB), both masses and radii have been esti-
mated with significant statistics even though it is too early
to make any firm conclusions [37-40]. First, a small radii of
neutron stars were reported by Ozel et al. [37] and by
Guillot et al. [40] from the analysis of x-ray bursts in
LMXB. By neglecting the mass dependence, Guillot et al.
[40] estimated the radius of neutron stars to be Ryg =
9.1713 km with 90% confidence.”

On the other hand, by considering the gravitational
redshift of x rays generated in the photosphere of the
x-ray burst sources, Steiner ef al. [38] suggested that the
radius of neutron stars would be Ryg = 12J_r?.'3 km. This
estimate is consistent with the experimental and theoretical
studies of nuclear matter as described in Ref. [43].

From the analysis of cooling phases of an x-ray burst
source, Sulumeinov et al. [39] suggested a stiff EOS that
allows 2.3M; with radius larger than 14 km. However,
such an EOS carries a large density slope of nuclear
symmetry energy, and thus the direct Urca process may
occur for neutron stars with masses less than 1.2M.
Hence, such models may be not easy to explain the cooling
curves of neutron stars [44]. In the near future, new X-ray
telescope  NICER (Neutron star Interior Composition
ExploreR) will be able to provide more reliable data on
both masses and radii of neutron stars [45]. The validity of
various EOS in the literature can then be tested by these
new observations.

The purpose of the present work is to find an EOS in the
relativistic mean field approach which satisfies both con-
straints on mass and radius simultaneously with the
existence of strangeness in a neutron star. For this end,
we first set up an SU(2) model that includes only nucleons

'One may extend the nonrelativistic approach of the Skyrme
force model by including hyperons [32-34] for studying hyper-
nuclei. This approach can also be applied to explore the neutron
star structure as discussed in Refs. [35,36].

A recent estimate on the neutron star radius for a mass of
1.5M, gives 10.1 km < Ryg < 11.1 km [41]. We also note that
the causality limits the maximum neutron star mass to be smaller
than 2.1M, if the radius is 9.1 km [42].

as baryons as well as the o, @, and p mesons, and determine
the model parameters to reproduce the properties of
symmetric nuclear matter and pure neutron matter that
were obtained in Refs. [46,47]. The criteria for SU(2)
models was discussed in many different approaches, such
as Monte Carlo calculations [46] and chiral effective field
theories [47,48]. The effects of three nucleon forces are also
discussed in Refs. [49,50]. After developing the SU(2)
model, we extend it to the case of flavor SU(3) and
investigate the role of hyperons in the mass-radius relation-
ship of neutron stars. For this purpose, we adopt several
cases for the determination of coupling constants among
hyperons and use the estimation of Steiner et al. [38] for the
radii of neutron stars. Then the obtained critical density or
neutron star mass are investigated for the hyperon direct
Urca process, which plays an important role in the thermal
evolution of neutron stars in the presence of hyperons.
This paper is organized as follows. We introduce the
Lagrangian density of nuclear matter in the flavor SU(2)
model in Sec. II. The equations of motion, energy density,
and pressure are obtained and discussed in detail. In Sec. 111,
we extend our model to the flavor SU(3) to include
strangeness degree of freedom for addressing the hyperon
puzzle in the RMF approach. We explain how we control the
coupling constants of the model and discuss the modified
equations of motion in hyperon matter. In Sec. IV, the
numerical results for the mass-radius relation of neutron stars
are summarized. The role of hyperons in direct Urca process
is then discussed in Sec. V. Section VI summarizes our
conclusions. The details on how we fix the SU(2) parameters
to reproduce the properties of symmetric nuclear matter and
those of pure neutron matter are described in the Appendix.

II. NUCLEAR MODEL

In order to describe nuclear matter, we start with the
RMF model in the flavor SU(2) sector, which includes
the p and @ vector mesons in addition to the scalar 6 meson.
The effective Lagrangian that includes nonlinear self-
interactions of the meson fields reads [51]
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where M is the baryon mass,’ m, is the lepton mass, 7 are
the Pauli matrices for isospin, and the field strength tensors
of the photon (A,) and vector mesons (w, and ,Z)'ﬂ) are
given by

F,,=0,A,-0A,

w,, = 0,0, = 0,0,,

Puv = 0uPy — Oy, (2)
The masses of the o, w, and p mesons are taken as m, =

491. 5 MeV [52], m,, = 782.5 MeV, and m, = 775.3 MeV
[53]. * The interactions between mesons are assumed to be

6 3

ZA‘v,i(gﬁg)i + zAv.i(g(%)wywﬂ)i' (3)

i=1 i=1

f(o',a)”a)ﬂ) =

The parameters A;; and A,; will be determined by the
neutron matter properties [51]. For simplicity, we introduce
brief notations at the mean field level as

S=g,(0). W=g,(°, R=g,(. )

where p? represents the time component of the p meson
with the third-component of isospin /, = 0. Then the
equations of motion for meson fields in uniform nuclear
matter are obtained as

2 b )
ny = (m—> s+ise it

. 2 6 8’
my, ¢ of
= w W3+ R? ——
" (%) e T ow
1 m,\? £
—~a=(—2) R+=>R>+2Rf, 5
54 (g,,> R+ 2RS (5)
where n, is the total baryon scalar number density

obtained as

1 /k'; dkk2 M3, ©)

KBl Ay 7ok

B=n.p
and n = n, + n,, is the total baryon number density while

a=n, —n, with

[ RN (505

3g2 P 3p2

(7)

n, =

Here M}, is the Dirac effective mass of the nucleon defined
as M}k\, :MN_g(;<G> :MN—S

3Since we are assuming SU(2) isospin symmetry, the proton
and neutron have the same mass M.

The scalar 6 meson corresponds to the f(500) in the list of
Particle Data Group [53]. The range of the ¢ meson mass is wide
and we adopt the value of m, from Ref. [52].

The energy density and pressure of the nucleonic
contribution can be obtained from the given Lagrangian
and are written as

ap = / dkk*\[k* + M?

A
+ —) S?+— S3+ S4
Yo 3!

i
5w
<

¢ of
) R2+8R4+R2<f+WaW> (8)

p

2 K A 1 /m,\?
o S2__s3__s4 ~ | o W2
(g,;) 37 T T2y,

£ 4 1 2, 2
+ W+2<gp>R+4'R + fR2. (9)

The chemical potentials of neutrons and protons, which are
the eigenvalues of the Fermi momenta k% and k%, respec-
tively, are obtained as

1
#n =/ (KE)* + M + W =R,
1
1y =) (K52 + +W+2R (10)

The coupling constants g,;, g,,, k, and 1 are determined to
reproduce the properties of the symmetric nuclear matter. In
the present calculation, we use the nuclear saturation
density n, and

My, =075My, B =16 MeV,
K = 240-245 MeV, (11)

where B is the binding energy per nucleon and K is the
incompressibility coefficient. In this fitting procedure, we
fix { = 0 so that the rescaling of g, can be used even in
the presence of the ¢» meson. This will be discussed in the
next section.

The remaining parameters &, g,, A,; and A,; are
determined by the neutron matter properties reported in
Refs. [46,47]. This is done by using the polynomial
parametrization for the energy per baryon in neutron matter
suggested in Ref. [54], which reads

) o
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TABLE 1. The fitted parameter sets of SU(2) RMF models. RGCR represents RMF model with GCR5 parametrization and RDSS
represents RMF models with DSS2 parametrization. For comparison, the fitted parameters in other works are also presented with references.
Parameter RGCR RDSS IU-FSU [52] SFHo [55] GMI1 [24] NL3 [56] Unit
my 2.491 2.491 2.491 2.371 2.491 2.575 fm™!
my, 3.966 3.966 3.966 3.864 3.966 3.966 fm~!
m, 3.929 3.929 3.867 3.902 3.867 3.867 fm™!
JoN 8.005 7.985 9.971 7.536 8.553 10.217

JoN 9.235 9.235 13.032 8.782 10.603 12.868

9N 11.108 11.033 13.590 9.384 8.121 8.922

K 6.603 x 1072 6.350 x 1072 1.713 x 1072 7.105 x 1072 2.805 x 1072 1.956 x 1072 fm™!
A —2.900 x 1072 —2.474 x 1072 2,960 x 1074 —2.645 x 1072 —6.420 x 1073 —1.591 x 1072

¢ 3.0x 1072 —1.701 x 1073

¢ -3.807 x 107> —1.088 x 10~ 3.453 x 1073

Ay —3.788 x 107* 4.467 x 1074 —-3.054 x 1072 fm~!
Ay 1.810 x 1072 4.267 x 1072 1.021 x 1072

Ag 1.724 x 1072 —3.597 x 107* 8.048 x 107 fm
Ay 2.424 x 1073 2.550 x 1074 1.072 x 1073 fm?
Ags —2.862 x 1073 2.588 x 1073 5.542 x 1073 fm?3
Ao -3.416 x 1078 9.217 x 1078 3.606 x 107° fm*
Ay 1.131 x 107* 2.220 x 1073 4.60 x 1072 7.616 x 1072

Ay —6.174 x 107* —8.536 x 107 —2.765 x 10~ fm?
A3 1.563 x 107 5.560 x 107° 6.861 x 1074 fm*

In Ref. [46], Gandolfi, Carlson, and Reddy (GCR) used
quantum Monte Carlo techniques to estimate the equation
of state of neutron matter, while Drischler, Soma, and
Schwenk (DSS) used chiral effective field theory [47]. For
our numerical calculations, we use GCRS5 and DSS2
parameterizations for neutron matter as compiled in
Table 1 of Ref. [50]. Explicitly, we adopt

a = 13.0 MeV, a = 0.50,
b =471 MeV, p =249, (13)
for GCRS and
a=11.95 MeV, a = 0.495,
b =3.493 MeV, p=2.632, (14)

for DSS2.

With this information one can calculate the properties of
nuclear and neutron matter, which determines the coupling
constants and other model parameters. The details can be
found in the Appendix, and the parameter sets obtained in
this way are presented in Table I. The parameter set RGCR
(i.e., the RMF model with the GCR parameterization) is
obtained with the GCRS parametrization and the set RDSS
is with the DSS2 parametrization.

For comparison, we show the energy per baryon of pure
neutron matter in Fig. 1. The small window magnifies the
results in the low density region, 0 < n < 0.3 fm=3. The
solid and dashed lines show the theoretical results of DSS2
and GCR5 models, respectively, while the results of RMF

with parameter sets RDSS and RGCR are presented by dot-
dashed and dotted lines, respectively. This shows that, for
pure neutron matter, the RDSS gives consistent results with
those of DSS2 up to n ~ 0.5 fm™> ~ 31, and the agreement
between GCRS and RGCR goes up to n ~ 0.8 fm™ ~ 5n,,.

Table II shows the standard nuclear matter properties for
various models considered in this work. In the present
calculation, ny, B, and K are inputs and J and L are
calculated results. For comparison, the corresponding
quantities of other models in the literature are given as
well. These SU(2) models are then used to compute the
neutron star mass. As will be discussed in Sec. IV, these

800 T
600 Y
< |
Sa00F 5 s -'
3 B 8.UU 0.65 U.‘lU O.‘l& ‘U.‘QU 0.525 U.:SU //'/
83 - n (fm";) L 1
200] -7 —— DsS2 ]
- -~ RDSS |
I = --- GCRS5 |
I s RGCR
1 oo b b b by )
00 02 04 06 08 10 12
n (fm™?)
FIG. 1. Energy per baryon of pure neutron matter. RGCR and

RDSS are obtained from the Lagrangian of Eq. (1) by fitting to
the results of GCRS5 [46] and DSS2 [47], respectively.
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TABLE II. Nuclear matter properties at the saturation density.
In our calculations (RGCR and RDSS), the saturation density ng,
binding energy per nucleon B, and the incompressibility coef-
ficient K are inputs while the symmetry energy J and the
symmetry energy slope L are computed at n,y. For comparison,
the results of other models are presented as well.

RGCR RDSS IU-FSU SFHo GMI1 NL3

no fm=3) 0.160 0.160  0.155 0.158 0.153 0.148
B (MeV) 16.0 16.0 16.4 16.2 16.3 16.2
K (MeV) 240 245 231 245 300 272
J MeV) 32.9 30.7 31.3 31.6 325 373
L (MeV) 46.8 422 47.2 529 94.0 118
Reference [52] [55] [24] [56]

models can give large neutron star masses. On top of these
models, we introduce hyperon degrees of freedom in the
next section.

III. MODEL FOR HYPERON MATTER

In order to study the role of strangeness degree of freedom
in neutron star structure, we extend the Lagrangian of Eq. (1)
by introducing the spin-1/2 flavor-octet hyperons. In addi-
tion, to study the role of the scalar and vector mesons with
hidden strangeness, we include the ¢(1020) vector meson
and the f((980) scalar meson. Therefore, we have the
SU(3) ;- nonet structure for scalar and vector mesons [26,57].
In the following we denote the f((980) meson field by ¢*.
Then the Lagrangian density reads

L="Lhyy+ Loy, (15)

where L, has the same form as L,,, in Eq. (1) but

includes hyperon octet such that B = p, n, A, £*0, 20—,
and L, includes the terms concerning the ¢* and the ¢.
Explicitly, it reads

Loy => Ws(9:50" = 9pp1,d")Wp
B

1
+ 55”0*3”0* ) m(Z, o2

1 1
+§m§§¢y¢ﬂ - Z(f)’wgﬁ’w, (16)

where m,,- and m,, are the f((980) and ¢ (1020) masses and
we use m,- = 975 MeV and my = 1020 MeV. For hyperon
masses, we also use the values provided by the Particle Data
Group [53]. The field strength tensor of the ¢ meson is
¢;w = ay¢u - 8L/¢ﬂ‘ (17)
Then the equations of motion of the meson fields in
uniform matter can be obtained as

2
s Mg Ko A 2 0f

) = (Ze)s+ise4 i REL . (18

: xaBnB <go—N) +2 +6 85 ( )

2
5 [ My ¢ 3 N of
g = W+=-W R-——, 19
- x!uBnB (ng) + 6 + aW ( )

B m
E XpBNpT3p =
5 9

”>2R +§R3 +2Rf, (20)

PN
A\ 2
S rean = (22)'s: (1)
B 9o A
B my \ 2
quﬁB”B: — | D, (22)
B IpA

where @ = gy (¢) and S* = g, (c"). Here, 735 is the z
component of the isospin quantum number of the baryon B
and our conventions are

1

T3p_+§’ Tn = 5 735 =0,
T3y+ = +1, T3ZO = 0, T3y- = —1,
1 1
Tz = T3 E S (23)
The ratios of coupling constants are defined by
__YoB Y 9B
XoB = s wB — ’ xpB — >
9oN JwN gpN
9o+ 9B
Xo*B = £ ’ XpB = i (24)
9o* A 9pa
The scalar and vector densities are
2Jp+1 [k M,
R el A
B < B B> (2”)3 0 \/m
. 2Jp+1 [k
nB = { = B / d3k, 25
B <l//BlI/B> (271_)3 0 ( )

where J is the spin of the baryon and M7, is the effective
mass defined as

ME = MB - xo‘BS - .XG*BS*. (26)

In this approach, the chemical potentials or the Fermi
energies of baryons and leptons are given as

pp = XopW + X,pT3pR + x5 ®@ + \/ (kB)* 4 (M}3)?,

Hi =/ (ki)* + m}. (27)

The energy density and pressure are the same as in Egs. (8)
and (9) except that the contributions from the ¢* and ¢
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mesons are included and the summation is now over all
hyperons. We then obtain

1 (my\2 1 /my\?2
E=¢ +—< ”) S*2+—<—"’> @, (28
) 9o* A 2 9pA ( )
1 nm .« 2 1 m 2

P="P,, -~ (") §2 4 <¢> @, (29
w2 9o+ A 2 JpA (29)
where the prime in &,,, and P,,, means that the summa-

tion over baryons is extended to include hyperons.

A. Couplings with vector mesons

The coupling constants between baryons and mesons
determine the strength of interactions and thus affect the
EOS of hyperon matter. Following the previous works, we
make use of the flavor SU(3) and spin-flavor SU(6)
relations.’ Starting from the flavor structure, the interaction
Lagrangian of baryons and mesons can be constructed as
follows. First, the SU(3) baryon octet can be written in a
matrix form as

(30)
Similarly, the vector meson octet can be written as
P+ o Pt K**
- 10 1 +0
Vi = p v tEes K (31)
K- K0 _ \/%ws

and the vector meson singlet takes the simple form of

W
Vi=—

100
01 0]. (32)
3

V3lo 0 1

Then the flavor SU(3) invariant interactions between
baryon octet and meson octet can be written as

Ly.pp = V2gy{(d + f)Tr(BBVy)
+ (d = f)Tr(BVgB)}, (33)

>See, for example, Refs. [29,57-59]. The general group
structure of meson-baryon interactions can be found, for exam-
ple, in Ref. [60].

while we have
Ly s = V39, Tt(V,BB) (34)

for the interactions between baryon octet and meson
singlet. Therefore, we have three parameters, g;, gg, and
ay = f/(f +d), with the condition that f+d =1, to
completely determine the coupling constants.’ The physical
w and ¢ mesons are combinations of wg and w;, whose
quark contents are

| - _
o) = 72 () + |dd) —25s)).
| - _
o) = 75 () +[ad) + [5)). (35)

By introducing the mixing angle € the physical states are
constructed as

|p) = cos Olwg) — sinO|w, ),
|w) = sin O|wg) + cos |wy). (36)

Throughout the present work, we assume the ideal mixing,
cos@ = \/2/3, between the octet and singlet mesons, so
that the ¢ is a pure s5 state and the @ does not contain the
hidden strangeness component.

Then by introducing z = gg/g;, one could obtain the
following relations for coupling constants:

2 1
JoN = {\/;_5(1 —405\/)2}91,

1 V2
Gon = —*3—7(1 —40‘\/)2}91,
2 2
o = 5—5(1 _aV)Z}g]s
2V2
-— (1= av)Z}gl,

(1 + Z(XV)Z}QI (37)

°In the present work, we do not include the K* vector meson,
even though the K* can give an extra repulsion, because it should
be treated with kaons in the medium. This may cause kaon
condensation in the core of neutron stars, which is, however,
beyond the scope of this work.
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and

9N = 2915 9ps = 2ayzg,,
9p= = —(1 - 205\/)291‘ (38)

Note that g,, = 0 because of isospin symmetry.

The coupling constants are constrained to some extent at
free space. For example, @y, = 1 is favored in the Nijmegen
soft core potential [61] and in the QCD sum rule analysis of
Ref. [62]. However, it is not yet clear how these couplings
would change in nuclear medium, in particular, in a high
density region like inside neutron stars, which will even-
tually affect the properties of neutron stars. The purpose of
the present work is, therefore, to see whether one can
satisfy the mass-radius constraint of neutron stars by
varying the coupling constant parameters, g; (or gg), ay,
and z. This would give us another viewpoint on the hyperon
puzzle. To this end, we consider the following four cases.

Case I. In this case, we consider the SU(6) limit, where

ay =1,  z=1/V6 (39)
as used in Refs. [57,59]. Therefore, the only
parameter is the overall scale of the coupling,
namely, g;. In this case, we have very strong
constraints on the coupling constants as

1 1 1 B
3ga)N - 2gw/\ - 2gw2 = Gz
1

9pN = Eg/)E = 95,

V2

1
oA = Gps = Eg(ps = _Tng’ 9pN = 0.

(40)
Case II. Here, we set @y = 1 but vary the value of z. In

this case, the relations between coupling con-
stants read

Jon Yoz \/5
ﬂ_a_ﬂ—i—ﬂz’

(- V2-3z Ipn _ Gpx  —1

Gov V24V Gan Gen V2437
9gN V6z -1 oz 1+62
dov V243 Gov V2437
9oN :%gpz = 9p=- (41)

Note that in the presence of the ¢ meson with
nonvanishing g,y, the symmetric nuclear mat-
ter properties are modified. Thus it is necessary
to rescale the coupling constant of g,y to

preserve the nuclear matter properties [29],
which leads to’

921\/ m2
gSN = JoN 1 + f w’
wN m(/)
9N s
gon == Yon- (42)
N JwN N

Case III. We now fix the value of z as z =1/ \/6 and
vary the value of ay. The relations between
coupling constants become

JoA :2av+4 Yo _ 8 —2ay

9JoN 4'OCV + 5 , 9JoN 4'aV + 5 ’
gwEZS_Z(XV, .%;A:\/Ezav—s’
Jon oy +5 JoN 4ay +5
'%;N:\/i‘l-av—‘l-’ %:_ﬂzav+l’
9oN day +5 YN day +5
g,/j _ 22av +4

9JoN 4'aV + 5 ,

Iz _og,,  IE_oq, 1. (43)
gpN gpN

Case IV. In this case, we freely vary the values of both
ay and z without any other constraints or
assumptions.

With the couplings between vector mesons and octet
baryons determined above, we examine the effects of the
coupling constants on the mass-radius relation of neutron
stars by varying the two parameters, ay and z. To determine
the overall scale of the SU(3) couplings, i.e., g;, we use g,y
so that each model keeps the value of g,y for given values
of ay and z. This does not change the nuclear matter
properties determined in the SU(2) models.

B. Couplings with scalar mesons

The flavor nature of the scalar meson nonet is not yet
clearly known since it may be described as an excitation of
quark-antiquark pair or as a tetraquark [63]. Furthermore,
the mixing angle between the scalar meson octet and singlet
also depends on the flavor structure. In the present article,
following the previous works, we assume that the scalar
mesons have gg structure and are ideally mixed so that the
o meson contains light ¢g pairs only and the f,(980) has
the hidden strangeness (s5) structure like the ¢» meson. This
then leads to

"This rescaling method is not applicable if { # O (see Table I). In
the case of { # 0, it is necessary to solve nonlinear equations
involving w as in Eq. (A9). It also requires us to rescale ¢ to keep
the symmetric nuclear matter properties at the saturation density.
Therefore, we do not consider the case of { # 0 in the present work.
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gon =0, 9o*'A = Go'x- (44)
In fact, this corresponds to the relations given in Eq. (40)
with the replacement of the ¢ by the f(980).

The coupling constants ¢,y can be found from the

potential depths Ug,N) in the nucleon bath with the

Hugenholtz-Van Hove theorem [24]. The potential depth
is the binding energy of a hyperon Y in the bath of
symmetric nuclear matter at saturation density and can
be written as

B
Ug’N> = <_> = ng<a)o> + M?’ - MY
Y

A
= ng<w0> - g(fY<6> = meW - X(SYS' (45)
In the present calculation, we adopt UE\N) = —-30 MeV,

U =30 MeV, and UL = 18 MeV following Ref. [64].

Inclusion of heavy ¢* scalar meson introduces additional
coupling constants and, thus, hyperon potentials in the bath
of hyperons are required to fit their values. For this purpose,
we follow the prescription suggested in Ref. [30]. In
hyperon matter composed of equal number of Z° and
EZ~ only, the potential felt by the hyperon Y at the saturation
density can be written as

Ug’:) = Goy <CO> + g(/)Y<¢> + M; - MY

= xwYW + X¢YP - xayS - xa*ys*. (46)
Here, S, W, and P can be obtained by solving Egs. (18),
(19), and (22). Then the combination of Egs. (21) and (46)
allows us to find the value of S* and the corresponding
Xyzy. In the present work, we use the potential depths of
hyperons as US) = U =20 =20 = —10 Mev
following Refs. [30,57,59].

IV. MASS AND RADIUS OF NEUTRON STARS

The ground state of nuclear matter can be found by
minimizing the energy density with respect to the number
density of its constituents. This gives the beta equilibrium
conditions which lead to the relations of chemical poten-
tials of particles as
(47)

Hi = Hy — qile, He = Hu>

where i represents n, p, A°, 29, and Z°~, while ¢; stands
for the charge of the baryon i. The conservation of total
baryon number density and charge neutrality lead to

nb—g n; =0,
i

(48)

Zq,-ni -n,—n, =0. (49)

10[] -

,_.
)
L

Particle fraction (V)
=

10734

FIG. 2. Particle fractions for given baryon number densities
with RGCR + SU(6) model, i.e., case 1.

Shown in Figs. 2 and 3 are the particle fractions in
the beta-stable nuclear matter. The vertical dotted line
in each graph indicates the central baryon number density
in the maximum mass of a neutron star in each model. In
the RDSS + SU(6) model, there can exist A’ and 2~ in the
core of neutron stars. On the other hand, it is possible to
have A% 2, B9, and 1 in the core of neutron stars if we
use RGCR model with case I.

For the crust EOS, we use the liquid drop model
approaches as explained in Ref. [65] using the SLy4 force
model [66]. For a given EOS, the mass and radius relation
of neutron stars is obtained by solving the Tolman-
Oppenheimer-Volkoff equation,

dP(r) __ Gm(r) [ £0) + P(r)] [ . 47tr3P(r)}

dr r? c? m(r)c?

2Gm(r)]-!
x {1 - # (50)
re
with
100g
=
< 107!
2
k3]
g
o
[S]
£ 1072
<
a
10—3 L Il L Il Il L 1 1 1 i 1 i 1 i
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
n (fm~3)
FIG. 3. Particle fractions for given baryon number densities

with RDSS + SU(6) model, i.e., case 1.
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FIG. 4. Mass and radius of neutron stars using relativistic mean
field models without hyperons. RGCR and RDSS models are the
results of our calculation and the other models are explained in
Table II. The horizontal lines indicate the observed neutron star
masses of Ref. [3,4]. The brown and green shaded areas show the
allowed region of the mass-radius constraint of Ref. [38] at the 1o
and 20 level, respectively.

dm(r)
dr

= 4n&(r)r?. (51)

Figure 4 shows the obtained mass-radius relations using the
relativistic mean field models discussed in the present
work. In this figure, the horizontal lines indicate the
observed neutron star masses of Refs. [3,4]. The brown
and green areas show the empirical region of the mass-
radius constraint given in Ref. [38] with the 1o and 2¢
level, respectively. This figure shows that all the considered
models in the present work can satisfy the criterion given
by the neutron star mass. However, the GMI1 and NL3
models are found to yield very large neutron star radii
compared with the empirically allowed region of Ref. [38].
This is because these models have large nuclear incom-
pressibility (K) and, in particular, large density gradient (L)
of the nuclear symmetry energy. These results emphasize
the important role of the combined mass-radius constraint
to understand the EOS of neutron stars.

We now discuss our results based on the SU(3) models
that show the role of strangeness in the structure of a
neutron star. We first examine the maximum neutron star
mass allowed by each model and the obtained results are
shown in Table III. We present the results for given values
of z and ay for each model. In general, the existence of
hyperons reduces the maximum mass of neutron stars,
which confirms the phenomenon known as the hyperon
puzzle. In particular, the reduction of the maximum neutron
star mass is large when we use the SU(6) relations for
couplings, i.e., the case I, as shown by the second row of
Table III. Even in this case, the GM1 and NL3 models give
large values for neutron star mass. However, as mentioned
before, these models result in neutron star radius that is
much larger than the empirically allowed values. We then

TABLE III. The maximum mass of neutron stars (in units of
M ) in each model using UE\M = —30 MeV, U;N) = +30 MeV,
U =18 MeV and U = UF =20 =20 =—10 MeV.
Note that SFHo and IU-FSU have nonvanishing ¢ thus the
maximum mass of neutron stars in case of II and III is not
physical.

Model z ay RGCR RDSS IU-FSU SFHo GMI1 NL3

su@) ..o o-ee 2220 207 1.94 206 236 2.78
Case 1 % 1 178 1.71 1.67 1.70  1.93 2.25
Case II ﬁé I 203 190 (1.93) (1.88) 2.15 226
Case III % % 198 191 (2.03) (1.88) 2.14 251

vary the values of z and ay assuming the SU(3) symmetry
relations for coupling constants. In this case, since the
vector meson (w) self-interaction exists in the IU-FSU and
SFHo models, we assume g4y = 0 to use the rescaling
equation given in Eq. (42). Shown in the third row of
Table III are the results of case II with a reduced z value
compared with the SU(6) case. The fourth row of Table III
shows the results of case Il by with ay = % Compared
with the SU(6) models (case 1), it is evident that the models
with SU(3) symmetry (cases II and III) are less constrained
by the group structure and the degree of the hyperon puzzle
is reduced very much. In fact, the models of RGCR and
RDSS can meet the mass condition of neutron stars when
we use the SU(3) relations and varying the values of ay, and
z. In principle, one cannot simply apply the SU(3) relations
in case of IU-FSU and SFHo models because of non-
vanishing ¢. Since the values in Table III are obtained by
applying the SU(3) relations, they are given in parentheses.
Therefore, the maximum masses of neutron stars in case
of I and III are subject to change by more realistic
calculations.

More detailed results on the dependence of the maxi-
mum neutron star mass on the couplings are shown in
Figs. 5 and 6. The results of case II are presented in Fig. 5

2.0 -
018 4
=

[ — RGCRw/o ¢* Ten
Lal RGCR w ¢* SRR
“[--- RDSSw/o o’ V]
[ ---- RDSSwo*
T S S I T SN T AN S SN SR [ TR SO SR S S S
0.0 0.2 0.4 0.6 0.8 1.0

z

FIG. 5. Maximum mass of neutron stars as a function of z in
case II with ay = 1.
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L ---- RDSS w/oo* i
r---- RDSSwo* 1
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: 0.4 0.6 0.8 1.0 1.2
y

FIG. 6. Maximum mass of neutron stars as a function of ay in
case III with z = 1//6.

with varying the value of z from 0O to 1. Those of case III are
shown in Fig. 6 with 0.3 <ay < 1.3. We find that the
maximum mass of neutron stars decreases as z or ay
increases in case Il and case III, respectively. This obser-
vation confirms the results of Ref. [29]. To achieve 2M , for
the neutron star mass, we need z < 0.3 in case Il and ay <
0.5 in case III for the RGCR model. The RDSS model
requires even smaller values for z and ay,. In Figs. 5 and 6,
we also show the results with and without ¢* to find that the
presence of the ¢ reduce further the maximum mass of
neutron stars.

For case IV, where we vary both z and ay, the results are
presented as a contour plot in Fig. 7 for the RGCR model
and in Fig. 8 for the RDSS model. The horizontal dashed
lines represent a; = 1 and correspond to case II, while the
vertical dashed lines denote z = 1//6 corresponding to
case III. As expected from the results shown in Figs. 5
and 6, small values for z and ay are needed to allow for
massive neutron stars. Our results show that if the ay ratio
of the vector meson couplings is the same as in the free

1y

1.2

=
=
T
I
1
I
]
.
1
I
t
I
1
1

T T T T T T T T T

FIG.7. Contour plot of the maximum mass of neutron stars as a
function of z and ay in the RGCR model with case IV. The

horizontal and vertical dashed lines are a, = 1.0 and z = 1/ V6,
respectively.

1.2

1.0

0.6

0.4

ay
o
0
T T T T T T T T T T T T T T T

<o
o

FIG. 8. Contour plot of the maximum mass of neutron stars as a
function of z and ay in the RDSS model with case IV. The
horizontal and vertical dashed lines are ay = 1.0 and z = 1/ V6,
respectively.

space, the coupling ratio between octet vector meson and

singlet vector meson should change from 1/v/6 ~ 0.4 to
about 0.3. On the other hand, if the coupling ratio is kept as

1/ \/6 the value of ay should be reduced to below 0.45. It is
interesting to note that this value is close to the a value of
pseudoscalar mesons, of which free space value is esti-
mated to be apg = 0.355 in Ref. [61]. More rigorous
investigations on the change of couplings in dense nuclear
matter are, therefore, highly desirable, in particular, for
both ay and apg.

Since the purpose of this article is to see the role of the
mass-radius constraint for neutron star models, we now
explore the model dependence of the predicted mass-radius
region of neutron stars of each model. We vary either ay, or
z and denote the range of the obtained mass-radius curves
by blue shaded areas in Figs. 9-13. Since, as shown in
Fig. 4, the GM1 and NL3 models in the SU(2) case cannot
satisfy the empirically allowed mass-radius region and the

257 — T
:
: o T ———— :
—15F ]
© L 4
=t ]
~ F 4
= 1.0p 1
[ goxn =0,03<ay <13 ]
0.5 -
[ — SFHo b
[ --- SFHo + SU(6) ]
0 0 1 1 1 1 1 1 1 1 1
~9 10 11 12 13 14

R (km)

FIG. 9. Mass and radii curves with the variation of ay con-
strained by g,y = 0 in the SFHo model with case . Smaller ay
gives smaller maximum mass of a neutron star for given EOS.
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25—
2.0F - ]
—~15F .
= f ]
Nl ]
= 1or ]
[ 0<z<l,ay=1
0.5F
[ — RGCR
[ --- RGCR +SU(6) ]
0 0 L Il L Il L Il L Il L
-9 10 11 12 13 14

R (km)

FIG. 10. Mass and radii curves with the variation of z with
ay = 1 in the RGCR model, i.e., case II. The red solid line is the
result of the model in the SU(2) case and the dashed line is that of
case L.

maximum neutron star mass of the IU-FSU model is
smaller than 2M,, we focus on the SFHo, RGCR,
RDSS models in the following.

Figure 9 shows the mass and radius curves from the
SFHo RMF model with hyperons. Its parameters in the
SU(2) sector are given in Table I. The blue region is
obtained with the variation of ay constrained by g,y = 0.
This shows that, although the SFHo model can pass the
criterion for the radius, the predicted maximum mass
cannot achieve 2.0 M. Since the ¢ meson gives a
repulsion between baryons, the condition that g,y # 0
may give a larger mass for neutron stars. However, since
the SFHo model barely satisfies 2.0 M condition for
the neutron star mass within the SU(2) configuration, the
mass reduction from the hyperons does not allow the
model to fulfill the maximum mass criteria in any SU(3)
models.

Shown in Fig. 10 are the area of mass and radius of
neutron stars obtained in the RGCR model by varying the

2‘5, T T T T T T T T T
—~15F ]
= f ]
=L :

[ 2=1/v6,03<ay < 1.3
0.5
[ — RGCR
[ --- RGCR +SU(®6) ]
0.0 L L L L L L L L L
-9 10 11 12 13 14
R (km)
FIG. 11. Same as Fig. 10 but with the variation of a;, with

z=1/+/6 in the RGCR model, i.e., case III.

2.5¢ —
© L 4
\% [ ]
< I ]
= 1op ]
[ 0<z<lay=1 ]
0.5F —
[ — RDSS ]
[ -~ RDSS +SU®) ]

0 0 L Il L Il L Il L Il L
9 10 11 12 13 14

R (km)

FIG. 12. Same as Fig. 10 but in the RDSS model.

value of z as 0 <z <1 while keeping ay =1, which
corresponds to case II. On the other hand, Fig. 11 shows the
results with 0.3 < @, < 1.3 while keeping z = 1//6.
Therefore, it corresponds to case III. The results presented
in Figs. 12 and 13 are obtained with the RDSS model for
case II and case III, respectively. Because g,y # 0 and
the maximum mass is greater than 2.0 My in the
SU(2) case for the both models, the predicted mass-
radius curves have a chance to fulfill the empirical
constraints on the mass and radius of neutron stars.
These results indicate that it would be possible to have
hyperons in the core of neutron stars by satisfying the
maximum mass criteria when a proper nucleon EOS, i.e.,
in the SU(2) model, is used. They also imply that the
understanding of the changes of ay and z couplings in
nuclear matter and hyperon matter would shed light on
resolving the hyperon puzzle. Our results also show that
the case III, Figs. 11 and 13, predicts a narrower area of
mass-radius curves compared with case II, Figs. 10 and
12. This means that the z dependence of the mass-radius
curve is more sensitive than its ay, dependence.

2.5» T T T T
2.0f -
;8 1.5f 7]
= ]
~ F 4
= l.Of 7]
2=1/v6,03<ay <13
0.5
[ — RDSS
[ --- RDSS + SU(6)
0 0' . | . | . | . | . ]
9 10 11 12 13 14
R (km)
FIG. 13. Same as Fig. 11 but in the RDSS model.
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V. HYPERON DIRECT URCA PROCESS

The hyperon direct Urca process plays an important role
in the thermal history of a neutron star [67-69] because the
appearance of hyperons allows the hyperon direct Urca
process at a relatively small proton fraction [70]. Various
types of hyperon direct Urca are allowed according to the
number of hyperon species [70]. The EOS with small L
(<45 MeV) may not allow nucleon direct Urca process
even with the maximum mass of neutron stars [44] because
the proton fraction does not increase fast enough to turn on
the direct Urca process as the baryon number density
increases in the core of neutron stars. However, inclusion of
hyperons might change the situation for direct Urca process
both for nucleons and hyperons through

Bl —>B2+l+ljl
BZ+l_)Bl —I—I/l, (52)

where B; and B, are baryons and / denotes a lepton and v,
is the neutrino associated with the lepton /.

Table IV shows the critical baryon number density and
mass of neutron stars for the hyperon direct Urca process in
the case of the SFHo model in case 1. Table V presents the
same quantities but in the RGCR model in case II. This
indicates that the hyperon direct Urca process turns on
earlier than the nucleon direct Urca process. In general, a
small amount of hyperons, compared with the proton

TABLE IV. The critical density and critical mass of neutron
stars for the baryon direct Urca process in the SFHo model in
case L.

Urca n,(fm=3) M. (M)
A=pte+i, 0.470 1.26
A= p+u+, 0.475 1.28
E-—>A+e+r, 0.516 1.38
E"—>A+pu+py, 0.515 1.38

TABLE V. The critical density and critical mass of neutron stars
for the baryon direct Urca process in case of the RGCR model in
case II with z = 1/(2v/6) and a, = 1.

Urca n, (fm™3) M, (M)
A=pte+i, 0.470 1.47
A= p+u+i, 0.475 1.49
n—-p+e+r, 0.507 1.58
E->A+e+7, 0.555 1.70
B = A+p+, 0.555 1.70
n—>p+u+i, 0.589 1.76
E B +e+7, 0.949 2.04
S =) U+, 0.965 2.05
2050 4 etp, 0.987 2.05
B+ u+p, 0.976 2.05

fraction for the nucleon direct Urca process, is able to
turn on the hyperon direct Urca processes. For example, in
the case of the SFHo model, the nucleon direct Urca
process does not occur even in the maximum mass
(2.06M ) of the neutron star, while the hyperon direct
Urca process turns on when the neutron star mass is larger
than 1.26M, as shown in Table IV.

The maximum mass of neutron star which contains
hyperons in case of SFHo model, however, is much less
than 2.0M ; as shown in Table III. This may indicate that
strong repulsion between nucleons or many-body forces in
the nuclear EOS is preferred to make high enough
maximum mass of neutron stars so that the mass reduction
resulting from the existence of hyperons is consistent with
the observed maximum mass. For instance, in the RGCR
model with z=1/(2v6) and ay =1, the maximum
neutron star mass is predicted to be 2.03M as shown
in Table III. The first hyperon direct Urca process happens
when M = 1.47M , and it allows the nucleon direct Urca
process when M = 1.58M . In this model, A hyperons
appear if the baryon number density is greater than
n > 0.468 fm™> and the direct Urca process involving A
occurs if n > 0.470 fm™3, which corresponds to p, =
2.62 x 107* fm™3 that is 0.06% to the total baryon number
density. As shown in these examples, if hyperons exist in
the core of neutron stars, the hyperon direct Urca process
may happen at smaller baryon number density than the
density required for the nucleon direct Urca process.

VI. CONCLUSION

In the present work, we investigated the role of hyperons
in neutron stars within the relativistic mean field approach.
For this purpose, we first constructed SU(2) relativistic
mean field models, RGCR and RDSS, whose parameters
are determined by symmetric nuclear matter properties and
theoretical calculations for pure neutron matter. We found
that these models satisfy the mass-radius constraints of
neutron stars of Ref. [38]. The extension to the flavor SU(3)
was then made to account for the contribution of hyperons
in the energy density and pressure of baryon matter. In
general, the existence of hyperons makes the EOS softer
than those with nucleons only, which makes the neutron
star containing hyperons always less massive than that
without hyperons. To understand the reduction of neutron
star mass due to hyperons, we analyze the RMF models in
the literature as well as those developed in the present work.
The potential depths of hyperons (A, X, E) at the saturation
nucleon density are used to obtain the hyperon coupling
constants. We then tested the effects of the variation of
couplings, @y and z, to neutron star’s masses and radii. We
found that the RGCR and RDSS models can satisfy the
mass-radius constraints of neutron stars with certain values
of ay and z. However, other models in the literature have
difficulties to fulfill the mass-radius constraints even with
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the variation of the couplings. This shows that it is needed
to take into account the pure neutron matter properties for
determination of the SU(2) parameters in order to explain
the observed neutron star properties. Furthermore, rigorous
investigations on the change of SU(3) coupling constant
parameters in dense matter are required to understand the
structure of neutron stars in depth.

The presence of hyperons is supposed to change the
cooling history of neutron stars since the condition for
hyperon direct Urca process is not restrictive as in the case
of nucleon direct Urca process [70]. The hyperon direct
Urca process affects the cooling of neutron stars which
contain hyperons in the core. Thus neutron stars whose
masses are greater than the critical mass with the existence
of hyperon should have different cooling history. In the
present work, we estimated the critical density and critical
neutron star mass for hyperon direct Urca processes. Our
results indicate that a neutron star with a mass greater than
1.5M is likely to turn on the hyperon direct Urca process.
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APPENDIX: RELATIVISTIC MEAN FIELD
MODEL AND NUCLEAR PROPERTIES

As was discussed in Sec. II, we determine the parameter
values of the RMF model using the properties of symmetric
nuclear matter given in Eq. (11), namely, My, B, ny, and K.
With the Lagrangian L,,,, given in Eq. (1), these quantities
are obtained as

M* =M - S,, (A1)
pn = pp =\ ki + M2 + W, (A2)
1 1 /my,\2 ¢
B=M-— —(=2) w2 4+>wd
no{v(so>+2<gw> N
2 [k
+5 / rdkkzx/szrM*z}, (A3)
7= Jo
I (m,\? ¢
Plw) = =(0) + 5 (1) Wi 4 5, W3
2 [k k*
S | S — A4
+37T2/0 Vi + M (A4)

2 -1 k2
K:9n0[<m‘”> +%W§] +3E—£

M* 2 82 3 8 n() -1
-9"0(7;) K@*W%)OV“ME—J ’

(AS)
at the saturation density, where

Lim,\?, K5 4w
=5\ = — A
V(S) 2<96>S +3!S —1-4!5 (A6)
and
2k3
ny :—3”5, E; = \/k¥ + M*?,
S() = 9600 WO = Gu®o- (A7)

Here, the subscript 0 indicates that the quantity is computed
at the saturation density. Once we know the saturation pro-
perties, such as ny, M*, and B (= —p, + M = —p, + M),
the values of kf, Sy, and W, can be obtained from the above
relations. In addition, the field equations for the ¢ and the @
mesons are

m,\ 2 K y) 2 (ke KM*
-2 S —S2 483 = dk —— =0,
( a> R ANy v 2
(A8)
mg\ 2 ¢ 2

The five equations, (A3), (A4), (AS), (A8), and (A9), are
used to determine the values of five unknowns, g, g,, K, 4,
and ¢. These equations, however, are redundant because of
the relation on the pressure, P = pu,n, +pu,n, —_E.
Therefore, we need one more information to determine
the model parameters. As in Sec. II, however, we set { = 0
for allowing the simple rescaling of g¢N.8

For pure neutron matter, we have eleven unknowns
(g/,,f, Agtsooos Mgy Ayt s -+, Ay3, ) to be determined. As in
TU-FSU [52], we may use two coupling constants, i.e., Ay,
and A,, for neutron matter. It does not, however, give a
good fit to pure neutron matter calculation. Therefore, we
maintain the number of coupling constant as in Ref. [51].

The explicit expressions for symmetry energy and its
density derivative are obtained as

8As shown in Table I, the IU-FSU and SFHo models use
¢ =3.0x 1072 and —1.701 x 1073, respectively.
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o _1Em)
"8 9 |
k2. n
= + , A10
657 82/ 12wy A
[ 3P (E/Mm)
8 Onoda® |,
B [1 M*2_3n0M*8M*] 31,
6E} E; EL  On 8[(m2/g3) + 2f]

(Al1)

3 3n} (afas of 6W>
4[(m2/ ) +2fP \9Son = OW on )’
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In this derivation we utilize Egs. (A8) and (A9).
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