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In view of the recent applications of chiral anomaly to various fields beyond particle physics, we discuss
some basic aspects of chiral anomaly which may help deepen our understanding of chiral anomaly in
particle physics also. It is first shown that Berry’s phase (and its generalization) for the Weyl model
H ¼ vFσ⃗ · p⃗ðtÞ assumes a monopole form at the exact adiabatic limit but deviates from it off the adiabatic
limit and vanishes in the high frequency limit of the Fourier transform of p⃗ðtÞ for bounded jp⃗ðtÞj. An
effective action, which is consistent with the nonadiabatic limit of Berry’s phase, combined with the
Bjorken-Johnson-Low prescription, gives normal equal-time space-time commutators and no chiral
anomaly. In contrast, an effective action with a monopole at the origin of the momentum space, which
describes Berry’s phase in the precise adiabatic limit but fails off the adiabatic limit, gives anomalous
space-time commutators and a covariant anomaly to the gauge current. We regard this anomaly as an
artifact of the postulated monopole and not a consequence of Berry’s phase. As for the recent application of
the chiral anomaly to the description of effective Weyl fermions in condensed matter and nuclear physics,
which is closely related to the formulation of lattice chiral fermions, we point out that the chiral anomaly for
each species doubler separately vanishes for a finite lattice spacing, contrary to the common assumption.
Instead, a general form of pair creation associated with the spectral flow for the Dirac sea with finite depth
takes place. This view is supported by the Ginsparg-Wilson fermion, which defines a single Weyl fermion
without doublers on the lattice and gives a well-defined index (anomaly) even for a finite lattice spacing. A
different use of anomaly in analogy to the partially conserved axial-vector current is also mentioned and
could lead to an effect without fermion number nonconservation.

DOI: 10.1103/PhysRevD.97.016018

I. INTRODUCTION

In the treatment of topological properties in condensed
matter physics, one often uses the adiabatic Berry’s phase
[1] induced at the crossing point of two levels in the band
structure. See Ref. [2] for a review of topological effects in
condensed matter physics. Chiral anomaly, which was
established in particle theory [3–6], has also been used
to elucidate the properties of “Weyl fermions” in condensed
matter and nuclear physics. See, for example, Refs. [7–10]
and references therein.
It is clear from its original derivation [1] that the

monopole-type behavior of Berry’s phase is valid only
in the precise adiabatic limit [11]. On the other hand, chiral
anomaly is believed to be a short distance effect [12], and in
fact only the high frequency components of fermion
variables are essential in the (Euclidean) evaluation of
chiral anomaly [13]. Thus the relation [3,4]

∂μðψ̄γμγ5ψÞ ¼ 2imψ̄γ5ψ þ e2

2π2
E⃗ · B⃗ ð1Þ

holds for the fundamental electron in condensed matter in
an arbitrary small domain of space-time (such as the
tangent space of a curved space) independently of frequen-
cies carried by the gauge field, which may include the
Coulomb potential provided by surrounding charged par-
ticles in addition to external field Aμ.
It has been recently argued, relying on some preceding

analyses [14,15], that a “kinematic” derivation of chiral
anomaly from Berry’s phase is possible in an effective
theoretical model [16]. If this derivation, which is based on
anomalous commutation relations of space-time variables
induced by Berry’s phase, is valid, it would open up a
completely new perspective for the subject of quantum
anomalies. The purpose of the present paper is first to
examine the foundation of this kinematic derivation and
then, second, to discuss some basic issues related to the
applications of the chiral anomaly in condensed matter and
nuclear physics.
We first show that Berry’s original model is exactly

solved if the time dependence of parameters is suitably
chosen. This solution enables us to study Berry’s phase in
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the nonadiabatic and nontopological domain and shows
that, in particular, Berry’s phase (its nonadiabatic gener-
alization [17]) vanishes in the nonadiabatic limit when
measured in a natural manner. Using this knowledge of the
nonadiabatic behavior, it is shown that the mere presence of
a Weyl fermion does not induce anomalous equal-time
commutation relations of space-time variables in the
Bjorken-Johnson-Low prescription. In contrast, an effec-
tive action with a postulated pointlike monopole at the
origin of the momentum space, which describes Berry’s
phase in the precise adiabatic limit but fails off the adiabatic
limit, gives rise to anomalous space-time commutators and a
covariant form of anomaly to the gauge current [16]. It iswell
known that the magnetic field modifies commutators such as
in the Landau level, and thus the appearance of anomalous
space-time commutators for an assumed monopole in the
momentum space is not surprising. We regard the anomaly
thus obtained as an artifact of the postulated monopole and
not a consequence of Berry’s phase.
In the application of the chiral anomaly in condensed

matter physics and related fields, the species doublers are
treated as physical objects unlike in conventional lattice
gauge theory where they are unphysical nuisances. We
point out that the chiral anomaly generated by γ5 for species
doublers vanishes for each doubler separately in the chiral
symmetric lattice gauge theory with a finite lattice spacing,
contrary to the common assumption. Instead, the general
form of the pair creation associated with the spectral flow
appears; it is emphasized that a picture of spectral flow is
drastically changed if the Dirac sea has a finite depth. This
view is supported by the Ginsparg-Wilson fermion that
describes a Weyl fermion on the lattice without species
doublers and gives a well-defined index related to the chiral
anomaly even for a finite lattice spacing.
The present study is motivated by the recent excitement

in the subject of effective Weyl fermions in condensed
matter and nuclear physics [2,7–10,14–16], but we believe
that it contains physical and technical aspects which will
interest the wider audience.

II. BERRY’S PHASE

We discuss here some general properties of Berry’s
phase, which are relevant to the analyses in the present
paper, using a simple soluble model. The precise adiabatic
Berry’s phase is defined only in an ideal mathematical
limit. We thus adopt the exact nonadiabatic phase (hol-
onomy) in the manner of Aharonov and Anandan for the
general Schroedinger problem [17], which contains enough
freedom to describe a possible genuine monopole, as our
definition of Berry’s phase. The adiabatic Berry’s phase is
naturally defined from the nonadiabatic phase in the
adiabatic limit. The generic term “geometric phase” is
thus more appropriate, but we follow the common practice
and use the term “Berry’s phase” except for the case where
it is appropriate to make a distinction.

To analyze the behavior of Berry’s phase away from the
precise adiabatic limit quantitatively, we discuss an exactly
solvable model which is defined by

H ¼ −ℏμB⃗ðtÞσ⃗ ð2Þ

with

B⃗ðtÞ ¼ Bðsin θ cosφðtÞ; sin θ sinφðtÞ; cos θÞ; ð3Þ

where φðtÞ ¼ ωt with constant ω, B, and θ are constants
and σ⃗ stand for Pauli matrices. This model is identical to the
original model analyzed by Berry [1], except for the choice
of specific time dependence (or independence) of param-
eters so that we can solve the model exactly. The exact
solution of the Schrödinger equation, iℏ∂tψðtÞ ¼ HψðtÞ, is
given by

ψ�ðtÞ ¼ w�ðtÞ exp
�
−
i
ℏ

Z
t

0

dt0w†
�ðt0ÞðH − iℏ∂t0 Þw�ðt0Þ

�
;

ð4Þ

where

wþðtÞ ¼
 
cos 1

2
ðθ − αÞe−iφðtÞ

sin 1
2
ðθ − αÞ

!
;

w−ðtÞ ¼
 
sin 1

2
ðθ − αÞe−iφðtÞ

− cos 1
2
ðθ − αÞ

!
: ð5Þ

This solution is confirmed by evaluating

iℏ∂tψðtÞ ¼ fiℏ∂tw�ðtÞ þ w�ðtÞ½w†
�ðtÞðH − iℏ∂tÞw�ðtÞ�g

× exp

�
−
i
ℏ

Z
t

0

dt0w†
�ðt0ÞðH − iℏ∂t0 Þw�ðt0Þ

�

¼ fiℏ∂tw�ðtÞ þ w�ðtÞ½w†
�ðtÞðH − iℏ∂tÞw�ðtÞ�

þ w∓ðtÞ½w†∓ðtÞðH − iℏ∂tÞw�ðtÞ�g

× exp

�
−
i
ℏ

Z
t

0

dt0w†
�ðt0ÞðH − iℏ∂t0 Þw�ðt0Þ

�
¼ HψðtÞ; ð6Þ

where we used w†∓½H − iℏ∂t�w� ¼ 0 and the completeness
relation wþw

†
þ þ w−w†

− ¼ 1.
The parameter α is given by

η sin α ¼ sinðθ − αÞ ð7Þ

or, equivalently, tan α ¼ sin θ=ðηþ cos θÞ, with the param-
eter η defined by

η≡ 2ℏμB=ℏω ¼ μBT=π ð8Þ
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and the periodT ¼ 2π=ω. The parameter η → ∞ implies the
adiabatic limit, and η → 0 implies the nonadiabatic limit.
The exact extra phase factor in (4) for one period of

motion

exp

�
−
i
ℏ

Z
T

0

dtw†
�ðtÞð−iℏ∂tÞw�ðtÞ

�
¼ exp ½−iπð1 ∓ cosðθ − αÞÞ� ð9Þ

defines Berry’s phase

Ω� ≡ 2

I
A⃗�ðB⃗Þ

dB⃗
dt

dt

¼ 2πð1 ∓ cosðθ − αÞÞ; ð10Þ
where Berry’s connection is defined by

A⃗�ðB⃗Þ ¼ w†
�ðtÞð−i∂B⃗Þw�ðtÞ: ð11Þ

We tentatively normalize Ω in this section to agree with the
solid angle subtended by the moving spin. It is known [18]
that our phase agrees with the nonadiabatic phase in the
manner of Aharonov and Anandan. The exact expression of
Ω� in (10) as it stands is not topological because of the
presence of α, which modifies the “magnetic flux” Ωþ, for
example, from the monopole value

Ωmono ¼ 2πð1 − cos θÞ: ð12Þ

The topology of Berry’s phase is thus only approximate for
the generic situation η < ∞ for which α ≠ 0. For the precise
adiabatic limit T → ∞ [11] (and thus η → ∞) for which
α → 0 in (7), we have Ω� → 2πð1 ∓ cos θÞ, namely,
approaches the phase generated by a spurious monopole
located at the origin of the parameter space B⃗ ¼ 0. The limit
T → ∞ implies that one cannot define the winding number
since it takes an infinite amount of time tomake one turn; this
trivial topology is also seen by thevanishing of Berry’s phase
by deforming it smoothly to the nonadiabatic limit using the
exact solution, as shown below.
In the nonadiabatic limit η ¼ μBT=π → 0, which

includes the cases B → 0 with fixed T or T → 0 with
fixed B, we have α → θ in (7), and thus Berry’s phase Ω�
become trivial constants, Ω� → 0 or 4π. Namely, the
“magnetic monopole” disappears for η → 0 which includes
the approach to the spurious monopole positionB → 0with
fixed T or T → 0 with fixed B in the exact solution;
physically, this means that the nonadiabatic phase cannot
describe a genuine monopole in the nonadiabatic domain

such as B → 0 with fixed T. It is emphasized that we do not
assign physical reality to our “monopole”; we define
the monopole operationally, and we say that there is a
monopole if one finds a well-defined phase corresponding
to a monopole.
To analyze the vanishing of the monopole more quanti-

tatively, we define the ratio Ωþ=Ωmono¼ð1−cosðθ−αÞÞ=
ð1− cosθÞ which approaches Ωþ=Ωmono ¼ η2 cos2 1

2
θ for

η → 0 sincewehave θ − α≃ η sin θ from (7) in this limit.We
thus have for the upper half-sphere with θ ¼ π=2,

Ωþ=Ωmono ¼ ð1=2Þη2; ð13Þ

which is an indicator how the monopole flux vanishes in the
nonadiabatic limit η ¼ 2μB=ω → 0. This in particular shows
that

Ωþ=Ωmono ∼ 1=ω2 ð14Þ

for ω → ∞. [If one starts with the south pole, one may use
Ω0

mono ¼ 2πð1þ cos θÞ andΩ− and the fact thatΩ is defined
mod 4π; then, one obtains the same ratio.] Physically, this
shows that themovement of the spin does not follow the rapid
movement of B⃗ or very weak B⃗; it is well known that Berry’s
phase is understood as the solid angle subtended by the
moving spin (see, for example, Ref. [18])

ψ†
�ðtÞσ⃗ψ�ðtÞ
¼w†

�ðtÞσ⃗w�ðtÞ
¼�ðsinðθ−αÞcosφ;sinðθ−αÞsinφ;cosðθ−αÞÞ: ð15Þ

In passing, we mention that, using the hidden-local gauge
symmetry inherent in the second quantized formulation, one
can parametrize any solution of the Schroedinger equation
iℏ∂tψðt; x⃗Þ ¼ ĤðtÞψðt; x⃗Þ for a general Hamiltonian ĤðtÞ,
which is cyclic (i.e., periodic up to a phase factor), in the
form

ψðt; x⃗Þ ¼wðt; x⃗Þexp
�
−
i
ℏ

�Z
t

0

dt
Z

d3xw†ðt; x⃗ÞĤðtÞwðt; x⃗Þ

−
Z

t

0

dt
Z

d3xw†ðt; x⃗Þiℏ∂twðt; x⃗Þ
��

; ð16Þ

with a suitable functionwðt; x⃗Þwithwð0; x⃗Þ ¼ wðT; x⃗Þ [18].
Our exact solution in (4) has this general structure. The
nonadiabatic phase (holonomy) in the manner of Aharonov
and Anandan [17] is then written as

arg

�
ψð0; y⃗Þ† exp

�
i
ℏ

Z
T

0

dt
Z

d3xψ†ðt; x⃗Þiℏ∂tψðt; x⃗Þ
�
ψðT; y⃗Þ

�

¼ −
1

ℏ

Z
T

0

dt
Z

d3xw†ðt; x⃗Þð−iℏ∂tÞwðt; x⃗Þ: ð17Þ
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This shows that Berry’s phase used in the present paper in
(11) for the spatially independent problem with wðtÞ is the
nonadiabatic phase [18]. It is known that the nonadiabatic
phase for the spin system agrees with the solid angle
subtended by the moving spin as in (15) (see, for example,
Ref. [18]). It is also possible to consider that our formula (9)
is measuring the generally defined geometric phase (17)
using the specific magnetic field (3). See also an old paper of
E. Majorana [19].
In application of Berry’s phase to condensed matter

physics [2,9,10], one analyzes a 2 × 2 energy matrix
hðp⃗ðtÞÞ which is a truncation of band structure to the
two levels crossing at p⃗ðtÞ ¼ 0. The variable p⃗ðtÞ specifies
the movement of the electron along the levels in the band
structure; in a semiclassical picture, d

dt p⃗ ¼ e½E⃗þ v⃗F × B⃗�.
This two-level truncation of the multiband structure is
expected to be valid at sufficiently close to the level-
crossing point. It is generally expanded as

hðp⃗ðtÞÞ ¼
�
y0ðtÞ 0

0 y0ðtÞ

�
þ σ⃗ · y⃗ðtÞ; ð18Þ

where σ⃗ stand for Pauli matrices; ðy0; y⃗Þ are functions of
p⃗ðtÞ. Ignoring the common term y0ðtÞ, one may consider a
special (Weyl) case y⃗ ¼ vFp⃗ with vF a suitable constant,
and one obtains the Hamiltonian with pseudospin,

H ¼ vFσ⃗ · p⃗ðtÞ; ð19Þ

which is the case we discuss below and mathematically
identical to the above motion of spin in a rotating magnetic
field. A more general case is analyzed in Ref. [9]. The
property of Berry’s phase explained above in (14) shows
that Berry’s phase vanishes in the nonadiabatic limit ω ¼
2π=T → ∞ with fixed B. This property is crucial in the
analysis of possible anomalous commutation relations
induced by Berry’s phase since the limit ω → ∞ deter-
mines the equal-time commutation relations, which imply
high frequencies by the uncertainty principle, of the
variable involved in Berry’s phase such as B⃗ðtÞ or p⃗ðtÞ
by the Bjorken-Johnson-Low (BJL) prescription [20].
Before proceeding further, we emphasize that the notion

of topology of an adiabatic phase is “self-contradictory” in
the sense that topology implies its robustness against the
general variation of dynamical variables and parameters,
while the adiabatic phase is well defined only in the precise
adiabatic limit. Mathematically, one may first take the
precise adiabatic limit jBj → ∞ with fixed T ¼ 2π=ω or
T → ∞ with fixed jBj, as was done by B. Simon [11], and
examine the remaining topological structure, namely, a
monopole with Ωmono ¼ 2πð1 − cos θÞ in our model; to be
precise, this monopole is topological (invariant) with
respect to T for each θ when jBj → ∞ is first taken and
topological with respect to jBj for each θ when T → ∞ is
first taken. In comparison, a genuine monopole, if it should

exist, is topological with respect to both ðT; jBjÞ for
each θ. This fact shows that the derivation of a genuine
monopole from the adiabatic Berry’s phase is a very crude
approximation.
The parameter domain is too strongly constrained in the

above mathematical adiabatic limit [11] to analyze equal-
time commutators in our application. We thus work with
the exact nonadiabatic phase (holonomy) [17] that is
geometric, giving a solid angle drawn by the moving spin
as in (15). This geometric phase has enough parameters to
describe a possible genuine monopole if it should be
contained in the geometric phase as a subclass. It should
be emphasized that we do not assume the physical reality of
our monopole. We measure the geometric phase (flux from
a monopole) using Berry’s connection (11) operationally.
When the geometric phase agrees with the solid angle given
by a monopole, we say that there is a monopole. If the
geometric phase vanishes, we say that the monopole
disappeared. The same is true in the next section, where
we measure the geometric phase using Berry’s connection
defined in terms of momentum.
We have shown that the geometric phase thus defined

approaches the monopole value at the adiabatic limit, for
example,ω → 0with fixed nonvanishing jBj, but as soon as
one is away from the exact adiabatic limit, the geometric
phase deviates from the monopole value. The solid angle
which determines the geometric phase shrinks to 0 in the
nonadiabatic limit η → 0, for example, for jBj → 0 with
fixed finite ω or ω → ∞ with jBj ≤ B0 with a constant B0

as (15) shows. The geometric phase vanishes in the non-
adiabatic limit, while the flux from a genuine monopole, if
it should exist, does not vanish. This limiting behavior is
crucial for our analyses in the next section.

III. COMMUTATORS IN BJL PRESCRIPTION

To analyze the possible anomalous commutation rela-
tions induced by anomalies which are not recognized by
naive canonical manipulations [3–6], one needs to use
machinery which does not rely on the canonical argument.
The BJL prescription provides such a scheme and has been
used extensively to analyze commutators related to anoma-
lies [21–24]. We emphasize that the BJL prescription has
worked for all the known cases of anomalous commutators
associated with anomalies.
To be explicit, we start with the time ordered correlation

function of dynamical variables such asZ
∞

−∞
dteiωthT⋆xkðtÞxlð0Þi; ð20Þ

where T⋆ stands for the so-called covariant T product,
which does not specify the precise equal-time limit t ¼ 0 of
the correlation function. We assume that an explicit form of
the correlation function is known by the path integral
evaluation, for example. The basic observation of BJL is
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that, if the above correlation vanishes for ω → ∞, one can
replace T⋆ by the conventional T product which is assumed
to specify the equal-time limit precisely. This criterion is
regarded as an analog [13] of Riemann-Lebesgue lemma in
the Fourier transform; if the function fðtÞ is smooth and
well defined around t ¼ 0, the large frequency limit ofR∞
−∞ dteiωtfðtÞ vanishes. We can thus identify the canonical
T product from the quantity defined by the T⋆ product.
We now examine an explicit effective action for the

electron

S ¼
Z

dt

�
pk _xk þ Akðx⃗; tÞ_xk −Akðp⃗Þ _pk −

ðp⃗ − p⃗FÞ2
2m

�
;

ð21Þ

which played a central role in the analyses of anomalous
commutation relations induced by Berry’s phase in
Refs. [14–16]. This action is constructed to reproduce
the equations of motion in the precise adiabatic limit.
Akðx⃗; tÞ is the electromagnetic potential of which the
explicit time dependence is assumed to be very slow in
our analysis. The Berry connection Akðp⃗Þ stands for an
analog of (11) defined by the Hamiltonian (19), the
expression of which has a well-defined monopole form
only in the precise adiabatic limit η ¼ 2vFjp⃗j=ℏω → ∞,
namely, sufficiently slow time dependence of p⃗ðtÞ and
sizable jp⃗ðtÞj. Customarily, an exact monopole form is
assumed for the general movement of dynamical variables
on the premise that one applies the action only to the
approximately adiabatic movement of variables [14–16].
We follow this procedure for a moment but come back to a
more precise reexamination of (21) later. We choose the
form of the free Hamiltonian ðp⃗ − p⃗FÞ2=ð2mÞ in (21) by
redefining the momentum to avoid the (obvious) non-
adiabatic limit caused by the vanishing momentum. The
parameter p⃗F is an arbitrary parameter, which does not
exist in the action of the original literature [14–16], and it
does not necessarily imply the Fermi momentum p⃗F. To
ensure the true adiabatic limit, one needs to constrain the
time dependence of dynamical variables also (“adiabatic”
implies time dependence), but it is not done in a simple
manner.
The applicability of this action (21) beyond the precise

adiabatic movement of dynamical variables is not estab-
lished, but we tentatively assume that this action is used for
the general movement of the electron to evaluate equal-time
commutation relations. It is also shown later that this action
is nonlocal in time (contains infinitely higher derivative
terms) and thus no canonical quantization is applicable.
We next observe that canonical commutation relations

are not modified by any static potential in quantum
mechanics. Only the terms with an explicit time derivative
such as the kinetic energy term are essential, and the
absolute size of the potential such as the harmonic
oscillator potential does not matter. We can use the

quadratic expansion of the Lagrangian around the origin
of the space of dynamical variables to analyze the com-
mutation relations. We thus consider the quadratic form of
(21) around ðx⃗; p⃗Þ ¼ ð0; p⃗FÞ by redefining the momentum
ðp⃗ − p⃗FÞ → p⃗,

S ¼
Z

dt
�
pk _xk þ

1

2
Flkxl _xk −

1

2
Ωlkpl _pk −

p⃗2

2m

�
; ð22Þ

where Flk ¼ ∂lAkð0Þ − ∂kAlð0Þ and Ωlk ¼ ∂lAkðp⃗FÞ−∂kAlðp⃗FÞ. One can then confirm the basic correlation
function by first integrating over p⃗ in the path integralR
Dx⃗Dp⃗xkðtÞxlð0Þ exp½ði=ℏÞS� as

Z
dteiωthT⋆xkðtÞxlð0Þi

¼ iℏf½1þ imωΩ�−1mω2 þ iωFg−1

¼ iℏ
mω2 þ iωF −mω2ΩF

ð1þ imωΩÞ; ð23Þ

where it is understood that the kl matrix element of the
right-hand side is taken in the following, together with the
equation of motion pk ¼ m½δkl − ðΩFÞkl�_xl.
The correlation (23) vanishes for ω → ∞, and thus we

can replace T⋆ by the canonical T. We then multiply the
both sides by −iω and consider the large ω limit. We then
obtain

lim
ω→∞

Z
dteiωtfhT _xkðtÞxlð0Þi þ δðtÞ½xkð0Þ; xlð0Þ�g

¼ iℏ
1

1 − ΩF
Ω; ð24Þ

where we used d
dt hTxkðtÞxlð0Þi ¼ hT _xkðtÞxlð0Þiþ

δðtÞ½xkð0Þ; xlð0Þ�. We thus conclude

½xkð0Þ; xlð0Þ� ¼ iℏ
1

1 −ΩF
Ω ð25Þ

and

Z
dteiωthT _xkðtÞxlð0Þi

¼ ℏω
mω2 þ iωF −mω2ΩF

ð1þ imωΩÞ − iℏ
Ω

1 −ΩF
:

ð26Þ

We then multiply both sides of this relation by −iω and
examine the behavior for ω → ∞. Repeating this pro-
cedure, we obtain
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½_xkð0Þ; xlð0Þ� ¼ −iℏ
�

1=m
1 −ΩF

þ 1=m
1 − ΩF

F
1

1 −ΩF
Ω
�
;

½_xkð0Þ; _xlð0Þ� ¼ −iℏ
�

1=m
1 −ΩF

F
1=m

1 −ΩF

þ 1=m
1 − ΩF

F
1=m

1 −ΩF
F

1

1 − ΩF
Ω
�
; ð27Þ

and ½ẍkð0Þ; xlð0Þ� ¼ −½_xkð0Þ; _xlð0Þ�. We thus reproduce the
quantized version of Poisson brackets in Refs. [15,16]
except for the last term in ½_xkð0Þ; _xlð0Þ�. This agreement
implies that the Poisson bracket implicitly treats the
variables with time derivatives preferentially, irrespective
of the size of the potential term. More importantly, the
agreement of the two schemes (to the order relevant to the
analysis in the present paper) shows that both schemes use
the behavior of dynamical variables in the extremely
nonadiabatic region with ω → ∞ in an essential way, for
which the derivation of the effective action (21) completely
fails. Here, we briefly comment on what we mean by the
high frequency region. When one defines

F ðωÞ ¼
Z

dteiωth0jTxkðtÞxlð0Þj0i; ð28Þ

we confirm F ð∞Þ¼ 0, but limω→∞ωF ðωÞ∼h0j½xk;xl�j0i¼P
nðh0jxkjnihnjxlj0i−h0jxljnihnjxkj0iÞ; namely, all the

intermediate states contribute with equal weight. If one
cuts off the frequency such as F ðωÞ ∼ exp½−ω2=ω2

c�, for
example, no nontrivial equal-time commutators appear.
This is an ingenious insight of BJL.
The denominator of the basic correlation function (23)

is written as ð1 − imωΩþ ðimωΩÞ2 − :::::Þmω2 þ iωF;
namely, it contains an infinite series in ω which shows
that the theory is nonlocal in time and thus no canonical
quantization is possible [25], although the action (21) is
formally written in terms of x⃗ and p⃗ and thus looks
superficially canonical; it is no more canonical if one adds
a pointlike monopole at the origin of the momentum space.
The path integral defines a correlation function even for a
theory nonlocal in time, but one cannot convert it to
canonical formulation. A consequence of this nonlocality
is that we have an infinite tower of commutation relations in
(27) containing arbitrary higher time derivative terms. The
assumption of a pointlike monopole in momentum space,
which gives rise to the correlation (23), leads to anomalous
space-time commutation relations similar to the noncom-
mutative space-time [25]. This clear recognition of non-
locality is an advantage of the BJL method.
We recall that the monopole-type structure of Berry’s

phase is valid only in the precise adiabatic limit η ¼
2vFjp⃗j=ℏω → ∞ [11]. Only in this limit, we can have
(for the half-sphere)

I
Akðp⃗Þ _pkdt ¼

Z
ΩdS ¼ π; ð29Þ

and this value of Ω appearing in the commutator (25)
determines the coefficient of “chiral anomaly” in the
derivation of Ref. [16]; any deviation from the monopole
value would invalidate the derivation of anomaly. Since the
Hamiltonian (19) is valid only in the vicinity of the crossing
point of two levels in the band structure, jp⃗j is much smaller
than jp⃗Fj, and thus ω contained in p⃗ðtÞ is required to be
very small to satisfy adiabaticity. Note that for any value
jp⃗j ≤ jp⃗Fj

2vFjp⃗j=ℏω ≤ η ¼ 2vFjp⃗Fj=ℏω → 0 ð30Þ

in the limit ω → ∞, and this momentum value belongs to
the nonadiabatic domain in the analysis of commutators.
The point-type monopole structure of Ω we assumed in
(22), which always satisfies

R
ΩdS ¼ π, is not valid for

large ω, and it is strongly suppressed in the nonadiabatic
limit with small η typically in the form (if one uses the
correct value of Berry’s phase)I

Akðp⃗Þ _pkdt ¼
Z

ΩdS≃ πη2 ð31Þ

as in [18] which goes as 1=ω2 for large ω. We tentatively
assumed that (21) with a monopole at the origin of the
momentum space is valid for the general class of dynamical
variables and derived (25) and (27). But the derivation of
the effective action (21) itself completely fails for the
frequency regions used in the BJL analysis.
To summarize the above analysis, one recognizes that the

direct use of Berry’s phase and the indirect use of Berry’s
phase through an effective action and equal-time commu-
tators are very different; for the direct use of the action in
(21), one obtains an equation of motion with a monopole at
the origin of the momentum space. One can choose the time
dependence of dynamical variables and the value of jpj
such that the approximate adiabatic condition is satisfied.
One can thus maintain

H
Akðp⃗Þ _pkdt ¼

R
ΩdS≃ π as in

(29). Namely, one can choose the systems which satisfy the
adiabaticity conditions approximately [14]. To my knowl-
edge, all the successful applications of Berry’s phase in the
past are the direct use of the action. But the model with a
pure monopole (21) totally fails to describe Berry’s phase
off the adiabatic limit implied by the exact solution of
Berry’s model analyzed in Sec. II.
For the indirect use of the action (22) to derive the

anomalous commutators, one finds that the identical form
of anomalous commutators with the monopole valueR
ΩdS ¼ π appears irrespective of the value of pF even

for pF ∼ 0. Mathematically, the extremely nonadiabatic
limit ω → ∞ is important to determine the commutators,
and in this limit, the assumed pointlike monopole in the
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momentum space controls the commutators independently
of the adiabatic or nonadiabatic domain. Once an explicit
form of an effective action is written, either the Poisson
bracket or BJL prescription automatically determines the
form of commutators.
We want to incorporate the applicability condition of

Berry’s phase faithfully in the evaluation of commutators.
The only way to do so is to choose the action which is valid
in the extreme nonadiabatic domain to be consistent with
the BJL prescription. This action may not be accurate in the
adiabatic limit. Since Berry’s phase, when measured in a
natural manner described in Sec. II, vanishes for ω → ∞ as
in (14) irrespective of any finite jpj or jBj, we define the
effective action without Berry’s phase, which gives accu-
rate equations of motion in the nonadiabatic domain where
the BJL method is applicable,

S ¼
Z

dt

�
pk _xk þ Akðx⃗; tÞ_xk −

p⃗2

2m

�
: ð32Þ

This gives the standard free nonrelativistic motion of the
electron. One can confirm that the BJL method and Poisson
brackets applied to (32) reproduce the ordinary commuta-
tion relations for x⃗ and p⃗ which are obtained by setting
Ω ¼ 0 in (25) and (27). This analysis confirms that no
anomalous equal-time space-time commutation relations
are induced by the mere presence of a Weyl fermion (such
as a massless Weyl neutrino.)
Ideally, one may want to have an effective action which

incorporates the exact information of Berry’s phase for
general movement of dynamical variables, but it is not
feasible. We thus chose two explicit effective actions, the
action (21) which gives a correct equation in the precise
adiabatic limit with a monopole value of Ω but fails in the
nonadiabatic domain, and the action (32) which gives a
correct equation in the precise nonadiabatic limit with
vanishing Ω ¼ 0 but fails off the exact nonadiabatic
domain. From the consistency with the BJL prescription,
we choose the commutators given by the action (32) as
physical ones.
As for the action (21), we suggest that it should be

regarded as an action for a charged particle with a
monopole located at the origin of the momentum space.
[If the action (21) or (22) should be shown to those
unfamiliar with Berry’s phase, they would recognize it
as an action for a particle with a monopole placed at the
origin of the momentum space without any constraint on
the movement of variables.] The appearance of anomalous
space-time commutators in Refs. [15,16] is understood as
an artifact that they used an effective action (21) or (22)
which describes a genuine pointlike monopole placed at the
origin of the momentum space. It is well known that the
magnetic field modifies equal-time commutators such as in
the Landau level.

In conclusion, we choose the action (32) which is
consistent with the exact solution of Berry’s model and
the BJL analysis as a prediction of Berry’s phase to evaluate
equal-time commutators, and we obtain no anomalous
space-time commutators. Physicists tend to assume the
monopole form of Berry’s phase everywhere, which is
actually valid only in the precise adiabatic limit [11,26].
The analysis of Berry’s phase in the nonadiabatic and
nontopological domain is very common in chemistry [27].
One may recall that the treatment of molecular systems
using the Born-Oppenheimer approximation led to the
original discovery of the geometric phase in the form of
the Longuet-Higgins phase change rule [27] in chemistry.

IV. CHIRAL ANOMALY FROM A MONOPOLE

The mere presence of a Weyl fermion does not induce
noncommutative space-time, and thus no anomaly is
induced by Berry’s phase. However, a genuine pointlike
monopole placed at the origin of momentum space induces
noncommutative space-time, as we have analyzed above
in (25) and (27), in agreement with the analysis in
Refs. [15,16]. Based on this latter assumption, the authors
of Refs. [16] discussed the anomalous equal-time commu-
tation relations of the charge density operator j0 ¼ nðxÞ
induced by the anomalous space-time commutators. They
then derived a kinematic relation which formally agrees
with the covariant chiral anomaly by an analysis of ½j0; H�.
Here, we discuss the mathematical consistency of their

formulation, since this problem is analogous to the well-
known interesting but controversial problem of an interplay
of monopole and anomaly in the fermion-monopole system
in the presence of a genuine pointlike monopole (Callan-
Rubakov effect) [28]. It is interesting to see if a monopole at
the origin of the momentum space gives a flux correspond-
ing to the correct chiral anomaly.
Since they derived the possible anomaly using equal-

time commutation relations of currents [16], we first briefly
summarize the known basic properties of equal-time
commutators associated with the conventional formulation
of chiral anomaly. To avoid the Schwinger term, we usually
use the Gauss-law operator defined by

G ¼ j0 − ∂k
_Ak ð33Þ

of chiral Abelian gauge theory in the gauge A0 ¼ 0. First of
all, no anomalous equal-time commutation relation of the
Gauss operator for Abelian chiral gauge theory is known in
conventional formulation [21–24,29], namely,

½j0ðt; x⃗Þ − ∂k
_Akðt; x⃗Þ; j0ðt; y⃗Þ − ∂k

_Akðt; y⃗Þ� ¼ 0: ð34Þ

The anomalous commutation relation of the Gauss operator,
which is closely related to the commutator in Ref. [16],
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∂tGðt; x⃗Þ ¼
i
ℏ
½H;Gðt; x⃗Þ� ¼ −

1

3

1

4π2
E⃗ · B⃗; ð35Þ

has been discussed in Refs. [13,29]. This relation shows that
the Gauss operator, which is the generator of the time
independent gauge transformation, is time dependent for
chiral Abelian gauge theory and that the Hamiltonian H is
gauge noninvariant, and thus theory is inconsistent, as is well
known. To have a consistent theory in continuum, one needs
to have a vectorlike theory such as the conventional QED if
one does not increase the number of fermion species. The
relation (35) is reduced to

∂μjμ ¼ −
�
1

3

�
1

4π2
E⃗ · B⃗ ð36Þ

if one uses the equation ofmotion forAμ. The extra factor1=3
(and−1=2 due to chiral projection) compared to the standard
form of anomaly (1) with m ¼ 0 is a characteristic of
consistent anomaly. This difference arises from the fact that
jμ in the standard anomaly (1) does not couple to gauge field
Aμ; one can thus impose gauge invariance for currents
appearing inside theHamiltonian (or Lagrangian) and collect
the nonconservation (anomaly) only to the external non-
gauge current. In contrast, the current appearing in theGauss-
law operator in (35) is generated by a variational derivative of
the actionwith respect toAμ, and thus a preferential treatment
of one of currents is not allowed.
More precisely, when one evaluates the anomaly by

equal-time commutators, one generally encounters the
commutator of the form

½jμðt; x⃗Þ; jνðt; y⃗Þ�: ð37Þ

From this commutator which treats the two currents on
equal footing, one immediately recognizes that it is
impossible to impose gauge invariance on one of the
currents and collect the nonconservation (anomaly) to
the other. This is the reason why only the consistent form
of anomalies appeared in the analysis of equal-time
commutation relations in the past [23,24,29]. This is the
mathematical consistency condition, which has nothing to
do with physics. From a point of view of Feynman
diagrams, this factor 1=3 in the present Abelian gauge
theory is also understood as a Bose symmetrization factor
of a triangle diagram, which means all three currents are
treated on equal footing.
Coming back to the analysis in Ref. [16], the authors

argued for the derivation of a kinematic relation by an
analysis of ½j0; H� with j0ðxÞ ¼ nðxÞ. To be more explicit,
they first evaluate

½nðx⃗Þ; nðy⃗Þ� ¼ −i
�
∇⃗ × σ⃗ þ k

4π2
B⃗

�
· ∇⃗δðx⃗ − y⃗Þ ð38Þ

using the anomalous space-time commutators; the first term
with σ⃗ arises form (25), and the second term with B⃗
arises from (27), namely, ½_xkð0Þ; xlð0Þ� combined with
pk ¼ m½δkl − ðΩFÞkl�_xl. The parameter k ¼ ð1=2πÞ R dS⃗ ·

Ω⃗ corresponds to a monopole located at the origin of the
momentum space [k ¼ 1 for the full sphere integral in
(29)]. They then assume the form of the Hamiltonian

H0 ¼ H þ
Z

d3xϕðx⃗Þnðx⃗Þ ð39Þ

with E⃗ ¼ −∇⃗ϕðx⃗Þ. H has a rather involved expression but
the detailed expression of H is not relevant for the
evaluation of anomaly. They then evaluate

∂tnðx⃗Þ ¼ i½nðx⃗Þ; H0�

¼ −∇⃗ · j⃗þ
�
∇⃗ × σ⃗ þ k

4π2
B⃗

�
· E⃗

¼ −∇⃗ · j⃗0 þ k
4π2

B⃗ · E⃗ ð40Þ

with j⃗0 ¼ j⃗þ E⃗ × σ⃗. The relation

∂tnðx⃗Þ þ ∇⃗ · j⃗0 ¼ k
4π2

B⃗ · E⃗ ð41Þ

is then identified with the anomalous identity with a
covariant anomaly. The choice k ¼ −1 corresponds to
the left-handed convention we have used in this paper
so far,

∂μjμ ¼ −
1

4π2
E⃗ · B⃗; ð42Þ

for the chiral current jμ ¼ ψ̄γμ½ð1 − γ5Þ=2�ψ , which is
obtained from (1) combined with ∂μðψ̄γμψÞ ¼ 0 if one
sets m ¼ 0.
The essential commutator in the analysis in Ref. [16] is

thus given by [with j0ðxÞ ¼ nðxÞ]

½j0ðt; x⃗Þ; j0ðt; y⃗Þ�: ð43Þ

As we have already shown in (37), it is mathematically
impossible to treat two currents on unequal footing in the
evaluation of the equal-time commutator. The appearance
of the covariant anomaly in the evaluation of the commu-
tator is a mathematical inconsistency. One might still argue
that the derivation of anomaly in Ref. [16] is different from
the conventional one, and all the currents involved can have
covariant anomalies. Even in this case, all the currents
including j0ðxÞ ¼ nðxÞ inside the Hamiltonian (39) are
anomalous (not conserved), and thus their Hamiltonian is
gauge noninvariant, and the theory is physically incon-
sistent just as (35).
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One may conclude that a covariant form of anomaly
appears in the gauge current in the derivation of chiral
anomaly from a pointlike monopole located at the origin of
momentum space.
In passing, we comment on the evaluation of the

conventional gauge theoretical anomalies by emphasizing
the adiabatic treatment and thus compared with the idea of
adiabatic phases [30–32]. Our understanding of this
approach, although very interesting by giving a novel
physical picture, is that it illustrates that chiral anomaly
in gauge field theory is evaluated using various formula-
tions of field theory, both in the Lagrangian and
Hamiltonian formalisms. The actual evaluation of chiral
anomaly itself in Ref. [31], for example, is identical to the
conventional field theoretical evaluation. Also, it appears to
be not easy to understand the fact that the local form of the
basic identity (1) is valid even in a curved space-time from a
purely adiabatic picture.
Similarity of topological properties appearing in chiral

anomaly and Berry’s phase have been discussed in
Refs. [33,34]. The Hamiltonian formalism initiated by
Nelson and Alvarez-Gaume [33] was very influential.
The analysis of topology in Ref. [33] [in particular, of
SUð2Þ anomaly] has been examined in great detail in
Ref. [35]. The conclusion of Ref. [35] is summarized in the
form: In the fundamental level, the difference between the
two notions, anomaly and Berry’s phase, is stated as
follows; the topology of given gauge fields leads to level
crossing in the fermionic sector in the case of chiral anomaly,
and the inevitable failure of the adiabatic approximation is
essential to establish the existence of anomaly, whereas the
level crossing in the matter sector leads to the topology of
Berry’s phase onlywhen the precise adiabatic approximation
holds. These two adiabatic conditions are not compatible.
The analysis of anomaly byNelson andAlvarez-Gaume [33]
is perfectly valid without referring to Berry’s phase.

V. CHIRAL SYMMETRY AND
SPECIES DOUBLING

Wewould like to analyze the species doublers, which are
commonly associated with an assertion of a pairwise
appearance of level crossings in the Brillouin zone. In
the recent discussions of Weyl fermions [8–10] and also in
the earlier work [7], the chiral anomaly corresponding to
(42) is assumed for a Weyl fermion at each level-crossing
point such as (19) in the band structure by identifying it as a
species doubler.
The fermion theory defined on a lattice with a finite

spacing a removes the entire short distances [12] and thus
high frequencies [13] that are responsible for the anomaly.
This fact is reflected in the appearance of species doublers
in momentum space which ensure the absence of anomaly
even in the limit a → 0 for a manifestly chiral invariant
formulation [36,37]. This is symbolically stated as the
absence of a “neutrino” on the lattice [37], and the related

inevitable appearance of species doublers seems to be
assumed in condensed matter physics [10], presumably
because the simplest nearest neighbor discretization
of a massless fermion in the tight-binding approximation
(latticed model) suggests such behavior.
The notion of species doublers means that a single

“local” fermion and thus a single local current defined on
the lattice actually describe the multiple species of fer-
mions, i.e., doublers, in momentum space in the limit
a → 0. For example, if one attempts to define a left-handed
massless fermion

ψLðxÞ ¼ ½ð1 − γ5Þ=2�ψðxÞ ð44Þ

on the lattice, the species doubling implies that one
inevitably obtains both a left-handed fermion and a
right-handed fermion in momentum space in the limit
a → 0. Similarly, ψRðxÞ ¼ ½ð1þ γ5Þ=2�ψðxÞ implemented
on the lattice inevitably induces both a left-handed fermion
and a right-handed fermion in momentum space in the limit
a → 0. The chiral fermion such as ψLðxÞ, which is inflicted
with chiral gauge anomaly (35) in continuum theory and is
thus inconsistent by itself, contains no chiral gauge
anomaly when placed on the lattice which cuts off the
short distances. Both ψL and ψR can in principle appear
simultaneously; for a → 0, we then have multiple species
of charged fermions (such as the massless “electron” and
“muon,” although we originally intended to define only the
electron, and thus the construction is inconsistent). In any
case, the notion of species doubling implies that we obtain
at least twice as many fermions in momentum space in the
limit a → 0 than the original intention.
On the other hand, the common knowledge in lattice

gauge theory nowadays is that a recent progress of the
Ginsparg-Wilson fermion allows a definition of a single
Weyl fermion without doublers on the lattice [38]. See
Ref. [13] for further references. The chiral current in such a
theory is exponentially local [39] (stated intuitively, it
contains nearest neighbor couplings, next nearest neighbor
couplings, and so on ...; namely, the construction is not
manifestly local but actually becomes local in the limit
a → 0) without any species doublers. In this formulation,
exact chiral symmetry is realized by an operator that is
deformed from γ5 for finite a; one obtains a nontrivial
Jacobian as a symmetry breaking factor under chiral
transformation in the path integral formulation of chiral
identity [40], which gives a correct anomaly in the
continuum limit [13]. For small momenta close to the
origin of the momentum space, the ordinary Weyl spectrum
is realized; namely, one can identify a low-energy chiral
excitation mode on the (hypercubic) lattice without dou-
blers. Thus we no longer have the “no-go theorem” against
a single chiral fermion on the lattice.
In condensed matter and related fields, the species

doublers are treated as physical objects, in contrast to
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lattice gauge theory where the species doublers are
unphysical nuisances. It is then interesting to ask if the
absence of anomaly in latticized theory with species
doublers is caused by the cancellation of well-defined
anomalies produced by each doubler or none of doublers
has anomalies for finite a. We would like to show that none
of doublers has well-defined anomalies, as is expected from
the fact that each doubler is defined only in part of the
Brillouin zone of momentum space and thus not a well-
defined local field. Instead, a pair production associated
with spectral flow in the Dirac sea with finite depth takes
place. We emphasize that our analysis below is based on
lattice gauge theory, although we hope that it may have
some implications on condensed matter and related fields.

A. Species doubling and spectral flow

To understand the following discussions intuitively, it is
instructive to consider a d ¼ 1þ 1-dimensional lattice
fermion. We thus consider a model Hamiltonian

H ¼ σ3
sin ap
a

þ σ1
r
a
ð1 − cos apÞ ð45Þ

with a constant r which is usually called the Wilson
parameter. Note that HðpÞ has a period 2π=a in p. If
one recalls that the chiral matrix is given by γ5 ¼ σ3 in this
notation, the first term is chiral invariant, but the second
term does not commute with γ5 and thus breaks chiral
symmetry. The chiral symmetric Hamiltonian is thus given
by setting r ¼ 0,

H0 ¼ σ3
sin ap
a

: ð46Þ

We have the energy spectrum of H0 as

ϵð0Þ� ðpÞ ¼ � sin ap
a

; ð47Þ

where ϵð0Þ� ðpÞ correspond to chirality γ5 ¼ �1, respec-

tively. Note that ϵð0Þ� ðpþ 2π=aÞ ¼ ϵð0Þ� ðpÞ. This exhibits

the spectrum similar to theWeyl fermion for small jϵð0Þ� ðpÞj,
and ϵð0Þ� ðpÞ ¼ 0 at p ¼ 0 and p ¼ π=a in the Brillouin

zone. Moreover, ϵð0Þþ ðpÞ near p ¼ π=a has the same
structure as ϵð0Þ− ðpÞ near p ¼ 0, and similarly starting with
ϵð0Þ− ðpÞ. Thus, we have effectively two Weyl fermions with
γ5 ¼ 1 and two Weyl fermions with γ5 ¼ −1; namely, we
have species doubling of the Weyl fermion for chiral
invariant theory in the limit a → 0.
We may write the solution corresponding to ϵð0Þ− ðpÞ in

the form

ψLðxÞ ¼
Z

π=2a

−π=2a

dp
ð2πÞe

−ipxψLðpÞþ
Z

3π=2a

π=2a

dp
ð2πÞe

−ipxψLðpÞ

¼
Z

π=2a

−π=2a

dp
ð2πÞe

−iϵð0Þ− ðpÞtþipx1ψLðpÞ

þ eiπx
1=a

Z
π=2a

−π=2a

dp
ð2πÞe

−iϵð0Þþ ðpÞtþipx1ψLðpþ π=aÞ

≡ eLðxÞþ eiπx
1=aμRðxÞ ð48Þ

by choosing the Brillouin zone −π=2a ≤ p < 3π=a. We
defined formally two fields eLðxÞ and μRðxÞ, although they
are actually part of a single field ψLðxÞ; when one discusses
short distance properties such as the chiral anomaly of
ψLðxÞ, which imply the maximum extension in momentum
space by the uncertainty principle, one cannot separate eLðxÞ
and μRðxÞ. We emphasize that eLðxÞ and μRðxÞ separately
cannot define well-defined fields for a ≠ 0 since half of the
Brillouin zone ismissing in them.Nevertheless, this notation
is useful to understand the following discussions.
For example, in the picture of the spectral flow of

ϵð0Þ− ðpÞ ¼ − sin ap=a with all the negative energy states
0 ≤ p ≤ π=a being filled initially, a particle creation at the
momentum close to p ¼ 0 implies a hole creation close to
p ¼ π=a; namely, we have an inevitable pair production,

ψL þ ψ̄L or eL þ μ̄R: ð49Þ

For r ≠ 0 in (45), we have no more chiral symmetry
generated by γ5. We have only a single massless solution,
since HðpÞ ¼ 0 means two linearly independent terms of
HðpÞ in (45) vanish simultaneously. To be explicit, we have
two eigenvalues,

ϵ�ðpÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
sin ap
a

�
2

þ
�
r
a
ð1 − cos apÞ

�
2

s
; ð50Þ

that show ϵ�ðpþ 2π=aÞ ¼ ϵ�ðpÞ. We have ϵ�ðpÞ ¼ �jpj
near p ¼ 0 and ϵ�ðpÞ ¼ � 2r

a near p ¼ π=a, namely, no
more species doubling for r=a ≫ 1. We thus have a single
massless Dirac fermion, but the drawback of this con-
struction is that the chiral symmetry of the Hamiltonian is
completely lost. The recent progress in the Ginsparg-
Wilson fermion is that one can now construct a fermion
model that defines a single massless Dirac fermion with an
exact chiral symmetry without doublers in the limit a → 0.
In the sequel, we discuss the chiral anomaly using two

pictures of Weyl fermions, namely, species doublers and
the Ginsparg-Wilson fermion. We first discuss the chiral
anomaly using species doublers and then the Ginsparg-
Wilson fermion to support our view. Our analysis is
performed in the framework of lattice gauge theory without
referring to the details of specific fields such as condensed
matter and nuclear physics.

KAZUO FUJIKAWA PHYS. REV. D 97, 016018 (2018)

016018-10



B. Chiral anomaly and spectral flow

We generalize the Hamiltonian (19) to a full-fledged
Weyl-type wave equation�

i
∂
∂t − vFσ⃗ ·

1

i
∂
∂x⃗
�
uðt; x⃗Þ ¼ 0; ð51Þ

where vF > 0 or vF < 0 corresponds to right-handed or
left-handed fermions, respectively. We set ℏ ¼ 1 for
simplicity. Since this equation is defined as an effective
equation in the Brillouin zone with a ≠ 0, we attempt to
simulate this equation by an effective lattice gauge theory
treating the pseudospin σ⃗ as a real spin. The purpose of this
simulation is to obtain possible new insights into con-
densed matter and related fields with regards to quantum
anomaly.
We thus start with a massless Dirac fermion in continuum,

iγμð∂μ − iAμÞψ ¼ 0; ð52Þ

with the electromagnetic gauge field Aμ. We then put this
equation on the hypercubic lattice, for example, with
manifest chiral symmetry generated by γ5. There are two
ways to latticize the continuum gauge theory. The first one
is the Hamiltonian formalism that exhibits the energy-
momentum dispersion in the band diagram nicely. In this
scheme, it is known that the minimum number of species
doublers appears [7], namely, one species doubler for each
chiral component that is sufficient to ensure the absence of
chiral anomaly even in the limit a → 0. The other formu-
lation is the Euclidean Lagrangian formalism, which gen-
erally contains more species doublers than the Hamiltonian
formulation, but the analysis of chiral anomaly is more
transparent. Also, it is this Euclidean formulation that led
to a formulation of the Ginsparg-Wilson fermion containing
no species doublers by deforming the generator of chiral
symmetry from γ5.
We use here the d ¼ 4 Euclidean formulation, although

the physical contents in the band diagram of condensed
matter theory are not directly seen in this formulation [to
see the band structure, we need to consider the domain of
small energy momentum combined with Wick rotation, and
then (52) is realized]. In this notation, we have [see (48)]

ψðxÞ ¼ eðxÞ þ γ3γ5eiπx3=aμðxÞ; ð53Þ

where eðxÞ and μðxÞ are “Dirac fermions” defined in
the momentum domain −π=2a ≤ kμ < π=2a when the
Brillouin zone is chosen as −π=2a ≤ kμ < 3π=2a. We
emphasize that we have actually only a single physical
field ψðxÞ defined in the entire Brillouin zone; see (48) for a
related discussion. Two massless Dirac fermions eðxÞ and
μðxÞ are displaced on the lattice in the z-direction by π=a.
We have actually more species doublers in d ¼ 4 Euclidean
formulation (due to the time discretization and also the

hypercubic symmetry), but the essential aspect we want to
discuss is correctly captured by this simplified model (53).
By multiplying the chiral projectors, we find from (53)

ψL;RðxÞ ¼
�
1 ∓ γ5

2

�
ψðxÞ

¼ eL;RðxÞ þ γ3γ5eiπx3=aμR;LðxÞ: ð54Þ

This shows that the left-handed fermion ψLðxÞ, for exam-
ple, when placed on the lattice becomes a superposition of
two fermions eLðxÞ and μRðxÞ. Two fermions are actually
part of the single field ψLðxÞ, although they are displaced in
momentum space. In the limit 1=a → large, the coherence
between eLðxÞ and μRðxÞ is lost (and quantum tunneling
between these two states in momentum space is sup-
pressed), and thus two fermions behave approximately
as two Weyl fermions. We have approximately

S ¼ ψ̄LDψL

≃ ēLDeL þ μ̄RDμR ð55Þ

and similarly for ψRðxÞ. Note that the local chiral current in
coordinate space carries no anomaly for a ≠ 0 [36,37],
∂μðψ̄Lγ

μψLÞðxÞ ¼ 0. The semiclassical spectral flow on the
basis of ψL in (54) shows that only the pair production from
the vacuum such as

ψL þ ψ̄L or eL þ μ̄R ð56Þ

is allowed. See the detailed discussion in the context of
(49). Thus, the selection rule ΔNψL

¼ 0 or

ΔðNeL þ NμRÞ ¼ 0 ð57Þ

is satisfied, although two (would-be) Weyl fermions eLðxÞ
and μRðxÞ are far apart by

Δp≃ π=a ð58Þ

in momentum space for 1=a → large. The analysis of
possible anomaly produced by each of the Weyl fermions
eLðxÞ and μRðxÞ separately is not needed in this pair
creation other than the anomaly-free conservation law
∂μðψ̄Lγ

μψLÞðxÞ ¼ 0.
In some applications, however, one may want to know an

explicit form of the (possible) anomaly for each Weyl
fermion separately [7,9,10], but the chiral anomaly for each
doubler with γ5 as the generator of chiral symmetry
generally vanishes for a ≠ 0. This is understood by recall-
ing the fact that the anomaly as a Jacobian (a local version
of the index) is expressed using a general form of the chiral
invariant lattice Dirac operator D [13],

CHARACTERISTICS OF CHIRAL ANOMALY IN VIEW OF … PHYS. REV. D 97, 016018 (2018)

016018-11



lim
M→∞

Z
B

d4p
ð2πÞ4 tr

�
γ5e−ipx exp

�
−
D†D
M2

�
eipx
�

¼ 0; ð59Þ

for a fixed finite lattice spacing a. Here, B is the Brillouin
zone (or any subdomain), the volume of which is finite for
finite a. This vanishing of anomaly is a local version of the
vanishing index

Trγ5 ¼ 0; ð60Þ

which holds very generally on the lattice. See Eq. (81) for
the Ginsparg-Wilson fermion in the next section. Only after
taking the precise limit a → 0 in (59) first, for which each
species doubler is treated as a full-fledged field, one can
define the ordinary chiral anomaly for each species doubler
separately by suitably choosing the subdomains of B.
The absence of anomaly for each doubler separately with

a lattice cutoff and thus with a finite number of degrees of
freedom is also understood by an argument of spectral flow
by considering the simple example (48). Let us concentrate
on the field eLðxÞ that has the spectrum ϵ−ðpÞ ¼
− sin ap=a defined only in half of the Brillouin zone

−π=2a < p < π=2a; ð61Þ

although precisely speaking no physical field on the lattice
with a ≠ 0 is defined in the domain limited to jpj ≤ π=2a. If
one considers a particle production near the Fermi level
ϵ−ð0Þ ¼ 0, a hole is generated at the lowest end of the
spectrum deep inside the Dirac sea with energy ϵ−ðπ=2aÞ ¼
−1=a at p ¼ π=2a by the spectral flow that preserves the
total fermion number. Thus, a particle-hole pair creation

eL þ ēL ð62Þ

with ΔNeL ¼ 0 which implies ∂μðēLγμeLÞðxÞ ¼ 0 rather
than a net particle production (i.e., anomaly) takes place. This
mechanism is the same as the pair creation in (49), although
the hole is separated from the particle not only in momentum
but also in energy in the present case.
To have a net particle production associated with the

chiral anomaly, the infinitely deep Dirac sea with an infinite
number of degrees of freedom and mathematics something
like ∞þ 1 ¼ ∞ is essential in the conventional picture of
spectral flow. This consideration shows an important
difference between anomaly and spectral flow in lattice
theory which implies the Dirac sea with finite depth. It
shows that the use of an explicit form of anomaly such as

∂μðēLγμeLÞðxÞ ¼ −ð1=4π2ÞE⃗ · B⃗;

∂μðμ̄RγμμRÞðxÞ ¼ þð1=4π2ÞE⃗ · B⃗ ð63Þ

for each species doubler separately in the picture of species
doubling for a ≠ 0 has no justifiable basis. With the help of

the Ginsparg-Wilson fermion discussed in the next section
that contains only a single species, one can intuitively
understand that the pair production corresponds to Trγ5 ¼
0 in (81), while the anomaly TrΓ5 ≠ 0 in (82) in the next
section projects out the hole in the deep Dirac sea. To have
anomaly on the lattice, it is essential to eliminate the holes
at the bottom of the energy spectrum, thus effectively
realizing the infinitely deep Dirac sea.
The difference of the presence or absence of anomaly is

that we would have well-defined (63) in the presence of
anomaly, while in the absence of separate anomaly, we
have

∂μðēLγμeLÞðxÞ ¼ 0;

∂μðμ̄RγμμRÞðxÞ ¼ 0: ð64Þ

In the picture of spectral flow, the first relation in (64)
shows the cancellation of a particle near the fermi surface
by a hole deep inside the Dirac sea, and the second relation
shows the cancellation of a hole near the surface by a
“particle” deep inside the Dirac sea. But in both cases (63)
and (64), we always satisfy

∂μðēLγμeLÞðxÞ þ ∂μðμ̄RγμμRÞðxÞ ¼ 0; ð65Þ

and both satisfy the fermion number conservation
ΔNeL ¼ 0.
We finally comment on the common assertion of the

inevitable pairwise appearance of Weyl fermions (level
crossings) in the band diagram in condensed matter
physics. The chiral symmetry of the fundamental electron
in the nonrelativistic Schrödinger equation determines the
band structure and possible species doublers. To my
knowledge, no convincing argument has been given as
to the equivalence of the pseudochiral symmetry of the
effective fermion in (19) and the fundamental chiral
symmetry of the electron in the Schrödinger equation.
We have shown that the spectral flow, on which the
argument for the pairwise appearance is often based, is a
manifestation of the fermion number conservation which is
not the same as the chiral anomaly in those theories where
the ultraviolet part of the spectrum is truncated. (In the
picture of a creation of fermion-antifermion pair, the hole in
the deep bottom of the Dirac sea could be filled by external
doping, for example, and thus the appearance of a single
isolated level-crossing point in the Brillouin zone could be
consistent in the picture of spectral flow which does not
induce anomaly.) It is our opinion that a clear explanation
of this fundamental issue of two different chiral symmetries
associated with pseudospin and real spin in the context of
band theory is urgently needed. At this moment, it may be
natural to understand that a specific configuration in the
band diagram is nicely simulated by a hypothetical lattice
gauge theory with species doublers [7].
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VI. GINSPARG-WILSON FERMION

We recapitulate some representative properties of the
Ginsparg-Wilson fermion. Using the mathematically pre-
cise formulation of the Ginsparg-Wilson fermion, we
illustrate that the states at the ultraviolet region such as
the states at the bottom of the Dirac sea are crucial to
analyze the phenomena of anomaly and spectral flow on the
lattice which has the energy bound at ∼j1=aj, thus
supporting our view presented in Sec, V. We can also
understand that the apparently low-energy property such as
the Atiyah-Singer index theorem is controlled by the
ultraviolet cutoff in the lattice formulation.
The Ginsparg-Wilson fermion is defined by

S ¼
X
x;y

ψ̄ðxÞDðx; yÞψðyÞ ð66Þ

on the d ¼ 4 hypercubic lattice, for example. This fermion
operator satisfies the Ginsparg-Wilson relation [41]

γ5DþDγ5 ¼ aDγ5D: ð67Þ

We then define two projection operators,

P� ¼ 1

2
ð1� γ5Þ; P̂� ¼ 1

2
ð1� γ̂5Þ; ð68Þ

with γ̂5 ¼ γ5ð1 − aDÞ that satisfies γ̂25 ¼ 1 using the
Ginsparg-Wilson relation (67). We define the chiral com-
ponents by

ψR;L ¼ P̂�ψ ; ψ̄L;R ¼ ψ̄P�; ð69Þ

which satisfy

S ¼ ψ̄LDψL þ ψ̄RDψR ð70Þ

using D ¼ PþDP̂− þ P−DP̂þ. We define the chiral
transformation

ψ → eiαγ̂5ψ ; ψ̄ → ψ̄eiαγ5 ð71Þ

under which the action is invariant since

γ5DþDγ̂5 ¼ 0: ð72Þ

Under the transformation (71), we have a Jacobian of the
form

exp

�
−2iTrα

1

2
ðγ5 þ γ̂5Þ

�
¼ exp½−2iTrαΓ5�; ð73Þ

where

Γ5 ≡ γ5

�
1 −

1

2
aD

�
: ð74Þ

It is known that one can construct the operator D which
satisfies the Ginsparg-Wilson relation and Hermiticity con-
dition ðγ5DÞ† ¼ ðγ5DÞ and contains a single species in the
Brillouin zone, which is mainly concentrated in the sub-
domain −π=2a ≤ pμ < π=2a without any doublers [38].
One can show [42] that all the normalizable eigenstates

of H ≡ γ5D,

Hϕn ¼ λnϕn; ð75Þ

on the lattice with a finite spacing are categorized into the
following three classes using the basic relation derived
from (67),

Γ5H þHΓ5 ¼ 0; ð76Þ

with Γ5 ¼ γ5 − 1
2
aH:

(i) Zero modes (n� states),

Hϕn ¼ 0; γ5ϕn ¼ �ϕn; ð77Þ

(ii) Highest states (N� states) with Γ5ϕn ¼ 0,

Hϕn ¼ � 2

a
ϕn; γ5ϕn ¼ �ϕn; ð78Þ

respectively;
(iii) Remaining paired states with 0 < jλnj < 2=a,

Hϕn ¼ λnϕn; HðΓ5ϕnÞ ¼ −λnðΓ5ϕnÞ; ð79Þ

and the sum rule

nþ þ Nþ ¼ n− þ N− ð80Þ

holds. This sum rule is a result of

Trγ5¼
X
n

ðϕn;γ5ϕnÞ¼nþþNþ−ðn−þN−Þ¼0

ð81Þ

that holds even for non-Abelian Yang-Mills fields.
The chiral symmetry breaking (nontrivial Jacobian) in

(73) is described by the Atiyah-Singer index theorem [42]

TrΓ5 ¼
X
n

ðϕn;Γ5ϕnÞ ¼ nþ − n−: ð82Þ

The difference of Γ5 and γ5 is very important; Γ5 projects
out the highest states N� in (78). The Hilbert space of
continuum theory in the present scheme is defined by
projecting out those N� states in the precise limit a → 0.
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The difference of Γ5 and γ5 has been already used to discuss
the difference between the spectral flow and chiral anomaly
in Sec. V, where the role of the states at the bottom of the
Dirac sea is identified with the role of the states N�;
spectral flow without anomaly corresponds to (81), and the
anomaly (82) is realized only when one projects out N�. It
is also interesting that the apparently low-energy statement
of the index theorem is controlled by the ultraviolet cutoff if
one uses (81), nþ − n− ¼ N− − Nþ.
The index nþ − n− is given by the Chern-Pontryagin

number in the continuum limit for non-Abelian gauge
theory, which is an analog of the integral of 1

4π2
E⃗ · B⃗. The

index vanishes for Abelian theory in the absence of a
magnetic monopole, but a local version of TrΓ5 gives the
correct anomaly in the continuum limit [13],

lim
M→∞;a→0

Z
B

d4p
ð2πÞ4 tr

�
e−ipxΓ5 exp

�
−
ðγ5DÞ2
M2

�
eipx
�

¼ 1

4π2
E⃗ · B⃗: ð83Þ

The Ginsparg-Wilson fermion is tightly constrained by the
consideration of the (local) index even for a ≠ 0. Thus, a
single Weyl fermion obtained by projecting (66) to a chiral
component without doublers

S ¼ ψ̄LDψL ð84Þ

is not defined quantummechanically in the path integral even
for a ≠ 0 for the gauge group that contains gauge anomaly
such as the Uð1Þ electromagnetism [43,44]. This corre-
sponds to the inconsistency of continuumchiral gauge theory
in (35). In many respects, the Ginsparg-Wilson fermion is
close to the continuum fermion in Minkowski space.

VII. DISCUSSION AND CONCLUSION

We finally mention an alternative use of the anomaly in
analogy to the partially conserved axial-vector current
hypothesis (PCAC), which played an important role in the
history of chiral anomaly [3,4]. This approach starts with

hn0j2imψ̄γ5ψ jni≃ −hn0j e
2

2π2
E⃗ · B⃗jni ð85Þ

implied by the basic identity (1) as a low-energy matrix
element between two states jni and jn0i by preserving the
fermion number ∂μðψ̄γμψÞ ¼ 0. The basic task in this
approach is to find an operator that may dominate
hn0j2imψ̄γ5ψ jni at low energies such as the helicity operator

hn0jiψ†ðx⃗Þ 1
2
σ⃗∇↔ψðx⃗Þjni with the Pauli two-component

spinor ψðx⃗Þ, for example. The dominating operator is
presumably related to the Coulomb interaction with sur-
rounding particles, which is analogous to the strong inter-
action (QCD) in the PCAC. This scheme does not induce
“fermion number nonconservation.” It would be very inter-
esting if one can formulate this approach in condensedmatter
or nuclear physics.Historically, the PCACmotivated the idea
of “anomaly-matching” at the quark level and nucleon level
calculations.
In conclusion, we have shown that the mere presence of a

Weyl fermion does not induce anomalous equal-time
commutation relations of space-time variables if the non-
adiabatic behavior of Berry’s phase is carefully taken into
account. The effective theory with a monopole placed at the
origin of the momentum space, which fails to describe
Berry’s phase in the nonadiabatic domain, gives rise to
anomalous space-time commutators and thus chiral
anomaly to the gauge current [16]. We regard this appear-
ance of the anomaly as an artifact of the postulated
monopole and not a consequence of Berry’s phase [45].
We have also shown that the chiral anomaly vanishes for
each species doubler separately in the scheme which treats
species doublers in lattice theory as physical objects for a
finite lattice spacing a ≠ 0. Instead, a general form of
spectral flow in the Dirac sea with finite depth takes place.
The Ginsparg-Wilson fermion which is free of species
doubling supports this view.
We expect that the ideas developed in particle theory

such as chiral anomaly and Ginsparg-Wilson fermions will
find more interesting applications in the fields such as
condensed matter and nuclear physics.
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