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We present scheme-independent calculations of the derivative of the beta function at an infrared (IR)
fixed point, denoted β0IR, in several asymptotically free chiral gauge theories, namely SOð4kþ 2Þ with
2 ≤ k ≤ 4 with respective numbers Nf of fermions in the spinor representation, and E6 with fermions in the
fundamental representation. Some implications of these results are discussed.
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I. INTRODUCTION

A weakly coupled chiral gauge theory ( χGT) associated
with the GEW ¼ SUð2ÞL ⊗ Uð1ÞY electroweak gauge sym-
metry plays a crucial role in nature, comprising the electro-
weak sector of the Standard Model (SM). However, the
properties of strongly coupled chiral gauge theories are not
well understood. Such strongly coupled chiral gauge theories
have been of physical interest in the past for several reasons.
In general, for a given gauge group G and set of matter
fermion representations, onewould like to be able to describe
the behavior of the theory at both weak and strong coupling.
We define a chiral gauge theory as irreducibly chiral if and
only if the fermion content does not contain any vectorlike
subsector. Such a theory forbids fermion mass terms in the
fundamental Lagrangian.
One physical application of strongly coupled chiral

gauge theories was in preon models [1,2]. These models
addressed the still-unsolved puzzle of why there are three
generations of quarks and leptons in nature, and attempted
to offer a possible solution to this puzzle by hypothesizing
that these SM fermions are actually composite bound states
of more fundamental (spin-1=2) fermions, namely, the
preons. This approach made use of an underlying asymp-
totically free, preonic chiral gauge theory with gauge group
Gpr, which would become strongly coupled at some
scale Λpr and confine the preons to massless Gpr-singlet
spin-1=2 fermionic bound states of size rpr ∼ 1=Λpr. The
’t Hooft anomaly matching conditions were a necessary,
although not sufficient, condition for this scenario to occur
[1]. Since SM fermions appear pointlike down to the

smallest distances probed, the preonic chiral gauge sym-
metry with a sufficiently large Λpr, and hence a sufficiently
small rpr, could potentially account for this observed
property of the quarks and leptons. It was anticipated that
an appropriate ultraviolet (UV) completion of the preonic
theory would then explain the actual nonzero masses of the
SM fermions, and this UV completion, in conjunction with
an understanding of the dynamics of the strongly coupled
preonic gauge theory, would explain the observed three
generations of SM fermions. However, there was only
limited progress with this program, in part because of the
lack of understanding of the nonperturbative properties of
a chiral gauge theory.
A second application of strongly coupled chiral gauge

theories has been in models of dynamical electroweak
symmetry breaking (EWSB) [3–17]. Related general stud-
ies of strongly coupled chiral gauge theories include
[16,18]. In dynamical EWSB models, this symmetry
breaking is envisioned to occur as a result of an asymp-
totically free vectorial gauge interaction, with a set of
associated fermions, which becomes strongly coupled and
confining on the TeV scale, producing bilinear condensates
of these fermions. To give adequate masses to SM fermions
in such models, one extends the basic gauge symmetry to
a larger gauge symmetry [4]. Reasonably ultraviolet-
complete extensions, e.g., [7], make crucial use of an
asymptotically free chiral gauge symmetry with an asso-
ciated gauge interaction that becomes strong on the scale of
∼103 TeV and self-breaks in a sequence of stages, thereby
naturally producing the observed generational hierarchy of
quark and charged lepton masses. A low-scale seesaw
mechanism in these models could produce naturally small
neutrino masses. A rough criterion to determine the
minimal strength of the gauge coupling in the chiral gauge
theory that can lead to this self-breaking was provided by
the most-attractive-channel (MAC) criterion [5]. In order to
be viable, the vectorial gauge interaction in these dynamical
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EWSB models should exhibit quasiconformal behavior,
which can occur naturally in the presence of an approxi-
mate infrared fixed point (IRFP) of the renormalization
group (RG) at a value of the gauge coupling that is
sufficiently strong to eventually cause the bilinear fermion
condensate formation. Since this spontaneously breaks the
approximate scale (dilatation) invariance, this can lead to a
resultant light dilatonlike scalar, with Higgs-like properties
(some papers on this include [10–15]). These models are
strongly constrained by precision electroweak data,
observed properties of the Higgs boson, and absence of
definite manifestations of physics beyond the Standard
Model in available data [17].
An asymptotically free (anomaly-free) chiral gauge

theory with a gauge group G and a set of Nf chiral
fermions in a representation R of G exhibits an IRFP for
sufficiently large Nf. (The analogous phenomenon for
vectorial gauge theories was discussed in [19].) Let us
denote the running gauge coupling at the Euclidean energy/
momentum scale μ as g ¼ gðμÞ and let α ¼ g2=ð4πÞ. The
property of asymptotic freedom requires that Nf < Nu,
where Nu is given below in Eq. (2.1). If Nf is only slightly
less than Nu, then the theory is expected to evolve from the
UV to a weakly coupled IRFP at a value α ¼ αIR, at which
it is in a chirally symmetric (deconfined) non-Abelian
Coulomb phase (NACP). As Nf decreases below a value
Nf;cr, the gauge interaction becomes strongly coupled and,
depending on the fermion content, it might confine and
produce massless composite fermions or produce bilinear
fermion condensate(s), spontaneously breaking chiral
global and gauge chiral symmetries. To construct a qua-
siconformal chiral gauge theory, it is therefore necessary to
know the value of Nf;cr for a given G and R. For vectorial
gauge theories, an intensive program of lattice simulations
has been underway for a number of years to investigate the
properties of quasiconformal theories, including an esti-
mate of Nf;cr and measurements of anomalous dimensions
and particle spectra [20–26]. Ideally, one would carry out a
similar program of fully nonperturbative simulations of
chiral gauge theories on the lattice to study their properties.
However, it has proved much more difficult to try to
simulate chiral, as contrasted with vectorial, gauge theories
on the lattice, owing to fermion doubling [27,28].
Continuum studies of strongly coupled chiral gauge the-
ories [5,7,8,29] have typically relied upon criteria such as
the ’t Hooft anomaly matching conditions [1], the most
attractive channel criterion [5], and a conjectured inequality
on field degrees of freedom [18] for guidance on likely
nonperturbative behavior.
In this paper we apply a different approach to this problem

of understanding the behavior of strongly coupled chiral
gauge theories. We consider several asymptotically free
(and anomaly-free) chiral gauge theories, namely theories
with the gauge group SOð4kþ 2Þ, where 2 ≤ k ≤ 4, con-
taining Nf chiral fermions in the spinor representation, and

a theory with the gauge group E6 containing Nf chiral
fermions in the fundamental representation. Without loss of
generality, all fermions may be taken as left-handed. Our
approach is to apply the renormalization group, starting in a
perturbative regime, namely at a weakly coupled IRFP at a
small value αIR in the non-Abelian Coulomb phase of
the theory with Nf only slightly less than Nu. At this
IRFP, the theory is scale-invariant and is inferred to be
conformally invariant [30]. We then decrease Nf, thereby
increasing αIR and moving toward stronger coupling.
We analyze the derivative of the beta function at the IRFP,

dβ
dα

����
α¼αIR

≡ β0IR; ð1:1Þ

in the non-Abelian Coulomb phase of each chiral gauge
theory. This is a physical quantity and is equivalent to the
anomalous dimension of the operator TrðFμνFμνÞ, whereFa

μν

is the field-strength tensor [31] (and a is a gauge group
index). As a physical quantity, β0IR must, of course, be
independent of the scheme used for regularization and
renormalization; a formal proof of its scheme independence
was given in [32]. However, a conventional perturbative
series expansion in powers of the coupling is scheme-
dependent above the lowest loop orders and hence does
notmaintain this scheme independence of the exact β0IR. Here
we achieve a significant advance in the study of β0IR for chiral
gauge theories by calculating it for the first time as a series
expansion in the manifestly scheme-independent quantity

Δf ¼ Nu − Nf: ð1:2Þ

Our calculation extends to a high order, OðΔ5
fÞ. Our work

makes use of the recently calculated five-loop beta function
for a general group G and fermion representation R [33].
The trace of the energy-momentum tensor, Tμ

μ, satisfies
the relation [34]

Tμ
μ ¼ β

4α
Fa
μνFaμν; ð1:3Þ

where Fa
μν ¼ ∂μAa

ν − ∂νAa
μ þ gfabcAb

μAc
ν is the gluon field

strength tensor and the fabc are the structure constants of
the Lie algebra of G. For Euclidean scales μ such that
α ¼ αðμÞ is close to the infrared zero of the beta function at
αIR, one can expand βðαÞ in a Taylor series around αIR and
use the fact that the first term vanishes, since βðαIRÞ ¼ 0.
Substituting this expansion in Eq. (1.3), one obtains, as an
approximation that is applicable as αIR − α ↘ 0,

Tμ
μ ≃ −

β0IRðαIR − αÞ
4αIR

Fa
μνFaμν: ð1:4Þ

(Here, αIR − α > 0 since the approach to the IRFP is from
smaller α, i.e., from the UV.) Thus, a second physical role
of β0IR is via its occurrence in Eq. (1.4).
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The chiral gauge theories thatwe use for these calculations
of β0IR are particularly simple, in the sense that they contain
chiral fermions transforming according to only one repre-
sentation of the respective gauge groups SOð4kþ 2Þ and E6.
The chiral gauge theories that were used for phenomeno-
logical applications were typically more complicated, since
they contained fermions transforming according to two
(or more) different representations of the gauge group. For
example, two widely studied preon models [2,5,18,29] used
an SUðNÞ gauge group with fermions transforming accord-
ing to (i) a symmetric rank-2 tensor representation andN þ 4
copies of fermions in the conjugate fundamental representa-
tion or (ii) an antisymmetric rank-2 tensor representation and
N − 4 copies of fermions in the conjugate fundamental
representation of SUðNÞ. These were irreducibly chiral;
more complicated preonmodels [2,29] included also various
vectorlike subsectors. Similarly, several reasonably ultra-
violet-complete models with dynamical electroweak sym-
metry breaking studied in Ref. [7] made use of an SU(5)
chiral gauge theory with several types of fermions in the
fundamental and conjugate antisymmetric rank-2 tensor
representation of SU(5). The renormalization-group flows
and possible nonperturbative sequences of self-breakings of
chiral gauge and global symmetries in these models depend
in detail on the various different fermion representations.
For our current first set of scheme-independent calculations
of β0IR in chiral gauge theories, there is thus a motivation to
step back from these complicated phenomenological models
and consider the simplest type of chiral gauge theories,
namely those involving a single type of fermion representa-
tion. In future research, one could then move on to study
more complicated chiral gauge theories with multiple differ-
ent fermion representations.
Previously, we have presented scheme-independent

series calculations of physical quantities in vectorial gauge
theories [35–42]. Our present results for chiral gauge
theories serve as useful inputs for both theories of strongly
coupled chiral gauge theories for physics beyond the
Standard Model, as discussed above, and to studies of
conformal field theories [43].
This paper is organized as follows. In Sec. II we briefly

review the overall theoretical context and methods of
analysis. We present our results for SOð4kþ 2Þ theories
in Sec. III and for the E6 theory in Sec. IV. A discussion
concerning the behavior of β0IR in the vicinity of the lower
end of the non-Abelian Coulomb phase is presented in
Sec. V. We give our conclusions in Sec. VI and some
relevant group-theoretic formulas in the Appendix.

II. THEORETICAL CONTEXT AND METHODS
OF ANALYSIS

A. Theoretical context

Here we briefly review some background and methods
relevant for our work. As noted above, we consider several
asymptotically free chiral gauge theories, namely theories

with the gauge group SOðNÞ, where N ¼ 4kþ 2 with
k ≥ 2, containing Nf chiral fermions in the spinor repre-
sentation, and a theory with the gauge group E6, containing
Nf chiral fermions in the fundamental representation.
These theories have complex representations [44] and
vanishing gauge anomaly [45]. They also have vanishing
global π4 anomaly [46]. The requirement of asymptotic
freedom limits our consideration of SOð4kþ 2Þ theories to
those with k ¼ 2, 3, 4, i.e., SO(10), SO(14), and SO(18).
Specifically, this requirement of asymptotic freedom
implies that Nf must be less than an upper (u) bound Nu,
where

Nu ¼
11CA

2Tf
ð2:1Þ

(see Appendix for definitions of the group invariants CA
and Tf). For the SOð4kþ 2Þ theories, this imposes the
following upper limits on Nf: Nf ≤ 21 for SO(10), Nf ≤ 8

for SO(14), and Nf ≤ 2 for SO(18). There are no asymp-
totically free SOð4kþ 2Þ chiral gauge theories with fer-
mions in the spinor representation if k ≥ 5, i.e., for SO(22)
and higher-lying members of this family. Similarly, the
asymptotic freedom constraint imposes the upper limit
Nf ≤ 21 in the E6 theory.
The renormalization-group flow from the UV, where the

gauge coupling approaches zero, to the IR, is described by
the beta function, β ¼ dα=d ln μ. The maximal loop order
at which the beta function is scheme-independent is two
loops [32]. The two-loop (2l) beta function has an IR zero
ifNf lies in the interval I defined byNl < Nf < Nu, where
Nu was given in Eq. (2.1) and [47]

Nl ¼ 17C2
A

Tfð5CA þ 3CfÞ
: ð2:2Þ

This IR zero occurs at

αIR;2l ¼ 2πð11CA − 2TfNfÞ
Tfð5CA þ 3CfÞNf − 17C2

A
: ð2:3Þ

Formally generalizing Nf from positive integers Nþ to
positive real numbers, Rþ, one can let Nf approach Nu

from below, thereby making αIR;2l arbitrarily small. Thus,
for the UV to IR evolution in this regime of Nf, one infers
that the theory evolves from weak coupling in the UV to an
IRFP in a non-Abelian Coulomb phase (NACP).
Physical quantities at this IRFP can be expressed

perturbatively as series expansions in powers of αIR
(e.g., [48–52]). However, beyond respective low loop
orders, the coefficients in these expansions depend on
the scheme used for regularization and renormalization of
the theory. Since αIR becomes small as Nf approaches Nu

from below, one can reexpress physical quantities as series
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expansions in the manifestly scheme-independent variable
Δf. This has the advantage, relative to conventional calcu-
lations of β0IR as power series in the coupling [50], that the
coefficients in the expansion are scheme-independent.
We denote the lowest value of Nf in the NACP as Nf;cr.

In general, the value of Nf;cr is not known precisely for the
theories under consideration here. A method for obtaining a
rough estimate of Nf;cr will be reviewed and applied below
in Sec. V. Our calculations assume that the IRFP is
exact, as is the case in the non-Abelian Coulomb phase
Nf;cr < Nf < Nu. In the analytic expressions and plots
given below, this restriction will be understood implicitly.

B. Interval I for SOð4k + 2Þ theories
For our SOðNÞ theories with N ¼ 4kþ 2, k ¼ 2, 3, 4,

and chiral fermions in the spinor representation S, one has

TS ¼ 2ðN=2Þ−4 ð2:4Þ

and

C2ðSÞ ¼
NðN − 1Þ

16
; ð2:5Þ

so

Nu ¼
11ðN − 2Þ
2ðN=2Þ−3 : ð2:6Þ

Here Nu takes on the values (i) 22 for k ¼ 2, i.e., SO(10);
(ii) 33=4 ¼ 8.25 for k ¼ 3, i.e., SO(14); (iii) 11=4 ¼ 2.75
for k ¼ 4, i.e., SO(18); and (iv) 55=64 ¼ 0.859375 for
k ¼ 5, i.e., SO(22), decreasing monotonically toward
zero for larger k. Hence, the only asymptotically free
SOð4kþ 2Þ chiral gauge theories with chiral fermions in
the spinor representation are as follows, for physical
integral Nf:
(1) SO(10) with 1 ≤ Nf ≤ 21,
(2) SO(14) with 1 ≤ Nf ≤ 8, and
(3) SO(18) with 1 ≤ Nf ≤ 2.

(The theories with Nf ¼ 0 are pure gluonic theories and
hence are not of interest here.)
For the SOðNÞ gauge theories with N ¼ 4kþ 2, con-

taining Nf chiral fermions in the spinor representation, Nl

is given by

Nl ¼ 17ðN − 2Þ2
2ðN=2Þ−8ð3N2 þ 77N − 160Þ : ð2:7Þ

Nl takes on the value (i) 4352=455 ¼ 9.564835 for
SO(10); (ii) 816=251 ¼ 3.250996 for SO(14); and
(iii) 1088=1099 ¼ 0.9899909 for SO(18). In Table I we
list the resultant intervals I in Nf for which the asymp-
totically free chiral gauge theories of SOð4kþ 2Þ type have
a two-loop beta function with an IR zero. For each case, we

give two ranges, namely one for Nf formally generalized to
Rþ, and the second for physical, integral Nf ∈ Nþ.

C. Interval I for E6 theory

For the E6 chiral gauge theory with Nf fermions in
the fundamental (27-dimensional) representation, F,
CA ≡ C2ðGÞ ¼ 12, TF ¼ 3, and C2ðFÞ ¼ 26=3, so
Nu ¼ 22. Hence, to maintain asymptotic freedom in
this E6 theory, we require that Nf < 22. Furthermore,
we calculate that Nl ¼ 408=43 ¼ 9.488372. Therefore,
the interval I for this E6 theory is

E6∶I∶9.488 < Nf < 22 for Nf ∈ Rþ;

I∶10 ≤ Nf ≤ 21 for Nf ∈ Nþ: ð2:8Þ
In passing, we note that the interval of physical, integral Nf

for this E6 theory is the same as that for the SO(10) theory
with chiral fermions in the spinor representation, given in
Table I.

D. Scheme-independent expansion for β0IR
Given the property of asymptotic freedom, β is negative

in the region 0 < α < αIR, and since β is continuous, it
follows that this function passes through zero at α ¼ αIR
with positive slope, i.e., β0IR > 0. This derivative β0IR has the
scheme-invariant expansion

β0IR ¼
X∞

j¼2

djΔ
j
f: ð2:9Þ

As indicated, β0IR has no term linear in Δf. In general, the
calculation of the scheme-independent coefficient dj
requires, as inputs, the l-loop coefficients in the beta
function, bl, for 1 ≤ l ≤ j. For our calculation of β0IR to
OðΔ5

fÞ for vectorial gauge theories in [39], we thus made
use of the five-loop beta function from [33]. In the
literature, the beta function coefficients have usually been
given for a vectorial gauge theory with Nf Dirac fermions
in a representation R of the gauge group G. In the case of a
chiral gauge theory with fermions in a single representation
of the gauge group, one can take over these results with
the replacement Nf → Nf=2, reflecting the replacement of

TABLE I. Interval I in terms ofNf, for Nf formally generalized
to real numbers,Rþ and for physical, integral values ofNf ∈ Nþ,
for the G ¼ SOð4kþ 2Þ chiral gauge theories with k ¼ 2, 3, 4,
i.e., SO(10), SO(14), and SO(18) and chiral fermions in the
spinor representation.

G I, Nf ∈ Rþ I, Nf ∈ Nþ

SO(10) 9.565 < Nf < 22 10 ≤ Nf ≤ 21

SO(14) 3.251 < Nf < 8.25 4 ≤ Nf ≤ 8

SO(18) 0.990 < Nf < 2.75 1 ≤ Nf ≤ 2
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Dirac with chiral fermions. In particular, we can use our
previous calculations of the dj with 2 ≤ j ≤ 4 in [37] and
d5 in [39] in a VGT for the χGTs under consideration, with
the correspondence, for a given G and representation R,

ðdjÞχGT ¼ 2−jðdjÞVGT: ð2:10Þ

Let us denote the full scaling dimension of an operatorO
as DO and its free-field value as DO;free. We define
the anomalous dimension of O, denoted γO, by DO ¼
DO;free − γO [53]. Let the full scaling dimension of
TrðFμνFμνÞ be denoted DF2 (with free-field value 4). At
an IRFP, DF2;IR ¼ 4þ β0IR [31], so β0IR ¼ −γF2;IR. Given
that the theory at an IRFP in the non-Abelian phase is
conformally invariant, there is a conformality bound from
unitarity, namelyDF2 ≥ 1 [54]. Since β0IR > 0, this bound is
obviously satisfied.
Discussions of the accuracy of finite-order series expan-

sions of physical quantities in powers of Δf were given for
vectorial gauge theories in [35–41], and similar comments

apply here. Quantitatively, in each of the figures below,
for the range of Nf where the OðΔ4

fÞ and OðΔ5
fÞ curves are

close to each other, these finite-order calculations are
expected to be most accurate. As is evident, this accuracy
is greatest at the upper end of the NACP and decreases
toward the lower end of the NACP.

III. CALCULATION OF β0IR TO OðΔ5
f Þ ORDER

FOR SOð4k+ 2Þ THEORIES

For the SOðNÞ theories with N ¼ 4kþ 2 considered
here, namely SO(10), SO(14), and SO(18) with Nf

fermions in the spinor representation, and Nf in the
respective intervals in Table I, we calculate

d2 ¼
2N−1

32ðN − 2Þð11N2 þ 101N − 224Þ ; ð3:1Þ

d3 ¼
2ð3N=2Þ−4ð3N2 þ 77N − 160Þ

33ðN − 2Þ2ð11N2 þ 101N − 224Þ2 ; ð3:2Þ

d4 ¼
22N−9

35ðN − 2Þ3ð11N2 þ 101N − 224Þ5 ½ð−3993N
8 þ 967780N7 − 3621142N6 þ 40922980N5

þ 385439463N4 − 5018429440N3 þ 18335731200N2 − 28558381056N þ 16524705792Þ
þ 28 · 33ð11N2 þ 101N − 224Þð11N5 − 108N4 − 1913N3 þ 17210N2 − 50720N þ 53376Þζ3�; ð3:3Þ

and

d5 ¼
2ð5N=2Þ−9

36ðN − 2Þ4ð11N2 þ 101N − 224Þ7 ½ð464519N
12 − 18008914N11 þ 359281505N10 − 6749294188N9

− 41411922215N8 þ 459185530094N7 − 1073251892065N6 þ 3394219370864N5 − 32099048433664N4

þ 142779222543872N3 − 306826058932224N2 þ 326234208075776N − 138794015653888Þ
þ 25ð11N2 þ 101N − 224Þð363N10 þ 38181N9 þ 1922118N8 − 35102518N7 − 149165913N6 þ 3972049185N5

− 27149012488N4 þ 105670102816N3 − 249943359104N2 þ 325769932800N − 176231645184Þζ3
− 27 · 55ðN − 2Þð11N2 þ 101N − 224Þ2ð33N6 − 27N5 − 9221N4 þ 1879N3 þ 440008N2

− 2031648N þ 2755584Þζ5; ð3:4Þ
where ζs ¼

P∞
n¼1 n

−s is the Riemann zeta function.
Evaluating these general results for the SOðNÞ theories under consideration, we obtain the following results for β0IR

calculated up to OðΔ5
fÞ order (in floating-point format):

SOð10Þ∶ β0
IR;Δ5

f
¼ ð3.7704725 × 10−3ÞΔ2

f þ ð3.032105 × 10−4ÞΔ3
f − ð1.2664165 × 10−6ÞΔ4

f − ð5.4744784 × 10−7ÞΔ5
f;

where Δf ¼ 22 − Nf ð3:5Þ
SOð14Þ∶ β0

IR;Δ5
f
¼ ð2.266941 × 10−2ÞΔ2

f þ ð4.534786 × 10−3ÞΔ3
f þ ð2.0571128 × 10−4ÞΔ4

f − ð1.5915337 × 10−5ÞΔ5
f;

where Δf ¼ 8.25 − Nf ð3:6Þ
SOð18Þ∶ β0

IR;Δ5
f
¼ 0.176468Δ2

f þ 0.100265Δ3
f þ ð2.499877 × 10−2ÞΔ4

f þ ð2.156910 × 10−3ÞΔ5
f;

where Δf ¼ 2.75 − Nf: ð3:7Þ
In Figs. 1–3 we plot the resultant values of β0IR;Δp

f
with 2 ≤ p ≤ 5 for these theories.
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Concerning the signs of these coefficients, d2 and d3 are
manifestly positive (for a general G and R) [37], while the
signs of d4 and d5 depend on the theory. For our SOðNÞ
theories with N ¼ 4kþ 2, we find that the signs of d4 and
d5 depend onN; they are both negative for SO(10); they are
mixed for SO(14); and they are both positive for SO(18).
We summarize these results in Table II. It is interesting to
compare these findings with the corresponding signs that
we found for the dj in vectorial gauge theories. For
example, we may recall the signs for the dj with j up to
5, as summarized in Table VII of [39] for vectorial gauge
theories with gauge group SUðNcÞ and various fermion
representations R. As is evident from that table, for the
fundamental representation (F) d4 and d5 are both negative

for all Nc, while d4 > 0 and d5 < 0 for the adjoint (A) and
symmetric rank-2 tensor, S2. For the antisymmetric rank-2
tensor representation, A2, we found that the sign of d4
depends on Nc, while d5 is negative for all Nc. In [41] we
carried out corresponding scheme-independent calculations
of the dj coefficients for vectorial gauge theories based on
the gauge groups SOðNÞ with N ≥ 3 [the SOð2Þ ≈ Uð1Þ
gauge theory being excluded by the requirement of
asymptotic freedom] and SpðNÞ with even N ≥ 2, con-
taining these fermion representations, F, A, S2, and A2. For
example, we found that for the fundamental representation,
d4 is positive for N ¼ 3 and negative for N ≥ 4, while d5 is
negative for N ≥ 3. Our present results may also be
compared with the properties of a vectorial SUðNcÞ gauge
theory with N ¼ 1 supersymmetry; for this theory, the
lower end of the NACP is known exactly, and, although
there is no exact expression for β0IR, it has been established
that β0IR vanishes (quadratically) at the lower end of the
NACP [55]. In the supersymmetric case, this vanishing of
β0IR, and hence also the vanishing of the anomalous
dimension of Fa

μνFaμν, can be understood, via duality
arguments [56], as reflecting the fact that, although the
IRFP in the original (“electric”) theory is quite strongly

FIG. 1. Plot of β0IR;Δp
f
(labeled as β0IR on the vertical axis) for an

SO(10) chiral gauge theory with fermions in the spinor repre-
sentation, with 2 ≤ p ≤ 5, as a function ofNf ∈ I. At a givenNf,
from bottom to top, the curves (with colors online) refer to
β0IR;F;Δ2

f
(red), β0

IR;Δ5
f
(black), β0IR;Δ4

f
(blue), and β0IR;Δ3

f
(green).

FIG. 2. Plot of β0IR;Δp
f
(labeled as β0IR on the vertical axis) for an

SO(14) chiral gauge theory with fermions in the spinor repre-
sentation, with 2 ≤ p ≤ 5, as a function ofNf ∈ I. At a givenNf,
from bottom to top, the curves (with colors online) refer to
β0IR;F;Δ2

f
(red), β0IR;Δ3

f
(green), β0

IR;Δ5
f
(black), and β0IR;Δ4

f
(blue).

FIG. 3. Plot of β0IR;Δp
f
(labeled as β0IR on the vertical axis) for an

SO(18) chiral gauge theory with fermions in the spinor repre-
sentation, with 2 ≤ p ≤ 5, as a function ofNf ∈ I. At a givenNf,
from bottom to top, the curves (with colors online) refer to
β0IR;F;Δ2

f
(red), β0IR;Δ3

f
(green), β0IR;Δ4

f
(blue), and β0

IR;Δ5
f
(black).

TABLE II. Signs of the dj coefficients for 2 ≤ j ≤ 5 for the
chiral gauge theories considered here. (Recall the general results
that d1 ¼ 0, and d2 > 0 and d3 > 0 for all G and R.)

j SO(10) SO(14) SO(18) E6

2 þ þ þ þ
3 þ þ þ þ
4 − þ þ −
5 − − þ −
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coupled, the IRFP in the dual (“magnetic”) theory goes to
zero, i.e., this theory becomes free, at this lower end of the
NACP.We have calculated the dj coefficients up to j ¼ 3 in
this vectorial supersymmetric gauge theory and have found
that (in addition to the positive d1 and d2), d3 is negative for
all Nc [40].

IV. CALCULATION OF β0IR TO OðΔ5
f Þ ORDER

FOR E6 THEORY

For the E6 theory with Nf fermions in the fundamental
(27-dimensional) representation, we calculate

d2 ¼
1

269
¼ 3.717472 × 10−3; ð4:1Þ

d3 ¼
43

2 · ð269Þ2 ¼ 2.971214 × 10−4; ð4:2Þ

d4 ¼
660297341

23 · 32 · ð269Þ5 −
2 · 14355
ð269Þ4 ζ3

¼ −ð0.7999706 × 10−7Þ; ð4:3Þ

and

d5 ¼ −
328284821696663

25 · 34 · ð269Þ7 −
28 · 18928393
33 · ð269Þ6 ζ3

þ 23 · 251075
ð269Þ5 ζ5 ¼ −ð3.3333007 × 10−7Þ: ð4:4Þ

Hence, to OðΔ5
fÞ, with Δf ¼ 22 − Nf here (in floating-

point format),

β0
IR;Δ5

f
¼ ð3.717472 × 10−3ÞΔ2

f þ ð2.971214 × 10−4ÞΔ3
f

− ð0.7999706 × 10−7ÞΔ4
f

− ð3.3333007 × 10−7ÞΔ5
f: ð4:5Þ

Thus, as was the case with SO(10), we find that both
d4 and d5 are negative. These results are summarized in
Table II. In Fig. 4 we plot the resultant values of β0IR;Δp

f
with

2 ≤ p ≤ 5 for this E6 theory. Because jd4j ≪ d3, the curve
for β0IR;Δ4

f
is too close to the curve for β0IR;Δ3

f
to be

distinguished from it in the plot.

V. BEHAVIOR OF β0IR NEAR THE LOWER END
OF THE NON-ABELIAN COULOMB PHASE

In this section we comment on the behavior of β0IR near
the lower end of the non-Abelian Coulomb phase, as one is
moving into the region of strong coupling. For this purpose,
we first review a method of estimating the value of Nf;cr at
this lower end of the NACP that was first used in vectorial
gauge theories and later applied to chiral gauge theories.
In a vectorial gauge theory with a gauge group G and

massless fermions in a representation R of G, the most
attractive channel for bilinear fermion condensation is
R × R̄ → 1, where here 1 denotes the singlet representa-
tion. An approximate solution of the Schwinger-Dyson
equation for the fermion propagator in the iterated one-
gluon exchange approximation yields a rough estimate of
the minimum strength of the gauge coupling, denoted αcr,
that leads to spontaneous chiral symmetry breaking via the
formation of a bilinear fermion condensate. This is given by
the condition (see [6] and references therein)

3αcrC2ðRÞ
π

≃ 1: ð5:1Þ

In an asymptotically free (anomaly-free) chiral gauge
theory with gauge group G and (massless) fermions ψ iL,
i ¼ 1;…; Nf, in a representation R ofG, let us consider the
decomposition of the direct product R × R into (irreduc-
ible) representations of G that occur in a fermion bilinear
condensate of the form hψT

iLCψ jLi, namely

R × R ¼ R1 þ � � �Rp; ð5:2Þ

where here p denotes the number of representations that
occur in the direct product. For example, in SO(10), one
has [57]

16 × 16 ¼ 10s þ 120a þ 126s; ð5:3Þ

while in E6, one has [57]

27 × 27 ¼ 27s þ 351a þ 3510a; ð5:4Þ

FIG. 4. Plot of β0IR;Δp
f
(labeled as β0IR on the vertical axis) for an

E6 chiral gauge theory with fermions in the fundamental
representation, with 2 ≤ p ≤ 5, as a function of Nf ∈ I. At a
given Nf , from bottom to top, the curves (with colors online)
refer to β0IR;F;Δ2

f
(red), β0

IR;Δ5
f
(black), β0IR;Δ4

f
(blue), and β0

IR;Δ3
f

(green). Note that the curves for p ¼ 3 and p ¼ 4 are too close to
each other to be distinguished in the plot.
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where the subscripts s and a denote symmetric and
antisymmetric combinations in the direct products. The
MAC is defined as the channel that yields a bilinear
fermion condensate whose quadratic Casimir invariant is
minimal [5]. That is, if one defines

ΔC2 ¼ 2C2ðRÞ − C2ðRcondÞ; ð5:5Þ

where Rcond denotes the representation of the condensate,
then the MAC is defined as the channel such that C2ðRcondÞ
is minimal, i.e., ΔC2 is maximal. The analog of Eq. (5.1)
for a chiral gauge theory is then

3αcrΔC2

2π
≃ 1: ð5:6Þ

[Note that ΔC2 ¼ 2C2ðRÞ for a vectorial gauge theory.]
This rough criterion was used in a number of papers
studying self-breaking of strongly coupled chiral gauge
theories [5,7]. In this approach, one equates the value of αIR
calculated to the maximal scheme-independent order, i.e.,
two-loop order, denoted αIR;2l, with the value of αcr from
Eq. (5.6) and then solves for Nf;cr. One of the most
extensive comparisons of the results from this method
was for a vectorial SUðNcÞ theory with fermions in the
fundamental representation. In a vectorial gauge theory, the
number of Dirac (D) fermions is 1=2 the number of chiral
components of fermions, so to discuss this vectorial theory,
we define Nf;D ¼ Nf=2 and thus Nf;D;cr ¼ Nf;cr=2. The
above approach for the vectorial SUðNcÞ theory yielded the
result [6]

Nf;D;cr ¼
2Ncð50N2

c − 33Þ
5ð5N2

c − 3Þ ; ð5:7Þ

i.e., Nf;D;cr ≃ 12 for SU(3). We have obtained estimates of
Nf;D;cr in this theory and others by calculating scheme-
independent series expansions for the anomalous dimen-
sion of the (gauge-invariant) fermion bilinear, estimating
results of an all-order summation of this series, and
equating the result to the upper bound from conformal
invariance in the NACP [36,37,39]. For SU(3), we obtained
Nf;D;cr ≃ 8–9 [36], in agreement with the estimates from
lattice simulations in [20–23] (see also [24]). Hence, at least
in this case of an SU(3) vectorial gauge theory with
fermions in the fundamental representation, the estimate
(5.7) of Nf;D;cr obtained from equating αIR;2l with αcr
appears to be somewhat larger than the actual value of
Nf;D;cr as inferred from lattice measurements (although
there is not a complete consensus among lattice groups on
the value of Nf;D;cr for this theory [20–24,26]).
Bearing this in mind, we may proceed to use this method

to obtain a rough estimate of Nf;cr for our present chiral
gauge theories and evaluate β0IR at this value of Nf, to the
order OðΔ5

fÞ to which we have calculated it. We begin with

our SO(10) theory, where the spinor representation
has dimension 16. Bilinear fermion condensates in this
theory involve the direct product (5.3). The MAC is
16 × 16 → 10s. Calculating αIR;2l and αcr via the above
method for this condensation channel, setting αIR;2l ¼ αcr,
and solving for Nf;cr, we obtain the estimate Nf;cr ≃ 14.7.
We next proceed to combine this rough estimate of Nf;cr at
the lower end of the NACP with our scheme-independent
calculation of β0IR for this theory. From our calculation to
the highest order, namelyOðΔ5

fÞ, as presented in Fig. 1, we
infer that β0IR ∼ 0.3 as Nf decreases toward the neighbor-
hood of this value of Nf (while still in the NACP).
Corresponding estimates may be made in a similar way
for SO(14) and SO(18). For E6, we use the fact that the
MAC for bilinear condensation is 27 × 27 → 27s. With the
above method, we obtain Nf;cr ¼ 14.2, and observe that
β0IR ∼ 0.4 as Nf decreases toward this value of Nf from
within the NACP. We emphasize that higher-order terms
djΔ

j
f with j ≥ 6 may significantly change these values of

β0IR and, separately, that the estimate of Nf;cr calculated by
this method is only a rough estimate. In future work, it will
be of interest to investigate the behavior of β0IR further in the
vicinity of the lower end of the NACP.

VI. CONCLUSIONS

In conclusion, in this paper we have presented scheme-
independent calculations, up to order OðΔ5

fÞ inclusive, of
β0IR at an IR fixed point in the non-Abelian Coulomb phase
of several asymptotically free (and anomaly-free) chiral
gauge theories, namely theories with the gauge groups
SOð4kþ 2Þ, k ¼ 2, 3, 4, containing various numbers Nf of
chiral fermions in the spinor representation, and a theory
with the gauge group E6, containing Nf chiral fermions in
the fundamental representation. These scheme-independent
expansions have an advantage, relative to conventional
expansions in powers of the gauge coupling at the IRFP,
that at each order they maintain the property of scheme
independence of the exact β0IR. The derivative β0IR is of
physical interest, since it is equivalent to the anomalous
dimension of the operator TrðFμνFμνÞ and, related to this,
since it appears in an expansion of the trace of the energy-
momentum tensor of the theory near the IR fixed point. We
have combined our series calculations of β0IR with estimates
of the value of Nf at the lower end of the non-Abelian
Coulomb phase to obtain an estimate of β0IR in this vicinity.
Our results contribute to the knowledge of conformal field
theories. Quasiconformal gauge theories have also been of
interest as possible ultraviolet extensions of the Standard
Model, and these have led to the study of the properties of
the theories for fermion numbers slightly below the lower
end of the NACP. Our methods provide a different and
complementary way to get information about the properties
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of the theory in this region by approaching this lower end of
the NACP phase from within this phase.
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APPENDIX: SOME GROUP-THEORETIC
QUANTITIES

In this appendix we discuss some relevant group-
theoretic quantities. The generators of the Lie algebra of
G in the representation R are denoted Ta

R, where a is a
group index. These satisfy ½Ta

R; T
b
R� ¼ ifabcTc

R. We denote
the dimension of a given representation R as dR ¼ dimðRÞ,
and denote A as the adjoint representation. The trace
invariant is defined by TrRðTa

RT
b
RÞ ¼ TðRÞδab and the

quadratic Casimir invariant C2ðRÞ is given by
Ta
RT

a
R ¼ C2ðRÞI, where I is the dR × dR identity matrix.

For a fermion f in R, a compact notation is Tf ≡ TðRÞ,
Cf ≡ C2ðRÞ, and CA ≡ C2ðAÞ. As discussed in [41],
although these group invariants depend on a convention
for the normalization of the structure constants fabc, the dj
are independent of this convention.

The general expressions for the coefficients d4 and d5
[37,39] involve certain quartic group invariants [58]. For
SOðNÞ with N ¼ 4kþ 2, we calculate these to be

SOðNÞ; R ¼ spinor∶

dabcdR dabcdA

dA
¼ −

2ðN=2Þ−8ðN − 2ÞðN2 − 22N þ 52Þ
3

;

dabcdR dabcdR

dA
¼ 2N−15ð13N2 − 61N þ 76Þ

3
: ðA1Þ

We gave the quartic invariant dabcdA dabcdA =dA for SOðNÞ
previously in [41]; for reference, it is

dabcdA dabcdA

dA
¼ ðN − 2ÞðN3 − 15N2 þ 138N − 296Þ

24
: ðA2Þ

For E6 with R ¼ F, the fundamental representation, we
calculate

E6∶
dabcdA dabcdA

dA
¼ 540;

dabcdF dabcdA

dA
¼ 90;

dabcdF dabcdF

dA
¼ 15: ðA3Þ
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Phys. Rev. D 85, 055001 (2012).

[16] See the Nagoya-KMI series of conferences on strongly
coupled gauge theories (SCGT), e.g., Y. Aoki, T. Maskawa,
and K. Yamawaki, Strong Coupling Gauge Theories in the
LHC Perspective, SCGT12 (World Scientific, Singapore,
2013) and similar SCGT workshops up to 2015, the last at
http://www.kmi.nagoya-u.ac.jp/workshop/SCGT15.

[17] R. S. Chivukula, M. Narain, and J. Womersley, in http://pdg
.lbl.gov; A. Arbey, G. Cacciapaglia, H. Cai, A. Deandrea, S.
Le Corre, and F. Sannino, Phys. Rev. D 95, 015028 (2017).

[18] T. Appelquist, A. Cohen, M. Schmaltz, and R. Shrock, Phys.
Lett. B 459, 235 (1999) (for χGT); see also T. Appelquist,
A. Cohen, and M. Schmaltz, Phys. Rev. D 60, 045003
(1999).

[19] T. Banks and A. Zaks, Nucl. Phys. B196, 189 (1982).
[20] T. Appelquist, G. T. Fleming, M. F. Lin, E. T. Neil, and

D. A. Schaich, Phys. Rev. D 84, 054501 (2011); T.
Appelquist et al. (LSD Collaboration), Phys. Rev. D 90,
114502 (2014); 93, 114514 (2016); T. Appelquist, J.
Ingoldby, and M. Piai, op. cit., [6].

[21] A. Hasenfratz, A. Cheng, G. Petropoulos, and D. Schaich,
arXiv:1207.7162; A. Hasenfratz, A. Cheng, G. Petropoulos,
and D. Schaich, arXiv:1310.1124; A. Hasenfratz and D.
Schaich, arXiv:1610.10004; R. C. Brower, A. Hasenfratz,
C. Rebbi, E. Weinberg, and O. Witzel, Phys. Rev. D 93,
075028 (2016); A. Hasenfratz, C. Rebbi, and O. Witzel,
arXiv:1710.11578.

[22] Y. Aoki et al. (LatKMI Collaboration), Phys. Rev. D 86,
054506 (2012); Phys. Rev. Lett. 111, 162001 (2013); Y.
Aoki et al. (LatKMI Collaboration), Phys. Rev. D 89,
111502 (2014); 96, 014508 (2017).

[23] A. Deuzeman, M. P. Lombardo, T. Nunes Da Silva, and E.
Pallante, Phys. Lett. B 720, 358 (2013); K. Miura, M. P.
Lombardo, and E. Pallante, Phys. Lett. B 710, 676 (2012);
M. P. Lombardo, K. Miura, T. J. Nunes da Silva, and E.
Pallante, J. High Energy Phys. 12 (2014) 183; T. Nunes da
Silva, E. Pallante, and L. Robroek, arXiv:1506.06396;
arXiv:1609.06298.

[24] Z. Fodor, K. Holland, J. Kuti, D. Nogradi, C. Schroeder, and
C.-H. Wong, Phys. Lett. B 718, 657 (2012); Z. Fodor, K.
Holland, J. Kuti, S. Mondal, D. Nogradi, and C. H. Wong,
Phys. Rev. D 94, 091501 (2016); arXiv:1710.09262.

[25] F. Bursa et al., Phys. Rev. D 84, 034506 (2011); A.
Hietanen, R. Lewis, C. Pica, and F. Sannino, J. High Energy
Phys. 07 (2014) 116.

[26] Recent discussions of lattice studies of quasiconformal
vectorial gauge theories include talks in the 2017 Lattice
for BSM Workshopat http://www-hep.colorado.edu/~eneil/
lbsm17, Lattice-2017 at http://wpd.ugr.es/~lattice2017;
Lattice-2016 at http://www.southampton.ac.uk/lattice2016;
and the SCGT series [16]. See also T. Degrand, Rev. Mod.
Phys. 88, 015001 (2016).

[27] H. B. Nielsen and M. Ninomiya, Nucl. Phys. B185, 20
(1981); B193, 173 (1981); Phys. Lett. 105B, 219 (1981).

[28] Some papers on efforts to construct chiral gauge theories on
the lattice include E. Eichten and J. Preskill, Nucl. Phys.
B268, 179 (1986); S. Aoki, I-H. Lee, J. Shigemitsu, and
R. E. Shrock, Phys. Lett. B 243, 403 (1990); S. Aoki, I-H.
Lee, and R. E. Shrock, Nucl. Phys. B355, 383 (1991); R. E.
Shrock, in Quantum Fields on the Computer, edited by M.
Creutz (World Scientific, Singapore, 1992), pp. 150–210; L.
Maiani, G. C. Rossi, and M. Testa, Phys. Lett. B 261, 479
(1991); D. B. Kaplan, Phys. Lett. B 288, 342 (1992); M. F.
Golterman, D. N. Petcher, and E. Rivas, Nucl. Phys. B395,
596 (1993); R. Narayanan and H. Neuberger, Phys. Rev.
Lett. 71, 3251 (1993); Nucl. Phys. B443, 305 (1995); M.
Creutz, M. Tytgat, C. Rebbi, and S.-S. Xue, Phys. Lett. B
402, 341 (1997); J. Giedt and E. Poppitz, J. High Energy
Phys. 10 (2007) 076.

[29] T. Appelquist and F. Sannino, Phys. Rev. D 59, 067702
(1999); 61, 125009 (2000); R. Shrock, Phys. Rev. D 76,
055010 (2007); 78, 076009 (2008); C. Quigg and R.
Shrock, Phys. Rev. D 79, 096002 (2009); N. Chen, T. A.
Ryttov, and R. Shrock, Phys. Rev. D 82, 116006 (2010);
T. Appelquist and R. Shrock, Phys. Rev. D 88, 105012
(2013); Y.-L. Shi and R. Shrock, Phys. Rev. D 91, 045004
(2015); 92, 125009 (2015); 92, 105032 (2015); 94, 065001
(2016).

[30] Some early analyses of relations between scale and conformal
invariance are A. Salam, Ann. Phys. (N.Y.) 53, 174 (1969);
A.M. Polyakov, JETP Lett. 12, 381 (1970); D. J. Gross and J.
Wess, Phys. Rev. D 2, 753 (1970); C. G. Callan, S. Coleman,
and R. Jackiw, Ann. Phys. (N.Y.) 59, 42 (1970); More recent
papers include J. Polchinski, Nucl. Phys. B303, 226 (1988);
J.-F. Fortin, B. Grinstein, and A. Stergiou, J. High Energy
Phys. 01 (2013) 184; A. Dymarsky, Z. Komargodski, A.
Schwimmer, and S. Thiessen, J. High Energy Phys. 10 (2015)
171 and references therein.

[31] S. S. Gubser, A. Nellore, S. S. Pufu, and E. D. Rocha, Phys.
Rev. Lett. 101, 131601 (2008).

[32] D. J. Gross, inMethods in Field Theory, Les Houches 1975,
edited by R. Balian and J. Zinn-Justin (North Holland,
Amsterdam, 1976), p. 141.

[33] F. Herzog, B. Ruijl, T. Ueda, J. A. M. Vermaseren, and A.
Vogt, J. High Energy Phys. 02 (2017) 090.

[34] S. L. Adler, J. C. Collins, and A. Duncan, Phys. Rev. D 15,
1712 (1977); J. C. Collins, A. Duncan, and S. Joglekar,
Phys. Rev. D 16, 438 (1977); N. K. Nielsen, Nucl. Phys.
B120, 212 (1977); see also H. Kluberg-Stern and J.-B.
Zuber, Phys. Rev. D 12, 467 (1975).

[35] T. A. Ryttov, Phys. Rev. Lett. 117, 071601 (2016).
[36] T. A. Ryttov and R. Shrock, Phys. Rev. D 94, 105014

(2016).
[37] T. A. Ryttov and R. Shrock, Phys. Rev. D 94, 125005 (2016).
[38] T. A. Ryttov and R. Shrock, Phys. Rev. D 95, 085012 (2017).

THOMAS A. RYTTOV and ROBERT SHROCK PHYS. REV. D 97, 016020 (2018)

016020-10

https://doi.org/10.1016/0550-3213(86)90382-2
https://doi.org/10.1016/0370-2693(87)90914-2
https://doi.org/10.1016/0370-2693(87)90914-2
https://doi.org/10.1143/PTP.81.426
https://doi.org/10.1143/PTP.81.426
https://doi.org/10.1103/PhysRevLett.100.111802
https://doi.org/10.1103/PhysRevLett.100.111802
https://doi.org/10.1103/PhysRevD.82.071701
https://doi.org/10.1007/JHEP07(2017)035
https://doi.org/10.1007/JHEP07(2017)035
http://arXiv.org/abs/1711.00067
https://doi.org/10.1007/JHEP07(2011)038
https://doi.org/10.1007/JHEP07(2011)038
https://doi.org/10.1103/PhysRevD.83.015008
https://doi.org/10.1103/PhysRevD.83.015008
https://doi.org/10.1103/PhysRevD.85.095020
https://doi.org/10.1103/PhysRevD.85.095020
https://doi.org/10.1103/PhysRevD.86.115004
https://doi.org/10.1103/PhysRevLett.108.101802
https://doi.org/10.1103/PhysRevLett.108.101802
https://doi.org/10.1103/PhysRevD.85.055001
http://www.kmi.nagoya-u.ac.jp/workshop/SCGT15
http://www.kmi.nagoya-u.ac.jp/workshop/SCGT15
http://www.kmi.nagoya-u.ac.jp/workshop/SCGT15
http://www.kmi.nagoya-u.ac.jp/workshop/SCGT15
http://www.kmi.nagoya-u.ac.jp/workshop/SCGT15
http://pdg.lbl.gov
http://pdg.lbl.gov
http://pdg.lbl.gov
https://doi.org/10.1103/PhysRevD.95.015028
https://doi.org/10.1016/S0370-2693(99)00616-4
https://doi.org/10.1016/S0370-2693(99)00616-4
https://doi.org/10.1103/PhysRevD.60.045003
https://doi.org/10.1103/PhysRevD.60.045003
https://doi.org/10.1016/0550-3213(82)90035-9
https://doi.org/10.1103/PhysRevD.84.054501
https://doi.org/10.1103/PhysRevD.90.114502
https://doi.org/10.1103/PhysRevD.90.114502
https://doi.org/10.1103/PhysRevD.93.114514
http://arXiv.org/abs/1207.7162
http://arXiv.org/abs/1310.1124
http://arXiv.org/abs/1610.10004
https://doi.org/10.1103/PhysRevD.93.075028
https://doi.org/10.1103/PhysRevD.93.075028
http://arXiv.org/abs/1710.11578
https://doi.org/10.1103/PhysRevD.86.054506
https://doi.org/10.1103/PhysRevD.86.054506
https://doi.org/10.1103/PhysRevLett.111.162001
https://doi.org/10.1103/PhysRevD.89.111502
https://doi.org/10.1103/PhysRevD.89.111502
https://doi.org/10.1103/PhysRevD.96.014508
https://doi.org/10.1016/j.physletb.2013.02.030
https://doi.org/10.1016/j.physletb.2012.03.017
https://doi.org/10.1007/JHEP12(2014)183
http://arXiv.org/abs/1506.06396
http://arXiv.org/abs/1609.06298
https://doi.org/10.1016/j.physletb.2012.10.079
https://doi.org/10.1103/PhysRevD.94.091501
http://arXiv.org/abs/1710.09262
https://doi.org/10.1103/PhysRevD.84.034506
https://doi.org/10.1007/JHEP07(2014)116
https://doi.org/10.1007/JHEP07(2014)116
http://www-hep.colorado.edu/%7Eeneil/lbsm17
http://www-hep.colorado.edu/%7Eeneil/lbsm17
http://www-hep.colorado.edu/%7Eeneil/lbsm17
http://www-hep.colorado.edu/%7Eeneil/lbsm17
http://wpd.ugr.es/%7Elattice2017
http://www.southampton.ac.uk/lattice2016
https://doi.org/10.1103/RevModPhys.88.015001
https://doi.org/10.1103/RevModPhys.88.015001
https://doi.org/10.1016/0550-3213(81)90361-8
https://doi.org/10.1016/0550-3213(81)90361-8
https://doi.org/10.1016/0550-3213(81)90524-1
https://doi.org/10.1016/0370-2693(81)91026-1
https://doi.org/10.1016/0550-3213(86)90207-5
https://doi.org/10.1016/0550-3213(86)90207-5
https://doi.org/10.1016/0370-2693(90)91404-Y
https://doi.org/10.1016/0550-3213(91)90120-M
https://doi.org/10.1016/0370-2693(91)90459-4
https://doi.org/10.1016/0370-2693(91)90459-4
https://doi.org/10.1016/0370-2693(92)91112-M
https://doi.org/10.1016/0550-3213(93)90049-U
https://doi.org/10.1016/0550-3213(93)90049-U
https://doi.org/10.1103/PhysRevLett.71.3251
https://doi.org/10.1103/PhysRevLett.71.3251
https://doi.org/10.1016/0550-3213(95)00111-5
https://doi.org/10.1016/S0370-2693(97)00463-2
https://doi.org/10.1016/S0370-2693(97)00463-2
https://doi.org/10.1088/1126-6708/2007/10/076
https://doi.org/10.1088/1126-6708/2007/10/076
https://doi.org/10.1103/PhysRevD.59.067702
https://doi.org/10.1103/PhysRevD.59.067702
https://doi.org/10.1103/PhysRevD.61.125009
https://doi.org/10.1103/PhysRevD.76.055010
https://doi.org/10.1103/PhysRevD.76.055010
https://doi.org/10.1103/PhysRevD.78.076009
https://doi.org/10.1103/PhysRevD.79.096002
https://doi.org/10.1103/PhysRevD.82.116006
https://doi.org/10.1103/PhysRevD.88.105012
https://doi.org/10.1103/PhysRevD.88.105012
https://doi.org/10.1103/PhysRevD.91.045004
https://doi.org/10.1103/PhysRevD.91.045004
https://doi.org/10.1103/PhysRevD.92.125009
https://doi.org/10.1103/PhysRevD.92.105032
https://doi.org/10.1103/PhysRevD.94.065001
https://doi.org/10.1103/PhysRevD.94.065001
https://doi.org/10.1016/0003-4916(69)90278-4
https://doi.org/10.1103/PhysRevD.2.753
https://doi.org/10.1016/0003-4916(70)90394-5
https://doi.org/10.1016/0550-3213(88)90179-4
https://doi.org/10.1007/JHEP01(2013)184
https://doi.org/10.1007/JHEP01(2013)184
https://doi.org/10.1007/JHEP10(2015)171
https://doi.org/10.1007/JHEP10(2015)171
https://doi.org/10.1103/PhysRevLett.101.131601
https://doi.org/10.1103/PhysRevLett.101.131601
https://doi.org/10.1007/JHEP02(2017)090
https://doi.org/10.1103/PhysRevD.15.1712
https://doi.org/10.1103/PhysRevD.15.1712
https://doi.org/10.1103/PhysRevD.16.438
https://doi.org/10.1016/0550-3213(77)90040-2
https://doi.org/10.1016/0550-3213(77)90040-2
https://doi.org/10.1103/PhysRevD.12.467
https://doi.org/10.1103/PhysRevLett.117.071601
https://doi.org/10.1103/PhysRevD.94.105014
https://doi.org/10.1103/PhysRevD.94.105014
https://doi.org/10.1103/PhysRevD.94.125005
https://doi.org/10.1103/PhysRevD.95.085012


[39] T. A. Ryttov and R. Shrock, Phys. Rev. D 95, 105004 (2017).
[40] T. A. Ryttov and R. Shrock, Phys. Rev. D 96, 105018 (2017).
[41] T. A. Ryttov and R. Shrock, Phys. Rev. D 96, 105015

(2017); 97, 025004 (2018).
[42] In [35–41] on vectorial gauge theories, Nf and Nu referred

to the number of Dirac fermions (or to the number of pairs of
chiral superfields in respective R and R̄ representations of G
in vectorial supersymmetric gauge theories), while here, Nf

and Nu denote the number of chiral Weyl fermions.
[43] For some recent reviews, see, e.g., D. Poland and D.

Simmons-Duffin, Nat. Phys. 12, 535 (2016); S. Rychkov,
arXiv:1601.05000.

[44] M. L. Mehta, J. Math. Phys. (N.Y.) 7, 1824 (1966); M. L.
Mehta and P. K. Srivastava, ibid. 7, 1833 (1966).

[45] H. Georgi and S. L. Glashow, Phys. Rev. D 6, 429 (1972); S.
Okubo, Phys. Rev. D 16, 3528 (1977).

[46] See, e.g., D. Finkelstein and J. Rubinstein, J. Math. Phys.
(N.Y.) 9, 1762 (1968); H. Zhang, S. Okubo, and Y. Tosa,
Phys. Rev. D 37, 2946 (1988), and references therein.
Global pi4 anomalies were first pointed out, for SU(2), in E.
Witten, Phys. Lett. 117B, 324 (1982).

[47] Here and elsewhere, when an expression is given for Nf that
formally evaluates to a non-integral real value, it is under-
stood implicitly that one infers an appropriate integral value
from it.

[48] T. A. Ryttov and R. Shrock, Phys. Rev. D 83, 056011
(2011).

[49] C. Pica and F. Sannino, Phys. Rev. D 83, 035013
(2011).

[50] R. Shrock, Phys. Rev. D 87, 105005 (2013); 87, 116007
(2013).

[51] T. A. Ryttov and R. Shrock, Phys. Rev. D 86, 065032
(2012); T. A. Ryttov and R. Shrock, Phys. Rev. D 86,
085005 (2012).

[52] T. A. Ryttov and R. Shrock, Phys. Rev. D 94, 105015
(2016).

[53] Some authors use the opposite sign convention for the
anomalous dimension, writing DO ¼ DO;free þ γO.

[54] G. Mack, Commun. Math. Phys. 55, 1 (1977); B. Grinstein,
K. Intriligator, and I. Rothstein, Phys. Lett. B 662, 367
(2008); Y. Nakayama, Phys. Rep. 569, 1 (2015).

[55] D. Anselmi, M. Grisaru, and A. Johansen, Nucl. Phys.
B491, 221 (1997).

[56] N. Seiberg, Nucl. Phys. B435, 129 (1995); K. A. Intriligator
and N. Seiberg, Nucl. Phys. B, Proc. Suppl. 45, 1 (1996).

[57] R. Slansky, Phys. Rep. 79, 1 (1981).
[58] S. Okubo, J. Math. Phys. (N.Y.) 23, 8 (1982); S. Okubo

and J. Patera, J. Math. Phys. (N.Y.) 25, 219 (1984); T.
van Ritbergen, J. A. M. Vermaseren, and S. A. Larin, Phys.
Lett. B 400, 379 (1997).

β0IR AT AN INFRARED FIXED POINT IN … PHYS. REV. D 97, 016020 (2018)

016020-11

https://doi.org/10.1103/PhysRevD.95.105004
https://doi.org/10.1103/PhysRevD.96.105018
https://doi.org/10.1103/PhysRevD.96.105015
https://doi.org/10.1103/PhysRevD.96.105015
https://doi.org/10.1103/PhysRevD.97.025004
https://doi.org/10.1038/nphys3761
http://arXiv.org/abs/1601.05000
https://doi.org/10.1063/1.1704831
https://doi.org/10.1063/1.1704832
https://doi.org/10.1103/PhysRevD.6.429
https://doi.org/10.1103/PhysRevD.16.3528
https://doi.org/10.1063/1.1664510
https://doi.org/10.1063/1.1664510
https://doi.org/10.1103/PhysRevD.37.2946
https://doi.org/10.1016/0370-2693(82)90728-6
https://doi.org/10.1103/PhysRevD.83.056011
https://doi.org/10.1103/PhysRevD.83.056011
https://doi.org/10.1103/PhysRevD.83.035013
https://doi.org/10.1103/PhysRevD.83.035013
https://doi.org/10.1103/PhysRevD.87.105005
https://doi.org/10.1103/PhysRevD.87.116007
https://doi.org/10.1103/PhysRevD.87.116007
https://doi.org/10.1103/PhysRevD.86.065032
https://doi.org/10.1103/PhysRevD.86.065032
https://doi.org/10.1103/PhysRevD.86.085005
https://doi.org/10.1103/PhysRevD.86.085005
https://doi.org/10.1103/PhysRevD.94.105015
https://doi.org/10.1103/PhysRevD.94.105015
https://doi.org/10.1007/BF01613145
https://doi.org/10.1016/j.physletb.2008.03.020
https://doi.org/10.1016/j.physletb.2008.03.020
https://doi.org/10.1016/j.physrep.2014.12.003
https://doi.org/10.1016/S0550-3213(97)00108-9
https://doi.org/10.1016/S0550-3213(97)00108-9
https://doi.org/10.1016/0550-3213(94)00023-8
https://doi.org/10.1016/0920-5632(95)00626-5
https://doi.org/10.1016/0370-1573(81)90092-2
https://doi.org/10.1063/1.525212
https://doi.org/10.1063/1.526143
https://doi.org/10.1016/S0370-2693(97)00370-5
https://doi.org/10.1016/S0370-2693(97)00370-5

