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Multilevel dark matter with diagonal and off-diagonal interactions shows a rich phenomenology in its
self-scattering. If the interactions are mediated by a particle that is less massive than the dark matter, the
Sommerfeld effect can lead to resonant enhancement of the scattering. For mediators lighter than the level
separation, dark matter particles can upscatter to excited states and deexcite by emitting these mediators.
We compute these cross sections, both above and below the kinematic threshold, in a generic two-
component dark matter model and identify the large inelastic cross section as a result of maximal mixing
between the two states. A new route for cooling of large dark matter halos and a new drag force between
two colliding halos are identified and shown to arise purely from the inelastic scattering.
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I. INTRODUCTION

Galaxies are observed to be surrounded by more massive
halolike structures made of a substance whose particle
nature still remains unknown. The formation of these halos
is predicted within the paradigm that dark matter (DM) is
made of cold collisionless particles. Agreement with
several other cosmological and astrophysical observations
at widely different length scales has given strong support to
this simple paradigm. Notwithstanding this success, it fails
to provide an explanation for some discrepancies between
the predictions and observations of the shapes and abun-
dances of these halos at subgalactic length scales, viz., the
“small-scale problems” [1,2].
One of these problems is often referred to as the “core-

cusp problem” [3–6]. The central density profile of dwarf
galaxies is observed to be cored, while simulations with the
standard cold collisionless DM typically lead to a denser
cuspy profile (∼1=r) near the center. Complex astrophysi-
cal processes involving baryonic matter, e.g., tidal effects
and supernova explosions that remove matter from the
central region, may lead to cored profiles, reducing the
discrepancy [7–13]. Indeed, these feedback processes could
very well be the missing ingredient in the simulations.
However, it is challenging to accurately model these
processes and it is not yet established if one can obtain
sufficient feedback in realistic models [14–17]. As such,

this problem remains open and motivates us to consider
other possibilities as well.
Self-scattering of DM particles has been shown to be

effective in solving the core-cusp problem [18,19]. In this
class of models, known as self-interacting DM (SIDM),
the DM particles have strong interactions with each other.
During the nonlinear phase of structure formation, when the
central density of a halo becomes large, the self-scattering
generates outward pressure. When this pressure equates the
gravitational pull on the matter, any further accumulation of
DM at the center ceases and a stable core is formed. While
these interactions may be obtained with massive mediators,
the cross section in such models is velocity independent and
strongly constrained from various observations [20].
Simulations indicate that a hard-sphere scattering cross
section per unit DM mass σ=M ∼ 0.5–5 cm2=g is required
to form the cores at the centers of galaxies with DM velocity
vrms ¼ 30–100 km=s [21–23]. On the other hand, objects
with larger vrms put stronger bounds on these same cross
sections [24–28]. For example, the nonobservation of drag
force between the DM components of two merging clusters
puts an upper bound σ=M ≲ 1 cm2=g [29,30]. But a tighter
constraint σ=M ≲ 0.1 cm2=g is given by the stellar kin-
ematics and weak lensing data in galaxy clusters [23]. As
self-interaction helps virialize DM halos efficiently, they
become rounder compared to the anisotropic halos predicted
by the collisionless DM scenario. Therefore, the observed
triaxialities of halos provide an upper bound on the strength
of the self-interaction amongDMparticles. A comparison of
observationswithN-body simulation shows that a scattering
cross section as large as σ=M ≃ 1 cm2=g could be allowed
at the larger velocity end, i.e., v ∼ 1000 km=s [31].
Therefore, one typically considers lighter mediators that

lead to velocity-dependent cross sections [32,33]. In these
models, a velocity-dependent cross section is obtained from
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a long-range interaction between DM particles, and they
have been shown to be able to satisfy observational
constraints [31]. The long-range interactions, on the other
hand, have interesting phenomenology [34,35]. When the
mass of the mediator particle is smaller than that of the DM,
the Sommerfeld effectmay cause resonant scattering. In this
regime, the cross section is resonantly enhanced through
virtual bound state formation [36].
A multicomponent DM system brings new features to

the scattering phenomenology and the dynamics of halo
formation. In particular, it can solve the core-cusp problem
by heat flow from the hotter outer region to the colder inner
core. The possibility of elastic as well as inelastic scatter-
ing, depending on the energy of the particles, gives a rich
phenomenology that has not been explored fully. For
example, the excitation and deexcitation of DM particles
can give rise to observable indirect detection signals. Also,
the energy dissipation from the inelastic scattering, fol-
lowed by deexcitation, might lead to a significant change in
the shape and density profile of DM halos. Some of these
features have been discussed in the context of atomic DM
models in Refs. [37–39], two-level DM systems with
purely off-diagonal interaction in Refs. [40,41], and the
dark bremsstrahlung process [42]. Multilevel DM models
also have interesting phenomenology in the context of
direct and indirect detection experiments [43–45].
In this work, we take a two-level SIDM model with light

particles mediating both diagonal and off-diagonal inter-
actions. In this model, the DM particles can not only
elastically scatter due to the diagonal interactions, but they
may also get excited to the more massive partner of DM due
to the off-diagonal interactions and subsequently deexcite
by emitting the light mediator particles. This leads to
additional dissipation. We compute these cross sections,
analytically explain their behavior in various regimes, and
study the cooling of DM halos due to the new dissipation
mechanism. We further identify a new dissipation-induced
drag force between two colliding halos in such models.
The paper is organized as follows. In Sec. II, we discuss a

formalism for two-level scattering with a description of the
minimal SIDM model considered here, numerically com-
pute the elastic and inelastic cross sections, and explain
their key features using simple analytical estimates. We
then outline the key signatures and possible constraints in
Sec. III and, in Sec. IV, conclude with a summary of our
results and avenues for future work.

II. TWO-LEVEL DM AND SCATTERING

To discuss the phenomenology of a multilevel DM
model, we concentrate on a simple two-level DM system
with a small mass gap Δ between the two states, χ1 and χ2,
with masses M and M þ Δ, respectively. We further
assume a dark Z2 symmetry under which χ1;2 have charges∓1, respectively. Two lighter scalars ρ1 and ρ2 with charges
�1 couple to the DM states as

Lint ⊃ fρ1ð χ̄1χ1 − χ̄2χ2Þ þ fρ2ð χ̄1χ2 þ χ̄2χ1Þ: ð1Þ

For simplicity, we have assumed the masses and couplings
of ρ1;2 to be the same and equal to mρ and f, respectively.
Most of our discussion is insensitive to these simplifying
assumptions, and we will outline how the results would
change in a more general model, wherever necessary.
Two colliding DM particles that are initially in the

ground state can either stay in the ground state (elastic)
or upscatter to the excited state (inelastic). For upscattering
to occur, the incoming particles need to have enough
kinetic energy to overcome the mass gap 2Δ between
the two two-body states. In addition, even if there is not
enough kinetic energy, the excited state can be produced as
virtual particles in the intermediate steps of the collisions.
Moreover, the scattering cross section between nonrelativ-
istic DM particles is enhanced due to multiple exchanges of
the light ρ particle, influencing the Sommerfeld effect.
Schematic Feynman diagrams for the possible elastic and
inelastic scatterings are shown in Fig. 1, where the vertical
lines represent the exchange of many ρ1;2 particles in the
nonrelativistic regime. In the case of inelastic scattering,
the final particles decay to the ground state by emitting
two light particles. This process is essentially an energy-
loss process, and it is expected to have interesting
phenomenology.
The scattering cross sections are computed by calculat-

ing the transition amplitude between an allowed initial state
jii and final state jfi. The possible two-body states are
jχ1χ1i; jχ2χ2i, and jχ1χ2i. However, it is easy to see from
Eq. (1) that jχ1χ1i and jχ2χ2i are decoupled from jχ1χ2i,
due to the Z2 symmetry. Therefore, assuming that the DM
particles are initially in the ground state, it suffices to work
in a Hilbert space spanned by jχ1χ1i and jχ2χ2i only. One
can remove this restriction, but it makes the calculation
more difficult without yielding any qualitatively new
features. This is our motivation for using two oppositely
charged scalars, as opposed to a single scalar that one may
naively think to be the simpler case. We neglect the
scattering between χ1 and χ2, because χ2 decays soon after
freeze-out and its abundance is rapidly depleted. For the

FIG. 1. Typical Feynman diagrams for elastic self-scattering of
DM in the ground state (left) and for upscattering induced decay
(right). The intermediate vertical lines represent multiple ex-
changes of scalar ρ particles in the nonrelativistic limit of the
incoming DM particles.
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same reason, the scattering between two χ2 particles is
negligible. Therefore, we have two channels, i.e., jχ1χ1i →
jχ1χ1i (elastic) and jχ1χ1i → jχ2χ2i (inelastic).
The overlap between two two-body states is defined as

Ψab ≡ hχaχajχbχbi with a, b ¼ 1, 2 and satisfies the
Schrödinger equation,

�
1

r2
d
dr

�
r2

d
dr

�
þk2−

lðlþ1Þ
r2

−2μVðrÞ
�
ΨlðrÞ¼ 0; ð2Þ

where l is the orbital angular momentum, and k and μ are
two diagonal matrices with the momentum and reduced
mass of the incoming two-body state, respectively,

k ¼ kaδab; and μ ¼ μaδab: ð3Þ

The incoming momentum ka is different for the two
two-body states due to the presence of the mass gap
2Δ ¼ 2ðM2 −M1Þ between the states jχ1χ1i and jχ2χ2i.
Depending on the energy

E1 ¼ k21=2μ1 ¼ μ1v2=2 ð4Þ

of the incoming particles, two cases are possible:
(i) Below threshold, μ1v2=2 < 2Δ, when the initial

energy of the incoming state is below threshold,
then the heavier jχ2χ2i state is kinematically closed
as χ2’s cannot be produced on shell,

(ii) Above threshold, μ1v2=2 > 2Δ, when the incoming
energy is above threshold, the excited state is open
and DM particles can upscatter to the excited state.

The exchange of the scalar particles between the DM
particles as dictated by the Lagrangian in Eq. (1) gives rise
to an attractive potential between the two-body states in the
nonrelativistic limit of the theory. The potential matrix VðrÞ
in Eq. (2) is given by

V ¼
�
V1 V1

V1 V1

�
with V1ðrÞ ¼ −

αe−mρr

r
; ð5Þ

where α≡ f2=4π. This attractive Yukawa potential matrix,
with equal entries, is a result of assuming the same
interaction strength between either pair of two-body states.
The structure of the potential matrix would be different in
other DM models, e.g., a broken dark gauge symmetry
would provide both attractive and repulsive interactions,
which will become purely repulsive for a late-time asym-
metric DM population. With additional scalars one can
engineer diagonal and off-diagonal potentials of different
strengths. As we shall see, the qualitative nature of many
results discussed in this work remains unchanged as long as
the matrix has nonvanishing off-diagonal components.
Therefore we shall not delve into these details here.
The set of Schrödinger equations in Eq. (2) is to be

solved with appropriate boundary conditions for above-

and below-threshold scatterings. The equations are solved
for each partial wave l, and the large-r wave functions are
matched with plane wave solutions to extract the elements
of the transition matrix T l, which consists of the transition
amplitudes from state jii to jfi. The scattering matrix Sl is
written as Sl ≡ 1 − T l. Finally, the scattering matrices are
added up to some l ¼ lmax, to yield the total cross section.
Although theoretically lmax goes up to infinity, in practice a
finite value must be chosen by ensuring the numerical
convergence of the sum. This value depends on the range of
the potential and the momentum of the incoming particles.
The total scattering cross section σtot is given by

σtot ¼
Z

dΩ
dσ
dΩ

: ð6Þ

This definition gives equal weight to all scattering angles,
which is useful in the case of hard-sphere scattering
mediated by a heavy particle with short range. For a small
mediator mass, the cross section is peaked in the forward
and backward directions. While this leads to an overall
large value of the cross section, the effective momentum
transfer in each collision is small if the particles are
identical. However, in a DM halo and in N-body computer
simulations, momentum transfer during a collision is the
quantity that determines the virialization and shape of a
halo during its evolution and the dynamics of colliding
halos. In Ref. [46], it was pointed out that the transfer cross
section σT, which removes the forward direction peak, is a
more important quantity for transport phenomena. It is
defined as

σT ¼
Z

dΩ
dσ
dΩ

ð1 − cos θÞ: ð7Þ

Another quantity which is often used is the viscosity cross
section σV [46],

σV ¼
Z

dΩ
dσ
dΩ

sin2 θ: ð8Þ

This definition removes the contributions of the backward
scatterings, in addition. The details of the numerical calcu-
lations of these cross sections are given in the Appendix. We
now discuss the nature of the elastic and inelastic cross
sections in the limits when μ1v2=2 < 2Δ, i.e., below thresh-
old, and when μ1v2=2 > 2Δ, i.e., above threshold.

A. Below threshold

If the total energy of the incoming particles is below the
threshold, i.e., μ1v2=2 < 2Δ, then the excited state cannot
be produced on shell as a final state, and only the elastic
channel is relevant. The elastic cross section shown in
Fig. 2 can be understood based on a simple analytical
argument. In the regime μ1v2 < 2Δ, transitions to the
heavier excited state are classically forbidden by the
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vanishing tunneling probability and can be neglected. As a
result, it is easiest to diagonalize Eq. (2) locally at each
value of r and to solve only for the elastic scattering
cross section in the ground state with the potential ~V1ðrÞ,
given by

~V1;2 ¼ −V1 − Δ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
1 þ Δ2

q
: ð9Þ

Since the potentials are functions of the radial distance, the
rotation angle will also be a function of r,

tan 2θðrÞ ¼ −V1ðrÞ=Δ: ð10Þ
If the spatial derivatives of θðrÞ are small enough, then one
can assume the system to be adiabatic [47], i.e., the two
instantaneous energy levels do not mix. Note that θðrÞ →
π=4 for r → 0 and θðrÞ → 0 for r → ∞. Therefore the two
states are completely unmixed at large distance but get
maximally mixed as the incoming particles get closer. The
radial dependence of θðrÞ is shown in the green curve in
the left panel of Fig. 3. The transition from zero to π=4
happens in the region where jV1ðrÞj≃ Δ. Beyond this
point towards large r, mixing ceases as the potential in the
off-diagonal position becomes smaller than the diagonal
mass gap term. This behavior of the mixing angle allows
us to use the rotated basis to determine the elastic
scattering cross section in the below-threshold regime.
The smallness of the radial dependence of the elements of
the rotation matrix ensures that the system remains in one
of the eigenstates during the complete scattering. In Fig. 3,
we also show the behavior of the eigenvalues of the
potential matrix with r for l ¼ 0. The eigenvalues never
cross each other and their separation goes as ∼2=r for

FIG. 2. The χ1χ1 → χ1χ1 cross section in the regime
μ1v2=2 < 2Δ, i.e., below threshold for our two-level SIDM
model. This is approximately the same as in a single-state SIDM
model but with the potential given by Eq. (9).

FIG. 3. Left: The eigenvalues ~V1 (blue solid line) and ~V2 (red dashed line) of the rotated potential matrix as in Eq. (9). The mixing
angle θðrÞ is shown as the green dotted line. The unit on the vertical axis is arbitrary. Note that the eigenvalues remain well separated and
there is no level crossing, which explains why the evolution is adiabatic. The parameters chosen here correspond to an above-threshold
scenario, but the behavior of the eigenvalues does not depend on that. Right: Real and imaginary parts of the off-diagonal component of
the scattering matrix function, Re(S12ðrÞ) (blue solid line) and Im(S12ðrÞ) (red dashed line), as well as the instantaneous mixing angle
θðrÞ (green dotted line). Note that θðrÞ reaches π=4 at r → 0, shown as a grey dotted-dashed line. The real and imaginary parts of S12ðrÞ
are shown multiplied by factors of 100 and 10, respectively, for visual clarity. Note that the off-diagonal component S12ðrÞ deviates from
its value at large r only at r≲ 50, where the eigenvalues are well separated but the mixing is maximal. This shows that any nonzero
inelastic scattering, that comes from a nonzero S12ðrÞ, is a result of maximal mixing and not level mixing or lack of adiabaticity. The
velocity was chosen to be 100 km=s (above threshold).
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r → 0 reaching a constant 2Δ for large r. This remains
true for all higher partial waves and signals the fact that
the evolution is always adiabatic and the elastic cross
section is approximately given by the effective potential
in Eq. (9).

B. Above threshold

If the energy of the incoming particles is sufficiently
large, i.e., μ1v2=2 > 2Δ, then the excited state can be
produced on shell. In this case, the DM particles in the
ground state can upscatter inelastically to the excited
state. A measure of the inelasticity in the system is given
by the magnitude of the off-diagonal elements of the
scattering matrix Sl. We study the behavior of the
scattering matrix using the variable phase method follow-
ing Ref. [48]. In this method the wave function is first
written in an integral form,

ΨlðrÞ ¼
�
μ

k

�
1=2

J lðkrÞ −
2μ

k

Z
r

0

dtðJ lðkrÞN lðktÞ

− J lðktÞN lðkrÞÞVðtÞΨlðtÞ; ð11Þ

with the Riccati-Bessel functions J lðkrÞ and N lðkrÞ as
defined in Eq. (A4). In order to isolate the part of the wave
function arising from the interaction potential VðrÞ, it helps
to define another function F lðrÞ as

F lðrÞ ¼
1

2

�
1þ 2

Z
r

0

dtHl
ð2ÞðtÞVðtÞΨlðtÞ

�
: ð12Þ

On substitution of this in Eq. (11), one gets

ΨlðrÞ ¼ −i½Hl
ð1ÞðrÞF lðrÞ −Hl

ð2ÞðrÞF l
�ðrÞ�; ð13Þ

where one can clearly identify Hl
ð1Þ;ð2Þ ≡ ðμ=kÞ1=2ðN l �

iJ lÞ as the free wave solutions and the unknown functions
F l and F l

� as the distortions to the plane-wave solution
due to the potential. The scattering matrix function SlðrÞ is
defined in terms of F lðrÞ as

SlðrÞ≡ F lðrÞF l
�ðrÞ−1: ð14Þ

The significance of the function SlðrÞ lies in the fact that
its asymptotic value at large r yields the scattering matrix
Sl. The differential equation for Sl is easily obtained, by
taking a derivative of the previous equation and using
Eqs. (11) and (12),

dSl
dr

¼ iðSlHl
ð1Þ −Hl

ð2ÞÞVðHl
ð1ÞSl −Hl

ð2ÞÞ: ð15Þ

The initial condition is Slð0Þ ¼ 1, because at r → 0 the
function SlðrÞ, as given by Eqs. (14) and (12), has zero off-
diagonal entries because the integral in Eq. (12) vanishes.

The off-diagonal components of SlðrÞ track the behavior
of the inelastic cross section with r. In the right panel of
Fig. 3, we plot the real and the imaginary parts of the off-
diagonal elements of Sl as a function of r, along with the
rotation angle θðrÞ of the potential matrix VðrÞ in Eq. (10).
The inelastic cross section grows from zero to its asymptotic
value during the region where the mixing angle is π=4
(maximal mixing). More precisely, it saturates at around r ∼
1=mρ (in this case, mρ ¼ 0.1 GeV). Beyond this point the
off-diagonal potentials are exponentially screened and the
off-diagonal coupling between the two states vanishes. Also
note that nothing special happens in the “nonadiabatic”
region, i.e., where the angle varies from π=4 to zero towards
large r. While we show this for particular values of the
parameters in the potential, this qualitative behavior does not
change for other values of the parameters. Therefore, one can
conclude that the inelasticity is driven by the maximal
mixing between the two states near the origin (the adiabatic
mixing), which yields the large upscattering cross section
from the ground state, and not by the nonadiabaticity in the
system. As soon as this mixing goes to zero, the inelastic
cross section saturates to its asymptotic value. We also note
that the asymptotic value of the off-diagonal elements of the
Sl matrix is significantly large, which hints towards a large
inelastic cross section in the presence of an off-diagonal
potential. For obtaining our numerical results, we have used
the method shown in the Appendix, but the main advantage
of the variable phase method described here is that it reveals
that the origin of inelasticity is large mixing, not non-
adiabaticity. A variant of this method was previously used to
compute the cross sections in Ref. [41].
The left panel of Fig. 4 shows the velocity dependence of

the elastic cross section for a few representative values of
the mediator massmρ, as indicated in the figure. In general,
we see that irrespective of the value of mρ, the σel is larger
for small DM velocity and decreases for large velocity.
Therefore, it is possible to enhance the self-scattering in the
dwarf-sized objects and address the core-cusp problem,
while simultaneously suppressing it in the larger cluster-
size objects and satisfying the upper bounds coming from
colliding clusters [29,30]. The values of mρ were chosen
such that they span across a resonance. The curve labeled
by mρ ¼ 0.116 GeV corresponds to a resonance in the
cross section and hence shows large enhancement in the
small velocity regime. On either side of this resonance,
the cross section decreases. These features are unaltered
relative to single-level DM models.
In the right panel of Fig. 4, we show the behavior of the

elastic transfer and viscosity cross sections with the
mediator mass in the Δ → 0 limit. Two distinct regions,
Born (αM=mρ ≪ 1) and resonant (αM=mρ ≳ 1), are ap-
parent. The dashed grey line shows an approximate
analytical estimate of the cross section in the Born limit
[32]. Although the physical system in this work is different
than that in single-state DM models, it is possible to get an
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approximate expression of the Born cross section by a
substitution α → 2α. This substitution is based on the
understanding that in the limit of small Δ, the two states
jχ1χ1i and jχ2χ2i become indistinguishable and related to
each other through the relation jχ2χ2i ¼ ð−1Þlþsjχ1χ1i,
where s is the total spin of the state, as was explained in a
previous paper by us [45]. Only one linear combination of
the states survives in this limit and one can map the two-
level system onto a single state with an effective potential

Veff ¼ V11 þ ð−1ÞlþsV12: ð16Þ
This also explains the substitution α → 2α in our adapted
estimate of the resonant condition given by [49],

2αM
1.64mρ

¼ n2; n ¼ 1; 2; 3…; ð17Þ

which explains the positions of the resonances and agrees
very well with the numerical results.
In all these cases, the inelastic cross section is almost

equal to the elastic cross section, as shown in the right panel
of Fig. 4. This strong correlation between the two cross
sections is a result of setting all components of the potential
matrix in Eq. (5) to be equal. If the diagonal potentials are
weaker than the off-diagonal counterparts, then the two
cross sections can be different by several orders of
magnitude. An extreme example of such a case is the
model of a two-component Majorana DM particle charged
under a broken U(1) gauge symmetry [40,41]. The con-
served currents in this model are given by χ̄1γ

μχ2 and
χ̄2γ

μχ1. Hence at tree level, elastic scattering χ1;2χ1;2 →
χ1;2χ1;2 is not possible although inelastic scattering

χ1;2χ1;2 → χ2;1χ2;1 can take place through an exchange of
a gauge particle. The lowest order elastic process will
involve at least one loop. Therefore in the Born limit (large
mρ), the elastic cross section will be suppressed. In the
resonant and classical regime these interactions would give
rise to purely off-diagonal attractive Yukawa potentials and
both elastic and inelastic cross sections will be comparable
(see Fig. 5). However, depending on the parameter values,
one may be larger than the other.

FIG. 4. Left: The velocity dependence of the elastic self-scattering cross section for different values of mρ as indicated in the figure.
Right: The elastic transfer and viscosity cross sections for a particular choice of the parameter values: M ¼ 200 GeV; α ¼ 0.01;
v ¼ 10 km=s. The grey dashed line shows the analytical estimate of the Born cross section for the two-level model, obtained using the
one-level equivalent proposed in Ref. [45] with the substitution α → 2α explained in the text, and the numerical results are in good
agreement with the analytical estimate of the Born cross section in the large mρ limit. The resonant values of mρ, given in Eq. (17),
similarly agree very well.

FIG. 5. The ratio of the inelastic to the elastic cross sections in
the purely off-diagonal interaction DMmodel, with parameters as
indicated in the figure, showing that the inelastic cross section can
be much smaller or much larger than the elastic cross section in
strongly off-diagonal models.

ANIRBAN DAS and BASUDEB DASGUPTA PHYS. REV. D 97, 023002 (2018)

023002-6



III. SIGNATURES OF INELASTIC SCATTERING

The new effects of this dissipation mechanism are driven
by the large inelastic scattering rate given by Γup ≡ nχσinv.
An order-of-magnitude estimate of the time scale associ-
ated with the upscattering rate is given by

tup ≃ 1012 yrs
104 M⊙ kpc−3

ρ

1 cm2 g−1
σin=M

103 kms−1

v
: ð18Þ

The DM velocity was chosen to be Oð1000Þ km=s so that
the upscattering and decay processes are kinematically
allowed. Clearly this typical time scale is 1–2 orders of
magnitude larger than the age of the Universe, whereas
large DM densities required for upscattering to take place
have only been present for a much shorter time (only since
nonlinear structures have formed). Therefore, the effects of
these upscatterings cannot be too large. We now discuss
two possible effects due to this inelastic scattering.

A. Halo cooling

If the upscattering rate nχσinv is not too small, χ1 can
upscatter to the excited state χ2 and, thus produced, χ2 will
promptly decay into the light mediator particle ρ and χ1. If
the χ1 − ρ scattering cross section is small in the given DM
halo, then these light particles may escape the halo, thereby
cooling the halo at a considerable rate. Large upscattering
requires the colliding DM particles to be energetic enough so
that sufficient phase space is available for the excited state.
For example, a 10 GeV mass DM with Δ ¼ 1 MeV has a
velocity threshold of ∼1000 km=s. Thus, this phenomenon
will mostly be important in objects with large DM velocity
dispersions, e.g., in large galaxies and galaxy clusters.
A thorough analysis of the effect of this dissipation

mechanism on the DM halo structure does not yet exist
in the literature. We will not attempt a full treatment here.
However, a qualitative understanding can be gained from the
response of DM halos for similar cooling processes present
in the baryonic matter, as we recap below. After falling
towards the center of a halo, the baryons interact with each
other and condense into lower energy states. In the process,
the particles dissipate away a considerable amount of energy
in the form of radiation, which may escape the halo. The less
energetic baryons then condense and undergo further infall
towards the center. The changing shape of the baryon density
profile affects the DM profile by increasing density near the
center. The analytical estimations of this effect have been
worked out in the adiabatic contraction regime [50]. In this
regime, the DM particle orbits are assumed to be circular or
nearly circular and the total mass enclosed by the orbit is
assumed to change very slowly compared to the orbital time
period of the DM particle. In this adiabatic regime, the
invariance of

H
pdq implies

MðrÞr ¼ constant: ð19Þ

Here MðrÞ is the total mass enclosed inside the orbit of
radius r. Using this invariance, an analytical estimate has
been obtained which fairly matches with the numerical
N-body simulation results [50,51]. The main effect is the
steepening of the DM density profile near the center and
forming a denser core. As more baryons fall towards the
center, the gravitational well becomes deeper and more DM
particles are attracted inward. This increases the slope of the
central density profile [51].
In our case, the DM component itself will have a

dissipation or cooling mechanism through an upscattering
and a subsequent decay of the excited state. This process is
independent of and in addition to the baryonic cooling.
Hence the effect of halo cooling will presumably be more
prominent in this scenario and one would expect more
complexity and richness in the small-scale structure of DM.
As a result, a larger portion of the parameter space can be
constrained.
The rate of this new dissipation mechanism will mainly be

given by the upscattering rate as the decay is very fast and
can be assumed to be prompt. Here we will give a rough
estimate of the rate of energy loss due to the upscattering and
decay from the excited state. In the limit of nonrelativistic
DM and Δ ≪ M, the net kinetic energy lost per particle is
approximately equal to Δ itself. The upscattered χ2 particles
will decay and produce lighter particles with some amount of
kinetic energy from the phase space available. One can
estimate the leading order contribution to this energy gain to
be OðΔ2=M2Þ and Oðv22Δ=MÞ where v2 is velocity of the
upscattered χ2 particles prior to decay. Therefore, for all
relevant parameter choices, the gain in the kinetic energy
from the decay is negligible relative to the energy loss from
the upscattering. The requirement for the upscattering and
the decay to happen constrains the parameter space as
μ1v2=4 > Δ > mρ. We shall assume that all light particles
generated from the decays leave the halo.
In a halo, the average rate of energy loss in a DM shell of

radius r and width dr is estimated by

4πr2drΓupðrÞnχðrÞ2Δ ¼ 4πr2dr
2Δ
M

σin
M

vρðrÞ2: ð20Þ

The radial dependence of DM velocity could be estimated
from simple Newtonian dynamics. It peaks around the scale
radius of the halo with an NFW density profile. The NFW
profile is defined as follows

ρNFW ¼ ρs
r
rs
ð1þ r

rs
Þ2 ð21Þ

where ρs and rs are the scale density and radius, respec-
tively. The individual DM velocities at a given radius will
follow a thermalized Maxwell-Boltzmann (MB) distribu-
tion characterized by a virial velocity dispersion v̄ðrÞ.
Essentially, in a fully virialized halo, the high energetic
DM particles will most often occupy the outer edges of the
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halo. The halo cooling rate will be given by a convolution
over the DM velocity distribution function

dE
dt

¼ 4πr2dr
2Δ
M

ρðrÞ2
Z

∞

0

σin
M

v̄ðrÞfðvÞdv; ð22Þ

where we take fðvÞ to be approximated by a Maxwell
distribution fMBðvÞ ¼ 4πv2 exp ½−v2=v̄ðrÞ2�=ð ffiffiffi

π
p

v̄ðrÞÞ3.
Note that the velocity distribution fðvÞ also depends on
radial distance r through v̄ðrÞ.
An approximate radial dependence of the cooling

rate dE=dt for a halo of the size of that of the Virgo
cluster is shown in Fig. 6. The profile was taken to be
a NFW with a scale radius rs ¼ 560 kpc and density
ρs ¼ 3.2 × 105 M⊙=kpc3. For simplicity, the inelastic cross
section was taken to be the velocity-independent constant
σin=M ¼ 1 cm2=g. The resulting cooling rate shows a
strong radial dependence and is largest near the virial
radius. This cooling rate is to be compared with the energy
inflow from the gravothermal collapse of the DM particles,
and it is due to the heat diffusion through self-scattering. The
gravitational collapse brings faster (hotter) particles from
the outer region of the halo to the cooler inner part. The
scattering between the particles help diffuse the kinetic
energy from the hotter particles to the relatively colder ones.
The process of gravothermal collapse can be modeled
following Refs. [52,53]. The negative specific heat of a
halo after virialization leads to this collapse. If we treat the
DM particles as a fluid, the heat radiated inward at some
radius r is given by

L
4πr2

¼ −
3

2
abvσ

�
aσ2 þ b

C
4πG
ρv2

�
−1 ∂v2

∂r : ð23Þ

Here the two terms within parentheses on the rhs correspond
to two different mean free path regimes. The first term
describes the hard-sphere scattering with the dimensionless
coefficient a ¼ ffiffiffiffiffiffiffiffiffiffi

16=π
p

. The second term describes the
short mean free path regime, which is proportional to the
gravitational constant, and the numbers b ¼ 25

ffiffiffi
π

p
=32 and

C ≈ 0.75. Typical values of this heat inflow rate are 2–3
orders of magnitude larger than the cooling rate discussed
above. Nevertheless, in the resonant region of the parameter
space, this halo cooling is expected to be efficient enough to
distort the halo.
Upscattering and decay do not start abruptly but rather

are continuous processes which will be present during the
virialization process of the halo. At the initial epoch of
structure formation, the DM particles are highly non-
relativistic and there will be no dissipation. After DM falls
towards the centers of the potential wells and acquires more
energy, and inelastic collisions become possible, it leads to
cooling. From Eq. (18) it is clear that the inelastic scattering
is a rather slow process and the halo will virialize at a faster
rate than the dissipation. As a result, subsequent changes in
the halo shapes are expected to be continuous and not
episodic. A more detailed study of the effect of this new
cooling mechanism will require an N-body simulation with
this extra energy loss implemented in the dark sector [54].
A similar halo cooling mechanism was considered in

Ref. [39] in the context of an atomic DM model. There,
neutral atomic dark hydrogen makes the DM abundance in
the present Universe. The hyperfine splitting in the ground
state of the dark atom leads to inelasticity in the system and
the excited state decays to the ground state, emitting
massless dark photons. The masslessness of the dark photon
implies that this cooling mechanism is more important for
smaller halos because of their lower gravitational binding
energy. On the contrary, in our case the particle ρ is massive.
Hence the cooling mechanism shuts off for small mass halos
where the DM particles do not have enough energy to
upscatter, and the dissipation arises mainly in large galaxies
or clusters. Note that the details of the particle physics model
do not affect the radial dependence shown in Fig. 6, and all
such details are encapsulated in the velocity dependence of
the cross section that determines this feature.

B. Drag and evaporation from inelastic scattering

Independent bounds on DM scattering can be obtained
from particle evaporation during the collision of clusters
and the movement of smaller dwarf-size halos through
larger halos [55,56]. As pointed out in Ref. [55], the SIDM
particles will experience collisions in colliding clusters,
whereas the stellar components of the objects will move
freely without any appreciable friction. If the momentum
transfer in a DM-DM collision is such that the final velocity
is larger than the escape velocity of the parent halo, then it
would leave the halo and would result in DM evaporation
from the halo. The existing observations from colliding

FIG. 6. The radial dependence of the cooling rate dE=dt [see
Eq. (22)] of a Virgo-cluster-size halo with a scale radius rs ¼
560 kpc and density ρs ¼ 3.2 × 105 M⊙=kpc3. The chosen DM
parameters areM¼10GeV,Δ¼10−4GeV, and σin=M¼1 cm2=g.
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clusters put a strong constraint on this process, yielding an
upper bound on the DM self-scattering cross section. An
estimate of the rate of such collisions can be obtained
following Ref. [55], in the limit of long-range interaction
(as the hierarchy μ1v2=4 > Δ > mρ is easy to satisfy with a
smaller value of mρ even at the cluster size scale).
In Ref. [55], the cumulative evaporation rate was shown
to be more important than the immediate evaporation when
DM has long-range self-interaction. This rate is given by

Rcml ¼
ηα2ρDM
M3v30

�
1 − 2 log

�
θmin

2

��
: ð24Þ

Here v0 is the relative velocity between the two colliding
clusters and ρDM is the DM density in the bigger halo. The
parameter θmin encodes the screening length and regulates
the forward divergence. Because of this evaporation rate,
the clusters will feel a drag force given by

Fdrag

M
¼ v0Rcml ð25Þ

¼ ηα2ρDM
M3v20

�
1 − 2 log

�
θmin

2

��
¼ ~σρDM

4Mv20
; ð26Þ

where η is an Oð1Þ numerical factor depending on the
nature of the mediator. In the last equality, following
Ref. [55], we have defined the cross section ~σ as

~σ

M
≡ 4ηα2

M3

�
1 − 2 log

�
θmin

2

��
: ð27Þ

The existing bound on ~σ from the abundance of dwarfs in
our MW halo is very strong, ~σ=M ≲ 10−11 cm2=g [55].
For two-level DM, two distinct cases may arise. Firstly

the usual evaporation of DM particles is still feasible in this
model and has contributions from both elastic and inelastic
scatterings. If the velocities of the scattered particles are
larger than the escape velocities, then they can escape the
halo and would collectively cause dynamical friction
between the halos. Second, inelastic scattering and sub-
sequent decay provides an additional method for energy
dissipation and gives an additional contribution to the drag
force. For simplicity, if we assume that all DM particles are
moving at the same velocity v0 as the halo, then nχσinv0 is
the upscattering rate per unit time. After each upscattering
and decay event, two light particles escape the halo, taking
away an amount of energy which is roughly hEdecayi≃ 2Δ.
Therefore, the halo loses energy at a rate dE=dt,

dE
dt

¼ hEdecayinχσinv0: ð28Þ

The resulting drag force per unit DMmass (or deceleration)
due to this energy loss is given by

Fdecay
drag

M
¼ 1

Mv0

dE
dt

¼ hEdecayi
M

ρDMσin
M

: ð29Þ

Then the net drag force acting between the halos is
given by

Fdrag

M
¼ v0Rcml þ

hEdecayi
M

ρDMσin
M

ð30Þ

¼ ð ~σel þ ~σinÞρ2
4Mv20

þ 2Δ
M

ρDMσin
M

: ð31Þ

The first term on the rhs above represents the cumulative
evaporation rate, due to elastic and inelastic processes that
are approximately equal across a large portion of the para-
meter space. We neglect the tiny velocity gain of χ1 from the
decay as we have seen it to be of an even smaller order of
magnitude in the previous subsection. The second term
corresponds to the new dissipation mechanism from upscat-
tering and decay. The quantity hEdecayi denotes the energy-
loss rate averaged over the phase space of the final particles
which, in the last equality, has been approximated as
hEdecayi≃ 2Δ. For simplicity here we have assumed that
all DM particles in the incident halo have velocity v0. Of
course, a more careful analysis would require averaging over
a Maxwellian distribution characterized by a velocity
dispersion v0.
The relative size of the new term in Eq. (30) compared to

the old term is given by ∼4v20Δ=M≃10−8 forM¼10GeV,
Δ ¼ 1 MeV, and v0¼1000km=s, and assuming σin ≃ ~σin.
The parametric smallness of the new drag force term may
be traced back to the smallness of the mediator mass. A
light particle-mediated interaction has a negative power
dependence on velocity and is enhanced at small velocities,
whereas the new term is virtually velocity independent.
This velocity dependence may be useful to extract the
impact of the second term, relative to the larger first term.
We leave this investigation to a more detailed study.
There may be other signatures of this energy-loss process.

For example, just as the baryonic energy-loss processes like
Compton scattering and bremsstrahlung are responsible for
the collapse of ordinary matter into disklike structures
forming the galaxies, for two-level DM, upscattering and
subsequent decay processes help DM lose energy and can
lead to the formation of a rotating dark disk in a DM halo
[57–62]. As another signature, the authors in Ref. [63]
observed a discrepancy between the predicted positions of
the splashback radii (see [64–66]) of cluster-size halos in
simulation and the observational data [67,68]. This mis-
match could in principle be addressed by this energy
dissipation mechanism through DM inelastic scattering.

IV. SUMMARY AND OUTLOOK

In this work, we have studied the self-scattering of a two-
level DM model. The off-diagonal interaction leads to
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inelastic scattering of a pair of DM particles from the
ground state to the excited state, in addition to the ordinary
elastic scattering.
If the incoming energy of the particles is below thresh-

old, the excited state is not produced as physical states.
Nevertheless, those states are produced off shell in the
intermediate steps of the scattering and can affect even
the elastic scattering cross section. It was shown that the
equations in this case can be rotated to a new basis where
the potential matrix becomes diagonal, and because of
adiabaticity they can be solved as a single-state system with
an appropriate potential.
When the incoming particles are above threshold,

inelastic scattering may also take place. We have shown
that in a large part of the parameter space, the inelastic cross
section is comparable to its elastic counterpart. This large
inelasticity is a result of the maximal adiabatic mixing
between the two states. We have also identified the Born
and resonant regions in the relevant parameter space, and an
estimate for the resonance condition has been given using a
mapping of the two-level system to an equivalent one-level
equation.
The off-diagonal interaction between the DM states

allows the heavier state to decay to the lighter one and
the mediator. The upscattering and subsequent decay thus
provide a mechanism for energy dissipation in DM halos.
Assuming the decay to be prompt, the rate of the upscatter-
ing-induced decay is given by the inelastic scattering rate
which we computed to be 1–2 orders of magnitudes larger
than the age of the Universe. Therefore, the DM halos can
not condense into smaller halos via this mechanism. Rather,
the inelastic process takes place only in larger objects and is
effective only after the DM density becomes large enough at
the centers of those objects. We compared this cooling rate
with the heating due to ordinary elastic scattering and found
that in some regions of the parameter space, the cooling rate
could be a large fraction of the heating rate. We expect that
this will leave an observable imprint on DM halo formation
and evolution which can be only be probed by an N-body
simulation incorporating this dissipative feature.
The same dissipation gives rise to an additional drag

force between two colliding halos or for small halos
drifting through a larger one. When two halos collide with
each other, the self-interacting DM particles scatter with
each other and lose energy by emitting the light scalars.
This energy loss can be interpreted as a new drag force
acting between the halos. We calculated an analytical
expression for this new drag force and found that it is
small relative to the other contribution from ordinary
scattering, but it has a distinctive velocity independence
unlike the usual drag force.
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APPENDIX: FORMALISM FOR
MULTICHANNEL SCATTERING

In the general case of an N-level system, the inner
products of all possible two-body states can be arranged
in an N × N matrix ΨlðrÞ [69]. The columns of ΨlðrÞ
denote the linearly independent regular solutions of the
Schrödinger equation
�
1

r2
d
dr

�
r2

d
dr

�
þk2−

lðlþ1Þ
r2

−2μVðrÞ
�
ΨlðrÞ¼0; ðA1Þ

where k and μ are two diagonal matrices with channel
momenta and reduced masses as defined in Eq. (3). These
sets of equations are supplemented by the boundary
conditions at r ¼ r0 as follows:

½Ψlðr0Þ�ab ¼ r0δab; ½Ψ0
lðr0Þ�ab ¼ ðlþ 1Þδab: ðA2Þ

The initial point r0 is chosen to be small enough so that the
centrifugal term dominates over the other two terms in the
differential equation. The overall normalization is irrel-
evant, as we are interested only in the final cross section.
Numerically, we start solving the equations at r ¼ r0 and
proceed towards larger r. We choose a sufficiently large
r ¼ rf where the potential becomes negligible compared to
the kinetic energy term. At r ¼ rf, we match our solutions
with the asymptotic solutions given below:

lim
r→large

ΨlðrÞ ¼ J lðkrÞ −N lðkrÞKl: ðA3Þ

Here Kl is the reaction matrix and

½J lðkrÞ�ab ¼þkarjlðkarÞδab; above threshold;

¼þkarιlðkarÞδab; below threshold;

½N lðkrÞ�ab ¼−karnlðkarÞδab; above threshold;

¼−karκlðkarÞδab; below threshold: ðA4Þ
Here jlðxÞ and nlðxÞ denote spherical Bessel functions
of the first and second kinds, and ιlðxÞ and κlðxÞ are
the modified spherical Bessel functions of the first and
second kinds, respectively. These two types of functions
serve as the asymptotic forms of the wave function
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as indicated above. In the below-threshold case, the
boundary conditions need to be changed for the excited
state. In Refs. [70,71], the author has shown that in the
below-threshold case, only the open-open part (the part
which consists of only the open channels) of the Kl matrix
contributes to the final scattering matrix, though one has to
solve the full system of Schrödinger equations. In this case,
the asymptotic wave functions are either exponentially
growing or decaying, which may cause trouble in the
numerical computation [see the second line in Eq. (A4)]. It
is solved by normalizing the closed channel wave functions
and their derivatives by J l and N l, respectively, such that
the new asymptotic wave functions become J lðkrÞ → 1;
J 0

lðkrÞ → J 0
lðkrÞ=J lðkrÞ, and similarly for N lðkrÞ.

We solve forKl from Eq. (A3) by taking the logarithmic
derivative of the equation,

Kl ¼ ½BlðkrfÞN lðkrfÞ −N 0
lðkrfÞ�−1

× ½BlðkrfÞJ lðkrfÞ − J 0
lðkrfÞ�; ðA5Þ

where BlðrÞ ¼ Ψ0
lðrÞ½ΨlðrÞ�−1. Everywhere a prime

denotes derivative with respect to r. Once the Kl matrix
is obtained, the S-matrix can computed through

Sl ≡ 1 − T l ¼ ð1þ iKlÞ−1ð1 − iKlÞ: ðA6Þ

This Sl is computed for all partial waves starting from
l ¼ 0 to lmax. As stated in the text, the value of lmax
depends on the initial momentum of the particles and the
range of the potential. A useful lower bound on its value
can be given as lmax ≥ k=mρ for the case discussed in this
paper. The final total cross section is given by

½σtot�ab ¼
Z

dΩ
dσab
dΩ

¼ 1

2k2b

Z
dΩ

����
X
l

1

2
ð2lþ 1Þð ~T lÞabPlðcos θÞ

����
2

¼ π

2k2b

X
l

ð2lþ 1Þjð ~T lÞabj2; ðA7Þ

where ð ~T lÞab ¼ ðT lÞab þ ð−1ÞlðT lÞa0b. Here the prime
on a denotes an exchange of particles in the final two-body
DM state. Note that the last term in Eq. (A7) is present only
when the final-state particles are identical. In the case of
distinguishable particles, this term will be absent and so
will the extra factor of 1=2. The other two quantities of
interest are the transfer and viscosity cross sections. The
definition of the transfer cross section σT is given in Eq. (7).
Expanding the differential cross section in the partial wave
basis gives

½σT�ab ¼
Z

dΩ
dσab
dΩ

ð1 − cos θÞ

¼ π

2k2b

X
l

ðlþ 1Þjð ~T lþ1Þab − ð ~T lÞabj2: ðA8Þ

Similarly, the viscosity cross section in Eq. (8) is given by

½σV�ab ¼
Z

dΩ
dσab
dΩ

sin2θ

¼ π

2k2b

X
l

ðlþ 1Þðlþ 2Þ
ð2lþ 3Þ jð ~T lþ2Þab − ð ~T lÞabj2:

ðA9Þ
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