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We show that the space of solutions of a wide class of Ricci-based metric-affine theories of gravity
can be put into correspondence with the space of solutions of general relativity (GR). This allows us to use
well-established methods and results from GR to explore new gravitational physics beyond it.
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I. INTRODUCTION

With the advent of gravitational wave astronomy result-
ing from the findings of the LIGO-Virgo Collaboration
[1–3], a new window on the most energetic events in nature
is now open. Among the fascinating discoveries yet to
come, multimessenger observations may allow us to
explore subtle departures from the established predictions
for compact objects as well as the core principles of GR [4].
In particular, the so-called black hole mimickers, such as
boson stars [5], gravastars [6], traversable wormholes [7],
and black stars [8], among others, which share in common
the absence of an event horizon, are potential alternatives to
black holes that may affect our current interpretation
of certain astrophysical phenomena as well as our under-
standing of fundamental physics [9–11]. Some of these
objects arise in extensions of GR and may be supported
by standard matter, not requiring exotic sources for their
existence. Extensions of GR are indeed motivated by
multiple reasons, and a plethora of alternative gravity
models currently exist in the literature [12–16].
However, confronting gravitational wave data with the
predictions of those theories represents a formidable
challenge. In fact, the development of numerical methods
and algorithms is strongly conditioned by their implemen-
tation in the framework of GR [17–22]. Their extension to
other theories is expensive in many respects and, in
practice, it may preclude the use of gravitational wave
data to unveil subtle departures from the predictions of GR.
In this work we present a (broad) class of gravity theories

whose analysis and confrontation with observations can be
carried out systematically by borrowing techniques and

methods previously developed in the framework of GR.
This is possible thanks to the existence of a correspondence
between the space of solutions of GR and the space of
solutions of those theories. We show how to obtain this
correspondence, in general, for some matter sources and
illustrate the process with a particular gravity theory.

II. THEORETICAL FRAMEWORK

We focus on a class of theories of the form

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
LG½gμν; RðμνÞðΓÞ� þ Sm½gμν;ψ �; ð1Þ

where Sm denotes the (minimally coupled) matter action,
with ψm labeling collectively the matter fields; g is
the determinant of the spacetime metric gμν; and LG½gμν;
RðμνÞðΓÞ� is the gravity Lagrangian, constructed out of the

metric and the (symmetrized) Ricci tensor, Rμν ¼ Rα
μβνδ

β
α,

where Rα
βμν ¼ ∂μΓα

νβ − ∂νΓα
μβ þ Γα

μλΓλ
νβ − Γα

νλΓλ
μβ is the

Riemann tensor of a connection Γ≡ Γλ
μν, which we assume

is a priori independent of the metric (metric-affine or
Palatini approach). We emphasize that in order to guarantee
that LG is a scalar function, its functional dependence on
the metric and the Ricci tensor must be through traces of
powers of the object Mμ

ν ≡ gμαRðανÞðΓÞ [23]. Within this
class of theories, which will be referred to as Ricci-
based gravities (RBGs, implicitly assumed hereafter to be
metric-affine formulated), we find GR itself, fðRÞ, and
fðR;RðμνÞRðμνÞÞ theories [24], Born-Infeld inspired models
[25], …, among others, all of which have received much
attention in the literature.
These theories admit an Einstein-frame representation

[26] in terms of an auxiliary metric qμν whose relation
with the spacetime metric gμν can be parametrized as
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qμν ¼ gμαΩα
ν, with the matrix Ωα

ν a function of the matter
fields (and possibly of gμν) whose specific details depend
on the particular LG chosen. By performing independent
variations with respect to the metric and connection, it
can be shown that Γα

μν is the Levi-Civita connection of qμν,
Mμ

ν turns out to be an algebraic function of Tμ
ν, and the

field equations can finally be written in the Einstein-like
form [25,27]

Gμ
νðqÞ ¼

κ2

jΩ̂j1=2
�
Tμ

ν − δμν

�
LG þ T

2

��
: ð2Þ

Here Gμ
νðqÞ≡ qμαRανðqÞ − 1

2
δμνRðqÞ, κ2 ≡ 8πG, a hat

denotes a matrix and vertical bars its determinant, and
Tμ

ν ≡ gμαTαν. It is important to note that, due to the
algebraic relation that exists between Mμ

ν and Tμ
ν, in

RBGs LG and jΩ̂j1=2 can be written on shell as functions of
Tμ

ν. As a result, the right-hand side of (2) is just a function
of the matter and the metric, and the vacuum field equations
boil down to those of GR (possibly with a cosmological
constant). This has two remarkable consequences. First,
RBGs do not propagate extra degrees of freedom beyond
the two tensor (spin-2) polarizations of GR, which makes
them automatically compatible with the results of the
LIGO-Virgo network [2], where purely tensor modes were
reported to be strongly favored by data over purely vector
or purely scalar modes. Second, gravitational waves
propagate at the speed of light in vacuum, thus allowing
RBGs to survive the slaughter of modified theories of
gravity [28–30] resulting from the almost simultaneous
observation of GW170817 and GRB170817 [4].

III. GRAVITY WITH A SCALAR FIELD

Let us consider as the matter source of our theories a
(complex) scalar field with Uð1Þ symmetry described
by the action Sm ¼ − 1

2

R
d4x

ffiffiffiffiffiffi−gp
LΦ, where LΦ ¼ XΦ þ

2VðΦ;Φ�Þ, XΦ ≡ gαβ∂αΦ�∂βΦ is the kinetic term, and V
the potential. Scalar fields are of particular interest for
astrophysics, as they can support compact objects such as
solitonic boson stars [5] or hairy black holes [31], and play
a prominent role in their dynamics, for instance via
superradiance [32], scalar clouds [33], or bosenova explo-
sions [34]. They are also very relevant in inflationary
cosmology [35,36], dark energy models [37,38], and
higher-dimensional models of the braneworld type [39–42].
The energy-momentum tensor for this scalar field is

given by

Tμ
ν ¼ gμαΦ�

;αΦ;ν −
LΦ

2
δμν; ð3Þ

where Φ;ν ≡ ∂νΦ. Inserting (3) in (2), we get

Gμ
νðqÞ ¼

κ2

jΩ̂j12 ½g
μαΦ�

;αΦ;ν − δμνðLG − VÞ�: ð4Þ

Once the gravity Lagrangian LG is specified, an algebraic
relation (nonlinear in general) between the matrix Ωμ

ν and
the matter Tμ

ν can be obtained, which allows us to express
both LG and jΩ̂j as functions of the matter. This nonlinear
relation can be seen as an infinite power series expansion in
terms of Tμ

ν. Now, in the scalar field case, Tμ
ν has a term

proportional to the identity plus another one linear in
Xμ

ν ≡ gμαΦ�
;αΦ;ν, whose powers are proportional to itself,

namely, X̂n ¼ Xn−1
Φ X̂. This leads to a dramatic simplifica-

tion of the series expansion, which retains the same
algebraic structure as Tμ

ν, namely,

Ωμ
ν ¼ C1½XΦ; V�δμν þ C2½XΦ; V�Xμ

ν; ð5Þ
with the Ci½XΦ; V� being model-dependent functions. The
determinant jΩ̂j can be computed in terms of traces of
powers of Ωμ

ν and takes the form jΩ̂j ¼ C3
1ðC1 þ C2XΦÞ.

Once the theory is fully specified, one can proceed
similarly with LG, which should be a function of XΦ
and V as well. As a result, the right-hand side of (4) is a
highly nonlinear function of the Tμ

ν of Φ.
Now we will show that the right-hand side of (4) can be

written as the usual Tμ
ν of another field ϕ coupled to qμν,

thus turning the original modified gravity problem (highly
nonlinear in the Tμ

ν of Φ) into a standard GR problem
(linear in the Tμ

ν of ϕ). To do it, we consider the GRþ
scalar field equations

Gμ
νðqÞ ¼ κ2

�
qμαϕ�

;αϕ;ν −
Lϕ

2
δμν

�
; ð6Þ

where Lϕ ¼ Xϕ þ 2Uðϕ;ϕ�Þ, Xϕ ≡ qαβ∂αϕ
�∂βϕ, and

ϕ;ν ≡ ∂νϕ, and by direct comparison between Eqs. (6)
and (4) we establish the following correspondences:

gμαΦ�
;αΦ;ν

jΩ̂j1=2 ¼ qμαϕ�
;αϕ;ν; ð7Þ

LG − VðΦ;Φ�Þ
jΩ̂j1=2 ¼ Lϕ

2
: ð8Þ

Tracing over Eq. (7), we get

Xϕ ¼ jΩ̂j−1=2XΦ; ð9Þ

and given that jΩ̂j1=2 is a function of XΦ and VðΦ;Φ�Þ,
this relation implies that Xϕ ¼ F1½XΦ; V�; i.e., it is some
(nonlinear) function of the scalar quantities XΦ and V.
Using this result in Eq. (8), elementary algebra yields

Uðϕ;ϕ�Þ ¼ jΩ̂j−1=2
�
LG −

1

2
LΦ

�
; ð10Þ

which implies thatU ¼ F2½XΦ; V�. This result puts forward
that the scalar functions XΦ and V can be determined in
terms of Xϕ and U by inverting the above relations.
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The relevance of this result is now clear: with XΦ and V
expressed in terms of Xϕ and U for a given solution of GR,
and using the relation (7) to express Xμ

ν in terms of
qμαϕ�

;αϕ;ν, the matrix Ωμ
ν in (5) is completely determined,

which allows one to find the spacetime metric gμν of the
particular RBG considered by means of qμν ¼ gμαΩα

ν,
with qμν the solution of GR that follows from solving (6).
Remarkably, the algorithm that maps the solutions of
GR into solutions of the chosen RBG is independent of
the symmetries of the particular solution considered.
Therefore, any known solution of GR involving a scalar
field can be mapped into the above class of RBGs.
An example will be given later.

IV. GRAVITY WITH A FLUID

Our previous analysis may be extended beyond the scalar
field case to other sources such as fluids, which are
common in the modeling of astrophysical and cosmological
setups. For the sake of generality, let us consider an
anisotropic fluid with energy-momentum tensor of the
form [43,44]

Tμ
ν ¼ p⊥δμν þ ðρþ p⊥Þuμuν þ ðpr − p⊥Þχμχν; ð11Þ

where uμ and χμ are normalized (with respect to gμν)
timelike and spacelike vectors, respectively, subject to the
condition uμχνgμν ¼ 0, while fρ; pr; p⊥g represent the
energy density, and the radial and tangential pressures of
the fluid, respectively.
Similarly as in the scalar field case, any nonlinear

function of this Tμ
ν will possess an identical algebraic

structure, thus allowing us to write

Ωμ
ν ¼ D1δ

μ
ν þD2uμuν þD3χ

μχν; ð12Þ

with the Di being functions of ρ, pr, and p⊥, and the
indices in uν and χν are lowered with gμν. Naturally, LG and
jΩ̂j will be functions of those variables too. Inserting this
Tμ

ν into Eq. (2), we get

Gμ
νðqÞ ¼

κ2

jΩ̂j1=2
��

ρ − pr

2
− LG

�
δμν

þ ðρþ p⊥Þuμuν þ ðpr − p⊥Þχμχν
�
: ð13Þ

Now we parallel the scalar field case and propose a new
fluid coupled to GR to explore the possible correspond-
ences among variables. Introducing similar orthogonal
(with respect to qμν) timelike and spacelike vectors in
GR, vμξνqμν ¼ 0, and energy density, radial, and tangential
pressures, denoted by fρq; pq

r ; p
q
⊥g, the corresponding

Einstein equations read

Gμ
νðqÞ ¼ κ2½pq

⊥δμν þ ðρq þ pq
⊥Þvμvν þ ðpq

r − pq
⊥Þξμξν�;

ð14Þ

where the indices in vν and ξν are lowered with qμν.
Matching Eqs. (13) and (14) one finds the following
correspondences: uμuν ¼ vμvν, χμχν ¼ ξμξν, and

pq
⊥ ¼ 1

jΩ̂j1=2
�
ρ − pr

2
− LG

�

ρq þ pq
⊥ ¼ ρþ p⊥

jΩ̂j1=2

pq
r − pq

⊥ ¼ pr − p⊥
jΩ̂j1=2 : ð15Þ

These last three equations are, in principle, enough to
express the three scalars fρ; pr; p⊥g as functions of
fρq; pq

r ; p
q
⊥g. This, along with the vectorial relations

uμuν ¼ vμvν and χμχν ¼ ξμξν, allows us to express Ωμ
ν

in (12) in terms of the solution provided by GR. The metric
gμν is then obtained via gμν ¼ qμαðΩ−1Þαν.

V. EXAMPLES

For concreteness, and in order to make contact with
recent literature, we will consider the so-called Eddington-
inspired Born-Infeld (EiBI) theory of gravity, whose
Lagrangian has the form LG ¼ 1

ϵκ2
½jδαβ þ ϵMα

βj1=2 − λ�,
where vertical bars denote a determinant, λ is a constant
(very close to unity), ϵ is a parameter with dimensions of
length squared, and Mα

β ≡ gακRðκβÞðΓÞ. This theory recov-
ers GR+Λeff in the limit ϵ → 0 [with Λeff ¼ ðλ − 1Þ=ϵ], and
produces deviations from GR at high energy densities for
any nonzero value of ϵ (see [25] for a recent review on
Born-Infeld inspired theories of gravity). In this theory, the
matrix Ωμ

ν satisfies the relation

jΩ̂j1=2ðΩ−1Þμν ¼ λδμν − ϵκ2Tμ
ν; ð16Þ

and LG takes the on-shell form LG ¼ ðjΩ̂j1=2 − λÞ=ϵκ2.
For the scalar field case this algebraic equation leads to

Ωμ
ν ¼

~λ1=2

ð~λ − 2 ~XΦÞ1=2
½ð~λ − 2 ~XΦÞδμν þ 2 ~Xμ

ν �; ð17Þ

and jΩ̂j1=2 ¼ ~λ3=2ð~λ − 2 ~XΦÞ1=2, where ~λ ¼ λþ ϵκ2V þ ~XΦ,
with ~Xμ

ν ≡ ðϵκ2=2ÞgμαΦ�
;αΦ;ν, and ~XΦ ≡ ðϵκ2=2ÞXΦ.

The coupling of this theory to a free massless real scalar
field was studied in [45], where numerical methods were
used to solve the field equations (with λ ¼ 1). The same
system was considered in GR by Wyman [46], obtaining
analytical solutions. Now we can use the results presented
above to find an analytical solution for the EiBI theory
which can be compared with the numerical results
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of [45]. Focusing on asymptotically flat, static, spherically
symmetric configurations, the GR solution can be suitably
cast in terms of the line element (in units such that κ2 ¼ 1,
and using a subindex q to denote the GR solution)

ds2q ¼ −eνqdt2 þ 1

Wq
2
ðdθ2 þ sin2θdφ2Þ þ dy2

Wq
4e−νq

;

ð18Þ

where

νq ¼ αy; Wq ¼ eαy=2ðsinhðγyÞ=γÞ; ð19Þ

with α an integration constant and γ ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ 2

p
=2. In the

far limit, which corresponds to y → 0, one must take
α ¼ −2M in order to recover the Newtonian limit. In the
above line element ϕ ¼ y; i.e., the scalar field is being used
as the radial coordinate (see [45,46]). Now, combining
Eqs. (9) and (10) in the V ¼ U ¼ 0 case, one obtains

jΩ̂j1=2 ¼ λ

1 − ~Xϕ

; ð20Þ

where ~Xϕ ≡ ðϵκ2=2ÞXϕ ¼ ðϵκ2=2ÞWq
4e−νq . Replacing this

expression back into Eq. (9), one finds

~XΦ ¼ λ ~Xϕ

1 − ~Xϕ

: ð21Þ

Particularizing (17) to this example, one obtains Ωα
β ¼

diagðΩþ;Ωþ;Ωþ;Ω−Þ, withΩþ ¼ ðλ2 − ~X2
ΦÞ1=2 andΩ− ¼

ðλþ ~XΦÞ3=2ðλ − ~XΦÞ−1=2. Defining now the line element of
the spacetime metric of EiBI theory as in (18) but omitting
the subindex q, the metric functions take the form [45]

eν ¼ eνq=Ωþ; W2 ¼ ΩþW2
q: ð22Þ

In [45], solutions were obtained by considering Eq. (4),
which are highly nonlinear in the Tμ

ν of Φ, specifying a
value for the constant α in the far region (y → 0), where the
GR solution is recovered, and numerically integrating
towards y → ∞, where approximate analytical solutions
are also available. The numerics allowed us to determine
the value of the coefficients of the approximate far
solutions. Using instead Eq. (22), which are linear in the
Tμ

ν of ϕ, one finds analytical expressions for those
coefficients in terms of α, exactly reproducing the results
of the numerical integration. In particular, the coefficient l2
in Table II and Fig. 3 of Ref. [45] is obtained by solving
l2 þ

ffiffiffiffiffiffiffiffiffiffiffiffi
l22 þ 4

p
=2 ¼ αþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ 2

p
=2 as l2 ¼ l2ðαÞ. Similar

expressions exist for the other parameters in that table.
This nicely illustrates the power of our method, which
allows us to obtain analytical solutions for a highly

nonlinear self-gravitating scalar field Φ in the Einstein
frame of the theory in terms of a linear field ϕ in that same
frame. Interestingly, this scalar field solution exhibits a
wormhole structure above a certain low mass threshold,
with the throat located at r ¼ 2M, while in GR the topology
is simple.
Let us now consider the anisotropic fluid in the EiBI

theory. With a bit of algebra, Eq. (15) yield

λþ ~ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ½ ~pq

⊥ þ ð~ρqþ ~pq
r Þ

2
�

1þ ½ ~pq
⊥ − ð~ρqþ ~pq

r Þ
2

�

vuut 1

½1þ ð ~pq
r−~ρqÞ
2

�
ð23Þ

λ − ~pr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ½ ~pq

⊥ − ð~ρqþ ~pq
r Þ

2
�

1þ ½ ~pq
⊥ þ ð~ρqþ ~pq

r Þ
2

�

vuut 1

½1þ ð ~pq
r−~ρqÞ
2

�
ð24Þ

λ − ~p⊥ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ½ ~pq

⊥ þ ð~ρqþ ~pq
r Þ

2
�

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ½ ~pq

⊥ − ð~ρqþ ~pq
r Þ

2
�

q ; ð25Þ

where the tildes indicate that a factor ϵκ2 is implicit, i.e.,
~ρ≡ ϵκ2ρ, and so on. Since the coefficients D1, D2, and D3

ofΩμ
ν in (12) depend on ρ, pr, and p⊥ (explicit expressions

can be easily obtained), once a solution of the GR problem
is given, Ωμ

ν and gμν can be explicitly computed.
A simple example of this class of anisotropic fluids is

given by models of nonlinear electrodynamics (NED),
which satisfy pq

r ¼ −ρq and pq
⊥ ¼ KðρqÞ, where the

function KðρqÞ specifies such a model, with KðρqÞ ¼ ρq

Maxwell’s theory. Interestingly, a NED model in the
Einstein frame leads to another NED in the RBG frame,
as can be easily verified from Eqs. (23), (24), and (25),
which yield

~pr ¼ −~ρ ¼ −λ~ρq þ ðλ − 1Þ
1 − ~ρq

; ~p⊥ ¼ λ ~pq
⊥ þ ðλ − 1Þ
1þ ~pq

⊥
:

ð26Þ

If one is interested in coupling the EiBI theory toMaxwell’s
electrodynamics, for which ~p⊥ ¼ ~ρ, then on the GR side
one finds a NED of the form (for λ ¼ 1) ~pq

⊥ ¼ ~ρq=
ð1 − 2~ρqÞ. Solving the GR equations for that NED, one
can recover the EiBIþMaxwell solution previously
obtained in [47,48] working in the original frame. The
validity of the method has also been verified with other
RBGs coupled to different NEDs [49,50]. In the isotropic
case, ~pr ¼ ~p⊥, one recovers the results of [51]. It is worth
noting that these charged solutions in metric-affine EiBI
and fðRÞ theories typically give rise to wormhole struc-
tures. This signals a rather generic presence of such objects
beyond GR and may have nontrivial implications in dark
matter scenarios [52] and for the stability of primordial
black holes [53].
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VI. CONCLUSION

In this work we have shown that for any metric-affine
RBG coupled to scalar fields or anisotropic fluids, the
solutions can be generated out of an analogous problem in
GR. This is possible thanks to a correspondence worked out
in the Einstein frame that turns the right-hand side of (2),
which is a highly nonlinear function of the original Tμ

ν,
into the Tμ

ν of an analogous field, in this way transforming
the original modified gravity problem into a standard
problem in GR. The map that relates the solutions only
depends on the particular kind of matter source and is
independent of the symmetries of the specific configura-
tion considered, thus establishing a correspondence
between the whole spaces of solutions. The method
should, in principle, also be implementable in many other
scenarios. For vector fields, for instance, one expects that
the algebraic structure of the matrix Ωμ

ν will typically
require more terms than those present in Tμ

ν. The case of
fermions requires further investigation due to the non-
trivial/nonuniversal role of torsion in those cases [27].
Scenarios with several sources are also possible and will
lead to mixings between different fields in Ωμ

ν, adding
technical difficulties to the analysis.
The results presented here can be used to work out static,

stationary, and fully dynamical configurations in RBGs.

Extensions of the Kerr-Newman solution, rotating hairy
black holes, mergers of compact objects, perturbations,
cosmological scenarios, higher-dimensional braneworld
models, and any other solution of physical or mathematical
interest [54] can now be implemented in a large class of
gravity theories taking advantage of the analytical and
numerical methods and techniques developed for GR. The
robustness of some predictions and the confrontation of
these theories with observations can now be tackled in a
convenient and systematic way, opening new avenues to
explore new gravitational physics beyond GR.
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