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We examine the role of hyperons in a neutron star based on the relativistic mean field approach. For
nuclear matter below 1.5 times the normal nuclear density we constrain the model parameters by using the
symmetric nuclear matter properties and theoretical investigations for neutron matter in the literature. We
then extend the model to higher densities by including hyperons and isoscalar vector mesons that contain
strangeness degree of freedom. We confirm that the ϕ meson induces a Λ repulsive force and hardens the
equation of state. The hardening arising from the ϕmeson compensates the softening from the existence of
hyperons. The flavor SU(3) and spin-flavor SU(6) relations are examined as well. We found that the
coupling constants fitted by neutron matter properties could yield high enough maximummass of a neutron
star and the obtained results satisfy both the mass and radius constraints. The onset of the hyperon direct
Urca process in neutron stars is also investigated using our parametrization.
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I. INTRODUCTION

A neutron star is a massive and dense stellar object whose
major constituents are neutrons. Due to the fermionic nature
of neutrons, protons and electrons are also allowed to exist
under the condition of charge neutrality. It was widely
accepted that the canonical mass of a neutron star is about
1.4M⊙, whereM⊙ is the solar mass, and the radius is around
10 km [1,2]. But the recent measurements suggested that the
upper limit of the neutron star mass could be larger than
2M⊙ [3,4]. Such a compact object would have high nuclear
matter density up to several times the nuclear saturation
density (n0 ¼ 0.16 fm−3) in the core. In such a dense matter,
it is natural to expect that non-nucleonic degrees of freedom
may come out and various equations of state for a neutron
star have been suggested. For instance, since the average
distance between nucleons could be smaller than the de
Brogile wave length of quarks, there may exist quark matter
in the core of a neutron star [5–7]. On the other hand,
because of the bosonic nature of mesons, pion condensation
[8,9] and kaon condensation [10–12] were suggested to be
formed in the core of a neutron star as examples of Bose-
Einstein condensation. In principle, such ideas could be
tested by future observations, such as x-ray observation in
low-mass x-ray binaries and gravitational wave detections
from neutron star binary mergers.

Concerning the hadronic degrees of freedom, hadrons
with strangeness are likely to be formed because hyperon
matter is energetically favorable than pure nucleon matter.
In general, the presence of hyperons makes the equation of
state (EOS) softer than that without hyperon degrees of
freedom, which reduces the maximum mass of neutron
stars. Therefore, softening of the EOS might be incompat-
ible with the recent observation of 2.0M⊙ neutron stars,
namely, PSR J1614-2230 and PSR J0348þ 0432 [3,4].
The question on the existence of hyperons in the core of
neutron star is paraphrased as the “hyperon puzzle” and
understanding the structure of a neutron star with strange-
ness degree of freedom now becomes one of major research
topics in neutron star physics. For example, three-body
repulsive forces among baryons was suggested as a
mechanism to compensate the softening of EOS in
Refs. [13–16]. In the presence of hyperons in nuclear
matter, the softening of EOS may be compensated by YNN,
YYN, and YYY interactions, where Y stands for a hyperon,
besides the three-body NNN interaction. The authors of
Refs. [14,15] proposed the multi-Pomeron exchange poten-
tial to obtain three-body repulsive force on top of the soft
core interactions for having large neutron star mass. Based
on quantum Monte Carlo simulations it was claimed that
the phenomenological ΛNN potential can make the thresh-
old density for hyperon population much higher than that of
the neutron star core [16]. Hyperon puzzle may also be
evaded by the onset of quark matter in the compact star. The
transition from massive hadron stars to strange quark stars
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suggests two coexisting families of compact stars, and the
strangeness of hyperons is dissolved into the deconfined
quark matter [17–19].
The investigation on the role of hyperons to neutron

star mass and radii has a long history starting in the 1960s
[20–24]. Most of theoretical investigations are based on the
relativistic mean field (RMF) approach [25–31].1 Due to
the limitations in the observations, however, mainly neu-
tron star mass has been studied and the research focus was
on the change of the neutron star mass. Throughout
extensive studies, both relativistic and nonrelativistic
approaches seem to find conditions to fulfill the observed
maximum mass constraint of neutron stars [27–
29,31,35,36]. From the recent analyses of the x-ray burst
from neutron star binaries classified as low-mass x-ray
binaries (LMXB), both masses and radii have been esti-
mated with significant statistics even though it is too early
to make any firm conclusions [37–40]. First, a small radii of
neutron stars were reported by Özel et al. [37] and by
Guillot et al. [40] from the analysis of x-ray bursts in
LMXB. By neglecting the mass dependence, Guillot et al.
[40] estimated the radius of neutron stars to be RNS ¼
9.1þ1.3

−1.5 km with 90% confidence.2

On the other hand, by considering the gravitational
redshift of x rays generated in the photosphere of the
x-ray burst sources, Steiner et al. [38] suggested that the
radius of neutron stars would be RNS ¼ 12þ0.5

−1.0 km. This
estimate is consistent with the experimental and theoretical
studies of nuclear matter as described in Ref. [43].
From the analysis of cooling phases of an x-ray burst

source, Sulumeinov et al. [39] suggested a stiff EOS that
allows 2.3M⊙ with radius larger than 14 km. However,
such an EOS carries a large density slope of nuclear
symmetry energy, and thus the direct Urca process may
occur for neutron stars with masses less than 1.2M⊙.
Hence, such models may be not easy to explain the cooling
curves of neutron stars [44]. In the near future, new X-ray
telescope NICER (Neutron star Interior Composition
ExploreR) will be able to provide more reliable data on
both masses and radii of neutron stars [45]. The validity of
various EOS in the literature can then be tested by these
new observations.
The purpose of the present work is to find an EOS in the

relativistic mean field approach which satisfies both con-
straints on mass and radius simultaneously with the
existence of strangeness in a neutron star. For this end,
we first set up an SU(2) model that includes only nucleons

as baryons as well as the σ, ω, and ρmesons, and determine
the model parameters to reproduce the properties of
symmetric nuclear matter and pure neutron matter that
were obtained in Refs. [46,47]. The criteria for SU(2)
models was discussed in many different approaches, such
as Monte Carlo calculations [46] and chiral effective field
theories [47,48]. The effects of three nucleon forces are also
discussed in Refs. [49,50]. After developing the SU(2)
model, we extend it to the case of flavor SU(3) and
investigate the role of hyperons in the mass-radius relation-
ship of neutron stars. For this purpose, we adopt several
cases for the determination of coupling constants among
hyperons and use the estimation of Steiner et al. [38] for the
radii of neutron stars. Then the obtained critical density or
neutron star mass are investigated for the hyperon direct
Urca process, which plays an important role in the thermal
evolution of neutron stars in the presence of hyperons.
This paper is organized as follows. We introduce the

Lagrangian density of nuclear matter in the flavor SU(2)
model in Sec. II. The equations of motion, energy density,
and pressure are obtained and discussed in detail. In Sec. III,
we extend our model to the flavor SU(3) to include
strangeness degree of freedom for addressing the hyperon
puzzle in the RMF approach. We explain how we control the
coupling constants of the model and discuss the modified
equations of motion in hyperon matter. In Sec. IV, the
numerical results for the mass-radius relation of neutron stars
are summarized. The role of hyperons in direct Urca process
is then discussed in Sec. V. Section VI summarizes our
conclusions. The details on how we fix the SU(2) parameters
to reproduce the properties of symmetric nuclear matter and
those of pure neutron matter are described in the Appendix.

II. NUCLEAR MODEL

In order to describe nuclear matter, we start with the
RMF model in the flavor SU(2) sector, which includes
the ρ and ω vector mesons in addition to the scalar σ meson.
The effective Lagrangian that includes nonlinear self-
interactions of the meson fields reads [51]

Lσωρ ¼
X
B¼n;p

ψ̄B½ði=∂ − gωBγμωμÞ − gρBγμρ⃗μ · ⃗τB

− ðMB − gσBσÞ −
e
2
ð1þ τ3ÞAμγ

μ�ψB

þ 1

2
∂μσ∂μσ −

1

2
m2

σσ
2 −

κ

3!
ðgσσÞ3 −

λ

4!
ðgσσÞ4

þ 1

2
m2

ωωμω
μ −

1

4
ωμνω

μν þ ζ

4!
g4ωðωμω

μÞ2

þ 1

2
m2

ρρ⃗μ · ρ⃗μ −
1

4
ρ⃗μν · ρ⃗μν þ

ξ

4!
g4ρðρ⃗μ · ρ⃗μÞ2

þ fðσ;ωμω
μÞg2ρðρ⃗μ · ρ⃗μÞ −

1

4
FμνFμν

þ
X

l¼e−;μ−
ψ̄ lði=∂ −mlÞψ l; ð1Þ

1One may extend the nonrelativistic approach of the Skyrme
force model by including hyperons [32–34] for studying hyper-
nuclei. This approach can also be applied to explore the neutron
star structure as discussed in Refs. [35,36].

2A recent estimate on the neutron star radius for a mass of
1.5M⊙ gives 10.1 km ≤ RNS ≤ 11.1 km [41]. We also note that
the causality limits the maximum neutron star mass to be smaller
than 2.1M⊙ if the radius is 9.1 km [42].
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whereMB is the baryon mass,3 ml is the lepton mass, ⃗τB are
the Pauli matrices for isospin, and the field strength tensors
of the photon (Aμ) and vector mesons (ωμ and ρ⃗μ) are
given by

Fμν ¼ ∂μAν − ∂νAμ;

ωμν ¼ ∂μων − ∂νωμ;

ρ⃗μν ¼ ∂μρ⃗ν − ∂νρ⃗μ: ð2Þ
The masses of the σ, ω, and ρ mesons are taken as mσ ¼
491.5 MeV [52],mω ¼ 782.5 MeV, andmρ ¼ 775.3 MeV
[53].4 The interactions between mesons are assumed to be

fðσ;ωμωμÞ ¼
X6
i¼1

Λs;iðgσσÞi þ
X3
i¼1

Λv;iðg2ωωμω
μÞi: ð3Þ

The parameters Λs;i and Λv;i will be determined by the
neutron matter properties [51]. For simplicity, we introduce
brief notations at the mean field level as

S ¼ gσhσi; W ¼ gωhω0i; R ¼ gρhρ0zi; ð4Þ
where ρ0z represents the time component of the ρ meson
with the third-component of isospin Iz ¼ 0. Then the
equations of motion for meson fields in uniform nuclear
matter are obtained as

ns ¼
�
mσ

gσ

�
2

Sþ κ

2
S2 þ λ

6
S3 − R2

∂f
∂S ;

n ¼
�
mω

gω

�
2

W þ ζ

6
W3 þ R2

∂f
∂W ;

−
1

2
α ¼

�
mρ

gρ

�
2

Rþ ξ

6
R3 þ 2Rf; ð5Þ

where ns is the total baryon scalar number density
obtained as

ns ¼
X
B¼n;p

1

π2

Z
kBF

0

dkk2M�
Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þM�2
N

p ; ð6Þ

and n ¼ nn þ np is the total baryon number density while
α ¼ nn − np with

nn ¼
ðknFÞ3
3π2

; np ¼ ðkpFÞ3
3π2

: ð7Þ

HereM�
N is the Dirac effective mass of the nucleon defined

as M�
N ¼ MN − gσhσi ¼ MN − S.

The energy density and pressure of the nucleonic
contribution can be obtained from the given Lagrangian
and are written as

Eσωρ ¼
X
B¼n;p

1

π2

Z
kBF

0

dkk2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM�2

N

q

þ 1

2

�
mσ

gσ

�
2

S2 þ κ

3!
S3 þ λ

4!
S4

þ 1

2

�
mω

gω

�
2

W2 þ ζ

8
W4

þ 1

2

�
mρ

gρ

�
2

R2 þ ξ

8
R4 þ R2

�
f þW

∂f
∂W

�
; ð8Þ

Pσωρ ¼
X
B¼n;p

1

3π2

Z
kBF

0

dk
k4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þM�2
N

p
−
1

2

�
mσ

gσ

�
2

S2 −
κ

3!
S3 −

λ

4!
S4 þ 1

2

�
mω

gω

�
2

W2

þ ζ

4!
W4 þ 1

2

�
mρ

gρ

�
2

R2 þ ξ

4!
R4 þ fR2: ð9Þ

The chemical potentials of neutrons and protons, which are
the eigenvalues of the Fermi momenta knF and kpF, respec-
tively, are obtained as

μn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðknFÞ2 þM�2

N

q
þW −

1

2
R;

μp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkpFÞ2 þM�2

N

q
þW þ 1

2
R: ð10Þ

The coupling constants gσ , gω, κ, and λ are determined to
reproduce the properties of the symmetric nuclear matter. In
the present calculation, we use the nuclear saturation
density n0 and

M�
N ¼ 0.75MN; B ¼ 16 MeV;

K ¼ 240–245 MeV; ð11Þ

where B is the binding energy per nucleon and K is the
incompressibility coefficient. In this fitting procedure, we
fix ζ ¼ 0 so that the rescaling of gω can be used even in
the presence of the ϕ meson. This will be discussed in the
next section.
The remaining parameters ξ, gρ, Λs;i, and Λv;i are

determined by the neutron matter properties reported in
Refs. [46,47]. This is done by using the polynomial
parametrization for the energy per baryon in neutron matter
suggested in Ref. [54], which reads

E
A
¼ a

�
n
n0

�
α

þ b

�
n
n0

�
β

: ð12Þ

3Since we are assuming SU(2) isospin symmetry, the proton
and neutron have the same mass MN .

4The scalar σ meson corresponds to the f0ð500Þ in the list of
Particle Data Group [53]. The range of the σ meson mass is wide
and we adopt the value of mσ from Ref. [52].
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In Ref. [46], Gandolfi, Carlson, and Reddy (GCR) used
quantum Monte Carlo techniques to estimate the equation
of state of neutron matter, while Drischler, Soma, and
Schwenk (DSS) used chiral effective field theory [47]. For
our numerical calculations, we use GCR5 and DSS2
parameterizations for neutron matter as compiled in
Table 1 of Ref. [50]. Explicitly, we adopt

a ¼ 13.0 MeV; α ¼ 0.50;

b ¼ 4.71 MeV; β ¼ 2.49; ð13Þ

for GCR5 and

a ¼ 11.95 MeV; α ¼ 0.495;

b ¼ 3.493 MeV; β ¼ 2.632; ð14Þ

for DSS2.
With this information one can calculate the properties of

nuclear and neutron matter, which determines the coupling
constants and other model parameters. The details can be
found in the Appendix, and the parameter sets obtained in
this way are presented in Table I. The parameter set RGCR
(i.e., the RMF model with the GCR parameterization) is
obtained with the GCR5 parametrization and the set RDSS
is with the DSS2 parametrization.
For comparison, we show the energy per baryon of pure

neutron matter in Fig. 1. The small window magnifies the
results in the low density region, 0 ≤ n ≤ 0.3 fm−3. The
solid and dashed lines show the theoretical results of DSS2
and GCR5 models, respectively, while the results of RMF

with parameter sets RDSS and RGCR are presented by dot-
dashed and dotted lines, respectively. This shows that, for
pure neutron matter, the RDSS gives consistent results with
those of DSS2 up to n ∼ 0.5 fm−3 ∼ 3n0 and the agreement
between GCR5 and RGCR goes up to n ∼ 0.8 fm−3 ∼ 5n0.
Table II shows the standard nuclear matter properties for

various models considered in this work. In the present
calculation, n0, B, and K are inputs and J and L are
calculated results. For comparison, the corresponding
quantities of other models in the literature are given as
well. These SU(2) models are then used to compute the
neutron star mass. As will be discussed in Sec. IV, these

TABLE I. The fitted parameter sets of SU(2) RMF models. RGCR represents RMF model with GCR5 parametrization and RDSS
representsRMFmodelswithDSS2parametrization. For comparison, the fitted parameters in otherworks are also presentedwith references.

Parameter RGCR RDSS IU-FSU [52] SFHo [55] GM1 [24] NL3 [56] Unit

mσ 2.491 2.491 2.491 2.371 2.491 2.575 fm−1

mω 3.966 3.966 3.966 3.864 3.966 3.966 fm−1

mρ 3.929 3.929 3.867 3.902 3.867 3.867 fm−1

gσN 8.005 7.985 9.971 7.536 8.553 10.217
gωN 9.235 9.235 13.032 8.782 10.603 12.868
gρN 11.108 11.033 13.590 9.384 8.121 8.922
κ 6.603 × 10−2 6.350 × 10−2 1.713 × 10−2 7.105 × 10−2 2.805 × 10−2 1.956 × 10−2 fm−1

λ −2.900 × 10−2 −2.474 × 10−2 2.960 × 10−4 −2.645 × 10−2 −6.420 × 10−3 −1.591 × 10−2

ζ � � � � � � 3.0 × 10−2 −1.701 × 10−3 � � � � � �
ξ −3.807 × 10−5 −1.088 × 10−7 � � � 3.453 × 10−3 � � � � � �
Λs1 −3.788 × 10−4 4.467 × 10−4 � � � −3.054 × 10−2 � � � � � � fm−1

Λs2 1.810 × 10−2 4.267 × 10−2 � � � 1.021 × 10−2 � � � � � �
Λs3 1.724 × 10−2 −3.597 × 10−4 � � � 8.048 × 10−4 � � � � � � fm
Λs4 2.424 × 10−3 2.550 × 10−4 � � � 1.072 × 10−3 � � � � � � fm2

Λs5 −2.862 × 10−3 2.588 × 10−3 � � � 5.542 × 10−5 � � � � � � fm3

Λs6 −3.416 × 10−8 9.217 × 10−8 � � � 3.606 × 10−6 � � � � � � fm4

Λv1 1.131 × 10−4 2.220 × 10−5 4.60 × 10−2 7.616 × 10−2 � � � � � �
Λv2 −6.174 × 10−4 −8.536 × 10−5 � � � −2.765 × 10−4 � � � � � � fm2

Λv3 1.563 × 10−5 5.560 × 10−6 � � � 6.861 × 10−4 � � � � � � fm4

FIG. 1. Energy per baryon of pure neutron matter. RGCR and
RDSS are obtained from the Lagrangian of Eq. (1) by fitting to
the results of GCR5 [46] and DSS2 [47], respectively.
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models can give large neutron star masses. On top of these
models, we introduce hyperon degrees of freedom in the
next section.

III. MODEL FOR HYPERON MATTER

In order to study the role of strangeness degree of freedom
in neutron star structure, we extend the Lagrangian of Eq. (1)
by introducing the spin-1=2 flavor-octet hyperons. In addi-
tion, to study the role of the scalar and vector mesons with
hidden strangeness, we include the ϕð1020Þ vector meson
and the f0ð980Þ scalar meson. Therefore, we have the
SUð3ÞF nonet structure for scalar and vector mesons [26,57].
In the following we denote the f0ð980Þ meson field by σ�.
Then the Lagrangian density reads

L ¼ L0
σωρ þ Lσ�ϕ; ð15Þ

where L0
σωρ has the same form as Lσωρ in Eq. (1) but

includes hyperon octet such that B ¼ p, n, Λ, Σ�;0, Ξ0;−,
and Lσ�ϕ includes the terms concerning the σ� and the ϕ.
Explicitly, it reads

Lσ�ϕ ¼
X
B

ψ̄Bðgσ�Bσ� − gϕBγμϕμÞψB

þ 1

2
∂μσ

�∂μσ� −
1

2
m2

σ�σ
�2

þ 1

2
m2

ϕϕμϕ
μ −

1

4
ϕμνϕ

μν; ð16Þ

wheremσ� andmϕ are the f0ð980Þ and ϕð1020Þ masses and
we usemσ� ¼ 975 MeV andmϕ ¼ 1020 MeV. For hyperon
masses, we also use the values provided by the Particle Data
Group [53]. The field strength tensor of the ϕ meson is

ϕμν ¼ ∂μϕν − ∂νϕμ: ð17Þ

Then the equations of motion of the meson fields in
uniform matter can be obtained as

X
B

xσBnSB ¼
�
mσ

gσN

�
2

Sþ κ

2
S2 þ λ

6
S3 − R2

∂f
∂S ; ð18Þ

X
B

xωBnBB ¼
�
mω

gωN

�
2

W þ ζ

6
W3 þ R2

∂f
∂W ; ð19Þ

X
B

xρBnBBτ3B ¼
�
mρ

gρN

�
2

Rþ ξ

6
R3 þ 2Rf; ð20Þ

X
B

xσ�BnSB ¼
�
mσ�

gσ�Λ

�
2

S�; ð21Þ

X
B

xϕBnBB ¼
�
mϕ

gϕΛ

�
2

Φ; ð22Þ

where Φ ¼ gϕΛhϕi and S� ¼ gσ�Λhσ�i. Here, τ3B is the z
component of the isospin quantum number of the baryon B
and our conventions are

τ3p ¼ þ 1

2
; τ3n ¼ −

1

2
; τ3Λ ¼ 0;

τ3Σþ ¼ þ1; τ3Σ0 ¼ 0; τ3Σ− ¼ −1;

τ3Ξ0 ¼ þ 1

2
; τ3Ξ− ¼ −

1

2
: ð23Þ

The ratios of coupling constants are defined by

xσB ¼ gσB
gσN

; xωB ¼ gωB
gωN

; xρB ¼ gρB
gρN

;

xσ�B ¼ gσ�B
gσ�Λ

; xϕB ¼ gϕB
gϕΛ

: ð24Þ

The scalar and vector densities are

nSB ¼ hψ̄BψBi ¼
2JB þ 1

ð2πÞ3
Z

kBF

0

d3k
M�

Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM�2

B

p ;

nBB ¼ hψ†
BψBi ¼

2JB þ 1

ð2πÞ3
Z

kBF

0

d3k; ð25Þ

where JB is the spin of the baryon and M�
B is the effective

mass defined as

M�
B ¼ MB − xσBS − xσ�BS�: ð26Þ

In this approach, the chemical potentials or the Fermi
energies of baryons and leptons are given as

μB ¼ xωBW þ xρBτ3BRþ xϕBΦþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkBFÞ2 þ ðM�

BÞ2
q

;

μl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðklFÞ2 þm2

l

q
: ð27Þ

The energy density and pressure are the same as in Eqs. (8)
and (9) except that the contributions from the σ� and ϕ

TABLE II. Nuclear matter properties at the saturation density.
In our calculations (RGCR and RDSS), the saturation density n0,
binding energy per nucleon B, and the incompressibility coef-
ficient K are inputs while the symmetry energy J and the
symmetry energy slope L are computed at n0. For comparison,
the results of other models are presented as well.

RGCR RDSS IU-FSU SFHo GM1 NL3

n0 (fm−3) 0.160 0.160 0.155 0.158 0.153 0.148
B (MeV) 16.0 16.0 16.4 16.2 16.3 16.2
K (MeV) 240 245 231 245 300 272
J (MeV) 32.9 30.7 31.3 31.6 32.5 37.3
L (MeV) 46.8 42.2 47.2 52.9 94.0 118
Reference [52] [55] [24] [56]
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mesons are included and the summation is now over all
hyperons. We then obtain

E ¼ E0
σωρ þ

1

2

�
mσ�

gσ�Λ

�
2

S�2 þ 1

2

�
mϕ

gϕΛ

�
2

Φ2; ð28Þ

P ¼ P0
σωρ −

1

2

�
mσ�

gσ�Λ

�
2

S�2 þ 1

2

�
mϕ

gϕΛ

�
2

Φ2; ð29Þ

where the prime in Eσωρ and Pσωρ means that the summa-
tion over baryons is extended to include hyperons.

A. Couplings with vector mesons

The coupling constants between baryons and mesons
determine the strength of interactions and thus affect the
EOS of hyperon matter. Following the previous works, we
make use of the flavor SU(3) and spin-flavor SU(6)
relations.5 Starting from the flavor structure, the interaction
Lagrangian of baryons and mesons can be constructed as
follows. First, the SU(3) baryon octet can be written in a
matrix form as

B ¼

0
BBB@

1ffiffi
2

p Σ0 þ 1ffiffi
6

p Λ0 Σþ p

Σ− − 1ffiffi
2

p Σ0 þ 1ffiffi
6

p Λ0 n

−Ξ− Ξ0 −
ffiffi
2
3

q
Λ0

1
CCCA:

ð30Þ

Similarly, the vector meson octet can be written as

V8 ¼

0
BBB@

1ffiffi
2

p ρ0 þ 1ffiffi
6

p ω8 ρþ K�þ

ρ− − 1ffiffi
2

p ρ0 þ 1ffiffi
6

p ω8 K�0

K�− K̄�0 −
ffiffi
2
3

q
ω8

1
CCCA ð31Þ

and the vector meson singlet takes the simple form of

V1 ¼
ω1ffiffiffi
3

p

0
B@

1 0 0

0 1 0

0 0 1

1
CA: ð32Þ

Then the flavor SU(3) invariant interactions between
baryon octet and meson octet can be written as

LV8BB ¼
ffiffiffi
2

p
g8fðdþ fÞTrðB̄BV8Þ

þ ðd − fÞTrðB̄V8BÞg; ð33Þ

while we have

LV1BB ¼
ffiffiffi
3

p
g1TrðV1B̄BÞ ð34Þ

for the interactions between baryon octet and meson
singlet. Therefore, we have three parameters, g1, g8, and
αV ≡ f=ðf þ dÞ, with the condition that f þ d ¼ 1, to
completely determine the coupling constants.6 The physical
ω and ϕ mesons are combinations of ω8 and ω1, whose
quark contents are

jω8i ¼
1ffiffiffi
6

p ðjūui þ jd̄di − 2js̄siÞ;

jω1i ¼
1ffiffiffi
3

p ðjūui þ jd̄di þ js̄siÞ: ð35Þ

By introducing the mixing angle θ the physical states are
constructed as

jϕi ¼ cos θjω8i − sin θjω1i;
jωi ¼ sin θjω8i þ cos θjω1i: ð36Þ

Throughout the present work, we assume the ideal mixing,
cos θ ¼ ffiffiffiffiffiffiffiffi

2=3
p

, between the octet and singlet mesons, so
that the ϕ is a pure ss̄ state and the ω does not contain the
hidden strangeness component.
Then by introducing z ¼ g8=g1, one could obtain the

following relations for coupling constants:

gωN ¼
� ffiffiffi

2

3

r
−
1

3
ð1 − 4αVÞz

�
g1;

gϕN ¼
�
−

1ffiffiffi
3

p −
ffiffiffi
2

p

3
ð1 − 4αVÞz

�
g1;

gωΛ ¼
� ffiffiffi

2

3

r
−
2

3
ð1 − αVÞz

�
g1;

gϕΛ ¼
�
−

1ffiffiffi
3

p −
2

ffiffiffi
2

p

3
ð1 − αVÞz

�
g1;

gωΣ ¼
� ffiffiffi

2

3

r
þ 2

3
ð1 − αVÞz

�
g1;

gϕΣ ¼
�
−

1ffiffiffi
3

p þ 2
ffiffiffi
2

p

3
ð1 − αVÞz

�
g1;

gωΞ ¼
� ffiffiffi

2

3

r
−
1

3
ð1þ 2αVÞz

�
g1;

gϕΞ ¼
�
−

1ffiffiffi
3

p −
ffiffiffi
2

p

3
ð1þ 2αVÞz

�
g1 ð37Þ

5See, for example, Refs. [29,57–59]. The general group
structure of meson-baryon interactions can be found, for exam-
ple, in Ref. [60].

6In the present work, we do not include the K� vector meson,
even though the K� can give an extra repulsion, because it should
be treated with kaons in the medium. This may cause kaon
condensation in the core of neutron stars, which is, however,
beyond the scope of this work.
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and

gρN ¼ zg1; gρΣ ¼ 2αVzg1;

gρΞ ¼ −ð1 − 2αVÞzg1: ð38Þ

Note that gρΛ ¼ 0 because of isospin symmetry.
The coupling constants are constrained to some extent at

free space. For example, αV ¼ 1 is favored in the Nijmegen
soft core potential [61] and in the QCD sum rule analysis of
Ref. [62]. However, it is not yet clear how these couplings
would change in nuclear medium, in particular, in a high
density region like inside neutron stars, which will even-
tually affect the properties of neutron stars. The purpose of
the present work is, therefore, to see whether one can
satisfy the mass-radius constraint of neutron stars by
varying the coupling constant parameters, g1 (or g8), αV ,
and z. This would give us another viewpoint on the hyperon
puzzle. To this end, we consider the following four cases.
Case I. In this case, we consider the SU(6) limit, where

αV ¼ 1; z ¼ 1=
ffiffiffi
6

p
ð39Þ

as used in Refs. [57,59]. Therefore, the only
parameter is the overall scale of the coupling,
namely, g1. In this case, we have very strong
constraints on the coupling constants as

1

3
gωN ¼ 1

2
gωΛ ¼ 1

2
gωΣ ¼ gωΞ;

gρN ¼ 1

2
gρΣ ¼ gρΞ;

gϕΛ ¼ gϕΣ ¼
1

2
gϕΞ ¼ −

ffiffiffi
2

p

3
gωN; gϕN ¼ 0:

ð40Þ

Case II. Here, we set αV ¼ 1 but vary the value of z. In
this case, the relations between coupling con-
stants read

gωΛ
gωN

¼ gωΣ
gωN

¼
ffiffiffi
2

pffiffiffi
2

p þ ffiffiffi
3

p
z
;

gωΞ
gωN

¼
ffiffiffi
2

p
−

ffiffiffi
3

p
zffiffiffi

2
p þ ffiffiffi

3
p

z
;

gϕΛ
gωN

¼ gϕΣ
gωN

−1ffiffiffi
2

p þ ffiffiffi
3

p
z
;

gϕN
gωN

¼
ffiffiffi
6

p
z− 1ffiffiffi

2
p þ ffiffiffi

3
p

z
;

gϕΞ
gωN

¼ −
1þ ffiffiffi

6
p

zffiffiffi
2

p þ ffiffiffi
3

p
z
;

gρN ¼ 1

2
gρΣ ¼ gρΞ: ð41Þ

Note that in the presence of the ϕ meson with
nonvanishing gϕN , the symmetric nuclear mat-
ter properties are modified. Thus it is necessary
to rescale the coupling constant of gωN to

preserve the nuclear matter properties [29],
which leads to7

grsωN ¼ gωN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2ϕN

g2ωN

m2
ω

m2
ϕ

s
;

grsϕN ¼ gϕN
gωN

grsωN: ð42Þ

Case III. We now fix the value of z as z ¼ 1=
ffiffiffi
6

p
and

vary the value of αV . The relations between
coupling constants become

gωΛ
gωN

¼ 2αV þ 4

4αV þ 5
;

gωΣ
gωN

¼ 8− 2αV
4αV þ 5

;

gωΞ
gωN

¼ 5− 2αV
4αV þ 5

;
gϕΛ
gωN

¼
ffiffiffi
2

p 2αV − 5

4αV þ 5
;

gϕN
gωN

¼
ffiffiffi
2

p 4αV − 4

4αV þ 5
;

gϕΣ
gωN

¼ −
ffiffiffi
2

p 2αV þ 1

4αV þ 5
;

gϕΞ
gωN

¼ −
ffiffiffi
2

p 2αV þ 4

4αV þ 5
;

gρΣ
gρN

¼ 2αV;
gρΞ
gρN

¼ 2αV − 1: ð43Þ

Case IV. In this case, we freely vary the values of both
αV and z without any other constraints or
assumptions.

With the couplings between vector mesons and octet
baryons determined above, we examine the effects of the
coupling constants on the mass-radius relation of neutron
stars by varying the two parameters, αV and z. To determine
the overall scale of the SU(3) couplings, i.e., g1, we use gωN
so that each model keeps the value of gωN for given values
of αV and z. This does not change the nuclear matter
properties determined in the SU(2) models.

B. Couplings with scalar mesons

The flavor nature of the scalar meson nonet is not yet
clearly known since it may be described as an excitation of
quark-antiquark pair or as a tetraquark [63]. Furthermore,
the mixing angle between the scalar meson octet and singlet
also depends on the flavor structure. In the present article,
following the previous works, we assume that the scalar
mesons have qq̄ structure and are ideally mixed so that the
σ meson contains light qq̄ pairs only and the f0ð980Þ has
the hidden strangeness (ss̄) structure like the ϕmeson. This
then leads to

7This rescalingmethod is not applicable if ζ ≠ 0 (see Table I). In
the case of ζ ≠ 0, it is necessary to solve nonlinear equations
involving ω as in Eq. (A9). It also requires us to rescale ζ to keep
the symmetric nuclear matter properties at the saturation density.
Therefore,we do not consider the case of ζ ≠ 0 in the presentwork.
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gσ�N ¼ 0; gσ�Λ ¼ gσ�Σ: ð44Þ

In fact, this corresponds to the relations given in Eq. (40)
with the replacement of the ϕ by the f0ð980Þ.
The coupling constants gσY can be found from the

potential depths UðNÞ
Y in the nucleon bath with the

Hugenholtz-Van Hove theorem [24]. The potential depth
is the binding energy of a hyperon Y in the bath of
symmetric nuclear matter at saturation density and can
be written as

UðNÞ
Y ¼

�
B
A

�
Y
¼ gωYhω0i þM�

Y −MY

¼ gωYhω0i − gσYhσi ¼ xωYW − xσYS: ð45Þ

In the present calculation, we adopt UðNÞ
Λ ¼ −30 MeV,

UðNÞ
Σ ¼ 30 MeV, andUðNÞ

Ξ ¼ 18 MeV following Ref. [64].
Inclusion of heavy σ� scalar meson introduces additional

coupling constants and, thus, hyperon potentials in the bath
of hyperons are required to fit their values. For this purpose,
we follow the prescription suggested in Ref. [30]. In
hyperon matter composed of equal number of Ξ0 and
Ξ− only, the potential felt by the hyperon Y at the saturation
density can be written as

UðΞÞ
Y ¼ gωYhωi þ gϕYhϕi þM�

Y −MY

¼ xωYW þ xϕYP − xσYS − xσ�YS�: ð46Þ

Here, S, W, and P can be obtained by solving Eqs. (18),
(19), and (22). Then the combination of Eqs. (21) and (46)
allows us to find the value of S� and the corresponding
xσY . In the present work, we use the potential depths of

hyperons as UðΞÞ
Ξ ¼ UðΞÞ

Λ ¼ 2UðΛÞ
Ξ ¼ 2UðΛÞ

Λ ¼ −10 MeV
following Refs. [30,57,59].

IV. MASS AND RADIUS OF NEUTRON STARS

The ground state of nuclear matter can be found by
minimizing the energy density with respect to the number
density of its constituents. This gives the beta equilibrium
conditions which lead to the relations of chemical poten-
tials of particles as

μi ¼ μn − qiμe; μe ¼ μμ; ð47Þ

where i represents n, p, Λ0, Σ�;0, and Ξ0;−, while qi stands
for the charge of the baryon i. The conservation of total
baryon number density and charge neutrality lead to

nb −
X
i

ni ¼ 0; ð48Þ

X
i

qini − ne − nμ ¼ 0: ð49Þ

Shown in Figs. 2 and 3 are the particle fractions in
the beta-stable nuclear matter. The vertical dotted line
in each graph indicates the central baryon number density
in the maximum mass of a neutron star in each model. In
the RDSSþ SUð6Þmodel, there can exist Λ0 and Ξ− in the
core of neutron stars. On the other hand, it is possible to
have Λ0, Ξ−, Ξ0, and Σþ in the core of neutron stars if we
use RGCR model with case I.
For the crust EOS, we use the liquid drop model

approaches as explained in Ref. [65] using the SLy4 force
model [66]. For a given EOS, the mass and radius relation
of neutron stars is obtained by solving the Tolman-
Oppenheimer-Volkoff equation,

dPðrÞ
dr

¼ −
GmðrÞ
r2

�
EðrÞ þ PðrÞ

c2

��
1þ 4πr3PðrÞ

mðrÞc2
�

×

�
1 −

2GmðrÞ
rc2

�
−1

ð50Þ

with

FIG. 2. Particle fractions for given baryon number densities
with RGCRþ SUð6Þ model, i.e., case I.

FIG. 3. Particle fractions for given baryon number densities
with RDSSþ SUð6Þ model, i.e., case I.
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dmðrÞ
dr

¼ 4πEðrÞr2: ð51Þ

Figure 4 shows the obtained mass-radius relations using the
relativistic mean field models discussed in the present
work. In this figure, the horizontal lines indicate the
observed neutron star masses of Refs. [3,4]. The brown
and green areas show the empirical region of the mass-
radius constraint given in Ref. [38] with the 1σ and 2σ
level, respectively. This figure shows that all the considered
models in the present work can satisfy the criterion given
by the neutron star mass. However, the GM1 and NL3
models are found to yield very large neutron star radii
compared with the empirically allowed region of Ref. [38].
This is because these models have large nuclear incom-
pressibility (K) and, in particular, large density gradient (L)
of the nuclear symmetry energy. These results emphasize
the important role of the combined mass-radius constraint
to understand the EOS of neutron stars.
We now discuss our results based on the SU(3) models

that show the role of strangeness in the structure of a
neutron star. We first examine the maximum neutron star
mass allowed by each model and the obtained results are
shown in Table III. We present the results for given values
of z and αV for each model. In general, the existence of
hyperons reduces the maximum mass of neutron stars,
which confirms the phenomenon known as the hyperon
puzzle. In particular, the reduction of the maximum neutron
star mass is large when we use the SU(6) relations for
couplings, i.e., the case I, as shown by the second row of
Table III. Even in this case, the GM1 and NL3 models give
large values for neutron star mass. However, as mentioned
before, these models result in neutron star radius that is
much larger than the empirically allowed values. We then

vary the values of z and αV assuming the SU(3) symmetry
relations for coupling constants. In this case, since the
vector meson (ω) self-interaction exists in the IU-FSU and
SFHo models, we assume gϕN ¼ 0 to use the rescaling
equation given in Eq. (42). Shown in the third row of
Table III are the results of case II with a reduced z value
compared with the SU(6) case. The fourth row of Table III
shows the results of case III by with αV ¼ 1

2
. Compared

with the SU(6) models (case I), it is evident that the models
with SU(3) symmetry (cases II and III) are less constrained
by the group structure and the degree of the hyperon puzzle
is reduced very much. In fact, the models of RGCR and
RDSS can meet the mass condition of neutron stars when
we use the SU(3) relations and varying the values of αV and
z. In principle, one cannot simply apply the SU(3) relations
in case of IU-FSU and SFHo models because of non-
vanishing ζ. Since the values in Table III are obtained by
applying the SU(3) relations, they are given in parentheses.
Therefore, the maximum masses of neutron stars in case
of II and III are subject to change by more realistic
calculations.
More detailed results on the dependence of the maxi-

mum neutron star mass on the couplings are shown in
Figs. 5 and 6. The results of case II are presented in Fig. 5

FIG. 4. Mass and radius of neutron stars using relativistic mean
field models without hyperons. RGCR and RDSS models are the
results of our calculation and the other models are explained in
Table II. The horizontal lines indicate the observed neutron star
masses of Ref. [3,4]. The brown and green shaded areas show the
allowed region of the mass-radius constraint of Ref. [38] at the 1σ
and 2σ level, respectively.

TABLE III. The maximum mass of neutron stars (in units of

M⊙) in each model using UðNÞ
Λ ¼ −30 MeV, UðNÞ

Σ ¼ þ30 MeV,

UðNÞ
Ξ ¼−18MeV and UðΞÞ

Ξ ¼UðΞÞ
Λ ¼ 2UðΛÞ

Ξ ¼ 2UðΛÞ
Λ ¼−10MeV.

Note that SFHo and IU-FSU have nonvanishing ζ thus the
maximum mass of neutron stars in case of II and III is not
physical.

Model z αV RGCR RDSS IU-FSU SFHo GM1 NL3

SU(2) � � � � � � 2.22 2.07 1.94 2.06 2.36 2.78
Case I 1ffiffi

6
p 1 1.78 1.71 1.67 1.70 1.93 2.25

Case II 1

2
ffiffi
6

p 1 2.03 1.90 (1.93) (1.88) 2.15 2.26

Case III 1ffiffi
6

p 1
2

1.98 1.91 (2.03) (1.88) 2.14 2.51

FIG. 5. Maximum mass of neutron stars as a function of z in
case II with αV ¼ 1.
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with varying the value of z from 0 to 1. Those of case III are
shown in Fig. 6 with 0.3 ≤ αV ≤ 1.3. We find that the
maximum mass of neutron stars decreases as z or αV
increases in case II and case III, respectively. This obser-
vation confirms the results of Ref. [29]. To achieve 2M⊙ for
the neutron star mass, we need z ≤ 0.3 in case II and αV ≤
0.5 in case III for the RGCR model. The RDSS model
requires even smaller values for z and αV . In Figs. 5 and 6,
we also show the results with and without σ� to find that the
presence of the σ� reduce further the maximum mass of
neutron stars.
For case IV, where we vary both z and αV , the results are

presented as a contour plot in Fig. 7 for the RGCR model
and in Fig. 8 for the RDSS model. The horizontal dashed
lines represent αV ¼ 1 and correspond to case II, while the
vertical dashed lines denote z ¼ 1=

ffiffiffi
6

p
corresponding to

case III. As expected from the results shown in Figs. 5
and 6, small values for z and αV are needed to allow for
massive neutron stars. Our results show that if the αV ratio
of the vector meson couplings is the same as in the free

space, the coupling ratio between octet vector meson and
singlet vector meson should change from 1=

ffiffiffi
6

p
≈ 0.4 to

about 0.3. On the other hand, if the coupling ratio is kept as
1=

ffiffiffi
6

p
, the value of αV should be reduced to below 0.45. It is

interesting to note that this value is close to the α value of
pseudoscalar mesons, of which free space value is esti-
mated to be αPS ¼ 0.355 in Ref. [61]. More rigorous
investigations on the change of couplings in dense nuclear
matter are, therefore, highly desirable, in particular, for
both αV and αPS.
Since the purpose of this article is to see the role of the

mass-radius constraint for neutron star models, we now
explore the model dependence of the predicted mass-radius
region of neutron stars of each model. We vary either αV or
z and denote the range of the obtained mass-radius curves
by blue shaded areas in Figs. 9–13. Since, as shown in
Fig. 4, the GM1 and NL3 models in the SU(2) case cannot
satisfy the empirically allowed mass-radius region and the

FIG. 6. Maximum mass of neutron stars as a function of αV in
case III with z ¼ 1=

ffiffiffi
6

p
.

FIG. 7. Contour plot of the maximum mass of neutron stars as a
function of z and αV in the RGCR model with case IV. The
horizontal and vertical dashed lines are αV ¼ 1.0 and z ¼ 1=

ffiffiffi
6

p
,

respectively.

FIG. 8. Contour plot of the maximum mass of neutron stars as a
function of z and αV in the RDSS model with case IV. The
horizontal and vertical dashed lines are αV ¼ 1.0 and z ¼ 1=

ffiffiffi
6

p
,

respectively.

FIG. 9. Mass and radii curves with the variation of αV con-
strained by gϕN ¼ 0 in the SFHo model with case I. Smaller αV
gives smaller maximum mass of a neutron star for given EOS.
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maximum neutron star mass of the IU-FSU model is
smaller than 2M⊙, we focus on the SFHo, RGCR,
RDSS models in the following.
Figure 9 shows the mass and radius curves from the

SFHo RMF model with hyperons. Its parameters in the
SU(2) sector are given in Table I. The blue region is
obtained with the variation of αV constrained by gϕN ¼ 0.
This shows that, although the SFHo model can pass the
criterion for the radius, the predicted maximum mass
cannot achieve 2.0 M⊙. Since the ϕ meson gives a
repulsion between baryons, the condition that gϕN ≠ 0

may give a larger mass for neutron stars. However, since
the SFHo model barely satisfies 2.0 M⊙ condition for
the neutron star mass within the SU(2) configuration, the
mass reduction from the hyperons does not allow the
model to fulfill the maximum mass criteria in any SU(3)
models.
Shown in Fig. 10 are the area of mass and radius of

neutron stars obtained in the RGCR model by varying the

value of z as 0 ≤ z ≤ 1 while keeping αV ¼ 1, which
corresponds to case II. On the other hand, Fig. 11 shows the
results with 0.3 < αV < 1.3 while keeping z ¼ 1=

ffiffiffi
6

p
.

Therefore, it corresponds to case III. The results presented
in Figs. 12 and 13 are obtained with the RDSS model for
case II and case III, respectively. Because gϕN ≠ 0 and
the maximum mass is greater than 2.0 M⊙ in the
SU(2) case for the both models, the predicted mass-
radius curves have a chance to fulfill the empirical
constraints on the mass and radius of neutron stars.
These results indicate that it would be possible to have
hyperons in the core of neutron stars by satisfying the
maximum mass criteria when a proper nucleon EOS, i.e.,
in the SU(2) model, is used. They also imply that the
understanding of the changes of αV and z couplings in
nuclear matter and hyperon matter would shed light on
resolving the hyperon puzzle. Our results also show that
the case III, Figs. 11 and 13, predicts a narrower area of
mass-radius curves compared with case II, Figs. 10 and
12. This means that the z dependence of the mass-radius
curve is more sensitive than its αV dependence.

FIG. 10. Mass and radii curves with the variation of z with
αV ¼ 1 in the RGCR model, i.e., case II. The red solid line is the
result of the model in the SU(2) case and the dashed line is that of
case I.

FIG. 11. Same as Fig. 10 but with the variation of αV with
z ¼ 1=

ffiffiffi
6

p
in the RGCR model, i.e., case III.

FIG. 12. Same as Fig. 10 but in the RDSS model.

FIG. 13. Same as Fig. 11 but in the RDSS model.
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V. HYPERON DIRECT URCA PROCESS

The hyperon direct Urca process plays an important role
in the thermal history of a neutron star [67–69] because the
appearance of hyperons allows the hyperon direct Urca
process at a relatively small proton fraction [70]. Various
types of hyperon direct Urca are allowed according to the
number of hyperon species [70]. The EOS with small L
(<45 MeV) may not allow nucleon direct Urca process
even with the maximum mass of neutron stars [44] because
the proton fraction does not increase fast enough to turn on
the direct Urca process as the baryon number density
increases in the core of neutron stars. However, inclusion of
hyperons might change the situation for direct Urca process
both for nucleons and hyperons through

B1 → B2 þ lþ ν̄l

B2 þ l → B1 þ νl; ð52Þ

where B1 and B2 are baryons and l denotes a lepton and νl
is the neutrino associated with the lepton l.
Table IV shows the critical baryon number density and

mass of neutron stars for the hyperon direct Urca process in
the case of the SFHo model in case I. Table V presents the
same quantities but in the RGCR model in case II. This
indicates that the hyperon direct Urca process turns on
earlier than the nucleon direct Urca process. In general, a
small amount of hyperons, compared with the proton

fraction for the nucleon direct Urca process, is able to
turn on the hyperon direct Urca processes. For example, in
the case of the SFHo model, the nucleon direct Urca
process does not occur even in the maximum mass
(2.06M⊙) of the neutron star, while the hyperon direct
Urca process turns on when the neutron star mass is larger
than 1.26M⊙ as shown in Table IV.
The maximum mass of neutron star which contains

hyperons in case of SFHo model, however, is much less
than 2.0M⊙ as shown in Table III. This may indicate that
strong repulsion between nucleons or many-body forces in
the nuclear EOS is preferred to make high enough
maximum mass of neutron stars so that the mass reduction
resulting from the existence of hyperons is consistent with
the observed maximum mass. For instance, in the RGCR
model with z ¼ 1=ð2 ffiffiffi

6
p Þ and αV ¼ 1, the maximum

neutron star mass is predicted to be 2.03M⊙ as shown
in Table III. The first hyperon direct Urca process happens
when M ¼ 1.47M⊙, and it allows the nucleon direct Urca
process when M ¼ 1.58M⊙. In this model, Λ hyperons
appear if the baryon number density is greater than
n > 0.468 fm−3 and the direct Urca process involving Λ
occurs if n > 0.470 fm−3, which corresponds to ρΛ ¼
2.62 × 10−4 fm−3 that is 0.06% to the total baryon number
density. As shown in these examples, if hyperons exist in
the core of neutron stars, the hyperon direct Urca process
may happen at smaller baryon number density than the
density required for the nucleon direct Urca process.

VI. CONCLUSION

In the present work, we investigated the role of hyperons
in neutron stars within the relativistic mean field approach.
For this purpose, we first constructed SU(2) relativistic
mean field models, RGCR and RDSS, whose parameters
are determined by symmetric nuclear matter properties and
theoretical calculations for pure neutron matter. We found
that these models satisfy the mass-radius constraints of
neutron stars of Ref. [38]. The extension to the flavor SU(3)
was then made to account for the contribution of hyperons
in the energy density and pressure of baryon matter. In
general, the existence of hyperons makes the EOS softer
than those with nucleons only, which makes the neutron
star containing hyperons always less massive than that
without hyperons. To understand the reduction of neutron
star mass due to hyperons, we analyze the RMF models in
the literature as well as those developed in the present work.
The potential depths of hyperons (Λ, Σ, Ξ) at the saturation
nucleon density are used to obtain the hyperon coupling
constants. We then tested the effects of the variation of
couplings, αV and z, to neutron star’s masses and radii. We
found that the RGCR and RDSS models can satisfy the
mass-radius constraints of neutron stars with certain values
of αV and z. However, other models in the literature have
difficulties to fulfill the mass-radius constraints even with

TABLE IV. The critical density and critical mass of neutron
stars for the baryon direct Urca process in the SFHo model in
case I.

Urca ncðfm−3Þ McðM⊙Þ
Λ → pþ eþ ν̄e 0.470 1.26
Λ → pþ μþ ν̄μ 0.475 1.28
Ξ− → Λþ eþ ν̄e 0.516 1.38
Ξ− → Λþ μþ ν̄μ 0.515 1.38

TABLE V. The critical density and critical mass of neutron stars
for the baryon direct Urca process in case of the RGCR model in
case II with z ¼ 1=ð2 ffiffiffi

6
p Þ and αV ¼ 1.

Urca nc (fm−3) Mc (M⊙)
Λ → pþ eþ ν̄e 0.470 1.47
Λ → pþ μþ ν̄μ 0.475 1.49
n → pþ eþ ν̄e 0.507 1.58
Ξ− → Λþ eþ ν̄e 0.555 1.70
Ξ− → Λþ μþ ν̄μ 0.555 1.70
n → pþ μþ ν̄μ 0.589 1.76
Ξ− → Ξ0 þ eþ ν̄e 0.949 2.04
Ξ− → Ξ0 þ μþ ν̄μ 0.965 2.05
Ξ0 → Σ0 þ eþ ν̄e 0.987 2.05
Ξ0 → Σ0 þ μþ ν̄μ 0.976 2.05
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the variation of the couplings. This shows that it is needed
to take into account the pure neutron matter properties for
determination of the SU(2) parameters in order to explain
the observed neutron star properties. Furthermore, rigorous
investigations on the change of SU(3) coupling constant
parameters in dense matter are required to understand the
structure of neutron stars in depth.
The presence of hyperons is supposed to change the

cooling history of neutron stars since the condition for
hyperon direct Urca process is not restrictive as in the case
of nucleon direct Urca process [70]. The hyperon direct
Urca process affects the cooling of neutron stars which
contain hyperons in the core. Thus neutron stars whose
masses are greater than the critical mass with the existence
of hyperon should have different cooling history. In the
present work, we estimated the critical density and critical
neutron star mass for hyperon direct Urca processes. Our
results indicate that a neutron star with a mass greater than
1.5M⊙ is likely to turn on the hyperon direct Urca process.
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APPENDIX: RELATIVISTIC MEAN FIELD
MODEL AND NUCLEAR PROPERTIES

As was discussed in Sec. II, we determine the parameter
values of the RMF model using the properties of symmetric
nuclear matter given in Eq. (11), namely,M�

N , B, n0, and K.
With the Lagrangian Lσωρ given in Eq. (1), these quantities
are obtained as

M� ¼ M − S0; ðA1Þ

μn ¼ μp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2F þM�2

q
þW0; ðA2Þ

B ¼ M −
1

n0

�
VðS0Þ þ

1

2

�
mω

gω

�
2

W2
0 þ

ζ

8
W4

0

þ 2

π2

Z
kF

0

dkk2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM�2

p �
; ðA3Þ

Pðn0Þ ¼ −VðS0Þ þ
1

2

�
mω

gω

�
2

W2
0 þ

ζ

24
W4

0

þ 2

3π2

Z
kF

0

dk
k4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þM�2p ; ðA4Þ

K ¼ 9n0

��
mω

gω

�
2

þ ζ

2
W2

0

�
−1

þ 3
k2F
E�
F

− 9n0

�
M�

E�
F

�
2
�� ∂2

∂S2 þ
3

M�
∂
∂S

�
0

VðSÞ − 3
n0
EF

�−1
;

ðA5Þ

at the saturation density, where

VðSÞ ¼ 1

2

�
mσ

gσ

�
2

S2 þ κ

3!
S3 þ λ

4!
S4 ðA6Þ

and

n0 ¼
2k3F
3π2

; E�
F ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2F þM�2

q
;

S0 ¼ gσσ0; W0 ¼ gωω0: ðA7Þ

Here, the subscript 0 indicates that the quantity is computed
at the saturation density. Once we know the saturation pro-
perties, such as n0, M�, and B ð¼ − μn þM ¼ −μp þMÞ,
the values of kF, S0, andW0 can be obtained from the above
relations. In addition, the field equations for the σ and the ω
mesons are

�
mσ

gσ

�
2

S0 þ
κ

2
S20 þ

λ

6
S30 −

2

π2

Z
kF

0

dk
k2M�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM�2p ¼ 0;

ðA8Þ

�
mω

gω

�
2

W0 þ
ζ

6
W3

0 −
2

3π2
k3F ¼ 0: ðA9Þ

The five equations, (A3), (A4), (A5), (A8), and (A9), are
used to determine the values of five unknowns, gσ , gω, κ, λ,
and ζ. These equations, however, are redundant because of
the relation on the pressure, P ¼ μnnn þ μpnp − E.
Therefore, we need one more information to determine
the model parameters. As in Sec. II, however, we set ζ ¼ 0
for allowing the simple rescaling of gϕN .

8

For pure neutron matter, we have eleven unknowns
ðgρ; ξ;Λs1;…;Λs6;Λv1;…;Λv3; Þ to be determined. As in
IU-FSU [52], we may use two coupling constants, i.e., Λs2
and Λv1, for neutron matter. It does not, however, give a
good fit to pure neutron matter calculation. Therefore, we
maintain the number of coupling constant as in Ref. [51].
The explicit expressions for symmetry energy and its

density derivative are obtained as

8As shown in Table I, the IU-FSU and SFHo models use
ζ ¼ 3.0 × 10−2 and −1.701 × 10−3, respectively.
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In this derivation we utilize Eqs. (A8) and (A9).
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