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We consider a gauged CPð2Þ theory in the presence of the Chern-Simons action, focusing our attention
on those time-independent solutions possessing radial symmetry. In this context, we develop a coherent
first-order framework via the Bogomol’nyi prescription, from which we obtain the corresponding energy
lower bound and the first-order equations the model supports. We use these expressions to introduce
effective Bogomol’nyi-Prasad-Sommerfeld (BPS) scenarios, solving the resulting first-order equations by
means of the finite-difference scheme, this way attaining genuine field solutions engendering topological
configurations. We depict the new profiles, commenting on the main properties they engender.
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I. INTRODUCTION

In the context of classical theories, solitons are described
as those time-independent solutions arising within highly
nonlinear models [1]. In this sense, vortices are radially
symmetric solutions coming from planar scenarios in the
presence of a gauge field.
Moreover, under very special circumstances, solitons can

also be obtained via a set of first-order differential equa-
tions (instead of the second-order Euler-Lagrange ones),
the resulting solutions minimizing the energy of the
effective system [2].
In this sense, first-order vortices were first studied in the

context of the simplest Maxwell-Higgs electrodynamics
[3]. Furthermore, these solutions were verified to occur
within the Chern-Simons-Higgs scenario, too [4]. Also,
first-order vortices were recently considered in connection
with nonstandard models [5], the resulting solutions being
used as an attempt to explain some cosmological issues [6].
In such a context, it is especially interesting to consider

the existence of well-behaved time-independent vortices
arising from a CPðN − 1Þ scenario in the presence of a
gauge field, mainly due to the close phenomenological
relation between such theory and the four-dimensional
Yang-Mills-Higgs one [7].
In a recent investigation, radially symmetric solutions

arising from a planar CPð2Þ theory endowed by the
Maxwell term were considered, the author clarifying the

way these structures and correlated results depend on the
parameters of the model [8]. In that work, however, the
vortex configurations were obtained by solving the second-
order Euler-Lagrange equations directly (the resulting
solutions therefore not saturating the Bogomol’nyi bound).
In the sequel, some of us introduced the first-order

vortices inherent to the aforementioned Maxwell CPð2Þ
theory, defining the energy lower bound and the corre-
sponding first-order equations [9]. In that work, the self-
dual profiles were constructed numerically by means of the
finite-difference scheme, the resulting structures presenting
the typical topological shape.
Moreover, some of us have also studied first-order

vortices within a Maxwell CPð2Þ model in the presence
of a nontrivial dielectric function. The point to be raised
here is that such a function can be used to change the
vacuum manifold of the effective theory, from which we
have used such freedom to generate self-dual vortices
engendering a nontopological profile, the resulting
Bogomol’nyi bound being not quantized anymore [10].
We now go a little bit further by investigating a rather

natural extension of the aforecited works, i.e., the search for
the first-order planar solitons arising from a CPð2Þ theory
in the presence of the Chern-Simons action.
To introduce our results, the present article is organized

as follows: in Sec. II, we define the gauged CPðN − 1Þ
theory and some conveniences inherent to it, focusing our
attention on those time-independent solitons possessing
radial symmetry. We then develop a coherent first-order
framework by minimizing the effective energy according to
the Bogomol’nyi prescription, this way obtaining general
first-order equations and the corresponding energy lower
bound, such construction only being possible due to a
differential constraint involving the potential engendering
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self-duality. In Sec. III, we solve the first-order expressions
in order to find genuine Bogomol’nyi-Prasad-Sommerfeld
(BPS) solutions saturating the Bogomol’nyi bound. We
solve the corresponding first-order equations by means of
the finite-difference algorithm, from which we depict the
numerical solutions, while commenting the main properties
they engender. We end our work in Sec. IV, presenting our
final considerations and the perspectives regarding future
studies.
In this article, we adopt ημν ¼ ðþ−−Þ as the metric

signature for the flat spacetime, together with the natural
units system, for the sake of simplicity.

II. THE MODEL

We begin our investigation by presenting the Lagrange
density defining the gauged CPðN − 1Þ model in the
presence of the Chern-Simons term (with ϵ012 ¼ þ1), i.e.,

L ¼ −
k
4
ϵαμνAαFμν þ ðPabDμϕbÞ�PacDμϕc − VðjϕjÞ: ð1Þ

Here, Fμν ¼ ∂μAν − ∂νAμ stands for the electromagnetic
field strength tensor, Dμϕa ¼ ∂μϕa − igAμQabϕb repre-
senting the covariant derivative (Q ¼ ½Qab� is a real
diagonal charge matrix with null trace, i.e., TrQ ¼ 0).
Furthermore, Pab ¼ δab − h−1ϕaϕ

�
b is a projection operator

defined conveniently. In this work, the Greek indices run
over the space-time coordinates, the Latin ones counting
the complex fields underlying the CPðN − 1Þ sector
(with ϕ�

aϕa ¼ h).
The model (1) is invariant under the global SUðNÞ

transformations

ϕaðxÞ → UabϕbðxÞ; ð2Þ

and the local Uð1Þ ones

ϕaðxÞ → exp ½iΛðxÞ�ϕaðxÞ: ð3Þ

In addition, (1) possesses also a local Uð1Þ gauge sym-
metry, i.e.,

AμðxÞ → AμðxÞ þ
1

g
∂μ

~Λ; ð4Þ

ϕaðxÞ → exp ½iqa ~ΛðxÞ�ϕaðxÞ; ð5Þ

where qa is the diagonal element Qaa of the charge
matrix Q.
The Euler-Lagrange equation for the gauge field is

given by

k
2
ϵλμνFμν ¼ Jλ; ð6Þ

where (H.c. means the Hermitian conjugate)

Jλ ¼ ig½ðPabQbcϕcÞ�PadDλϕd − H:c:� ð7Þ
represents the current vector.
It is then instructive to write down the Gauss law

for time-independent configurations, which reads (here,
B ¼ F21 is the magnetic field)

kB ¼ ρ; ð8Þ
where

ρ ¼ −2g2A0ϕ�
mQmbPbcQcdϕd ð9Þ

is the electric charge density. In view of (8) and (9), the
gauge A0 ¼ 0 cannot be chosen since it leads to trivial
solutions everywhere. In other words, the first-order pro-
files we consider in this article make sense only when
A0 ≠ 0, the final structures possessing both nontrivial
electric and magnetic fields.
In this work, we look for radially symmetric solutions

inherent to the gauged CPð2Þ scenario by using the usual
map

Ai ¼ −
1

gr
ϵijnjAðrÞ; ð10Þ

0
B@

ϕ1

ϕ2

ϕ3

1
CA ¼ h

1
2

0
B@

eim1θ sin ðαðrÞÞ cos ðβðrÞÞ
eim2θ sin ðαðrÞÞ sin ðβðrÞÞ

eim3θ cos ðαðrÞÞ

1
CA; ð11Þ

with m1, m2, and m3 ∈ Z standing for winding numbers,
ϵij being the bidimensional Levi-Cività tensor (with
ϵ12 ¼ þ1), and nj ¼ ðcos θ; sin θÞ representing the unit
vector position. Therefore, regular solutions presenting no
divergences are obtained via those profile functions αðrÞ
and AðrÞ satisfying

αðr → 0Þ → 0 and Aðr → 0Þ → 0: ð12Þ
Now, concerning the combination between the charge

matrix Qab and the winding numbers appearing in (11),
there are two possible choices supporting topological
solitons [8]: (i) Q ¼ λ3=2 and m1 ¼ −m2 ¼ m, and
(ii) Q ¼ λ8=2 and m1 ¼ m2 ¼ m [both ones with
m3 ¼ 0, λ3 and λ8 standing for the diagonal Gell-Mann
matrices: λ3 ¼ diagð1;−1; 0Þ and ffiffiffi

3
p

λ8 ¼ diagð1; 1;−2Þ].
However, in Ref. [8], the author has demonstrated that these
two combinations simply mimic each other, therefore only
one effective scenario existing. In this sense, we consider
only the case defined by m1 ¼ −m2 ¼ m, m3 ¼ 0, and

Qab ¼
1

2
λ3 ¼

1

2
diagð1;−1; 0Þ; ð13Þ

the Euler-Lagrange equation for the profile function βðrÞ
reading
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d2β
dr2

þ
�
1

r
þ 2 cot α

dα
dr

�
dβ
dr

¼ Hsin2α sin ð4βÞ; ð14Þ

where

HðrÞ ¼ 1

r2

�
m −

A
2

�
2

−
g2ðA0Þ2

4
sin2 α ð15Þ

is an auxiliary function, the solutions for βðrÞ being

βðrÞ ¼ β1 ¼
π

4
þ π

2
k or βðrÞ ¼ β2 ¼

π

2
k; ð16Þ

with k ∈ Z.
It is important to highlight that, from this point on, our

expressions describe the effective scenario defined by the
conveniences introduced in the previous paragraph.
In addition, we clarify that, in view of the radially

symmetric map (10) and (11), the Gauss law (8) can be
explicitly written as

A0 ¼ −
2kB
g2hW

; ð17Þ

where

ρ ¼ −
g2h
2

A0W ð18Þ

stands for the charge density. Here, we have defined

W ¼ Wðα; βÞ ¼ sin2 αð1 − sin2 α cos2 ð2βÞÞ; ð19Þ

with (17) being the equation of motion for A0ðrÞ [i.e., the
zeroth component of the Euler-Lagrange equation (6)].
Therefore, given the solutions to the profile function αðrÞ
and the magnetic field BðrÞ, the electric potential A0ðrÞ can
be calculated directly from (17).
We look for genuine first-order solutions saturating an

energy lower bound. In this sense, we proceed with the
minimization of the overall energy, the starting point being
the energy-momentum tensor related to the effective
scenario, i.e.,

Tλρ ¼ ððPabDλϕbÞ�PacDρϕc þ H:c:Þ − ηλρLntop; ð20Þ

where

Lntop ¼ ðPabDμϕbÞ�PacDμϕc − VðjϕjÞ ð21Þ

stands for the nontopological Lagrange density, the energy
density ε ¼ T00 reading

ε ¼ ðPabD0ϕbÞ�PacD0ϕc þ ðPabDjϕbÞ�PacDjϕc þ V:

ð22Þ

Moreover, we use (10) and (11) in order to calculate

ðPabD0ϕbÞ�PacD0ϕc ¼
g2h
4

ðA0Þ2W; ð23Þ

ðPabDjϕbÞ�PacDjϕc ¼ h

��
dα
dr

�
2

þW
r2

�
A
2
−m

�
2
�
;

ð24Þ

via which we rewrite (22) as

ε ¼ g2h
4

ðA0Þ2W þ h

��
dα
dr

�
2

þW
r2

�
A
2
−m

�
2
�
þ V: ð25Þ

We now follow the standard procedure regarding the
Chern-Simons models; i.e., we use the Gauss law (17)
in order to write down the first term in (25) in terms of the
magnetic field BðrÞ. In this sense, the energy distribution
(25) reduces to

ε ¼ k2B2

g2hW
þ h

��
dα
dr

�
2

þW
r2

�
A
2
−m

�
2
�
þ V; ð26Þ

via which we proceed with the minimization of the total
energy according to the Bogomol’nyi approach [2].
The point to be raised is that, whether the potential is

constrained to satisfy

2k

g2
ffiffiffi
h

p d
dr

ffiffiffiffiffi
V
W

r
¼ −h

ffiffiffiffiffi
W

p dα
dr

; ð27Þ

the expression for the energy density can be rewritten
according to the Bogomol’nyi prescription, therefore giv-
ing rise to

ε ¼
�

kB

g
ffiffiffiffiffiffiffi
hW

p ∓ ffiffiffiffi
V

p �
2

þ h

�
dα
dr

∓
ffiffiffiffiffi
W

p

r

�
A
2
−m

��2

∓ 2k

g2
ffiffiffi
h

p 1

r
d
dr

�
ðA − 2mÞ

ffiffiffiffiffi
V
W

r �
; ð28Þ

where we have used

BðrÞ ¼ −
A0

gr
ð29Þ

for the magnetic field (the prime denoting the derivative
with respect to r), the resulting first-order equations
standing for

dα
dr

¼ �
ffiffiffiffiffi
W

p

r

�
A
2
−m

�
; ð30Þ

kB ¼ �g
ffiffiffiffiffiffiffiffiffiffiffi
hVW

p
; ð31Þ
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the solution for βðrÞ being necessarily one of those stated
in (16).
The scenario can be summarized as follows: given the

potential fulfilling the constraint (27), the model (1)
effectively supports radially symmetric solutions satisfying
the first-order equations (30) and (31), the final configu-
rations saturating an energy lower bound given by

Ebps ¼ 2π

Z
rεbpsdr ¼∓ 8πmk

g2
ffiffiffi
h

p
ffiffiffiffiffiffiffi
V0

W0

s
; ð32Þ

where

εbps ¼∓ 2k

g2
ffiffiffi
h

p 1

r
d
dr

�
ðA − 2mÞ

ffiffiffiffiffi
V
W

r �
ð33Þ

stands for the energy density of the first-order structures,
the upper (lower) sign holding for negative (positive) values
of m. Here, we have supposed that ðA∞ − 2mÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V∞=W∞
p

vanishes, with
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V0=W0

p
being finite. Moreover, we

have defined V0 ≡ Vðr → 0Þ, W0 ≡Wðr → 0Þ, V∞ ≡
Vðr → ∞Þ, W∞ ≡Wðr → ∞Þ, and A∞ ≡ Aðr → ∞Þ.
It is also instructive to calculate the magnetic flux ΦB

the first-order solutions support. It reads

ΦB ¼ 2π

Z
rBðrÞdr ¼ −

2π

g
A∞; ð34Þ

where we have used BðrÞ ¼ −A0=gr again. We demonstrate
below that the energy lower bound (32) can be verified to
be proportional to the magnetic flux (34), both quantities
being quantized according to the winding number m, as
expected for topological solitons.

III. FIRST-ORDER SCENARIOS AND THEIR
NUMERICAL SOLUTIONS

We now demonstrate how the first-order framework we
have developed generates genuine radially symmetric sol-
itons. Here, to present our results, we proceed as follows:
first, we choose a particular solution for βðrÞ coming from
(16), while solving the constraint (27) for the potential
engendering self-duality. We then use such conveniences
to obtain the asymptotic boundary conditions αðrÞ and AðrÞ
must obey in order to fulfill the finite-energy requirement,
i.e., εðr → ∞Þ → 0, fromwhichwe also calculate the energy
lower bound (32) and the magnetic flux (34) explicitly,
showing that they are proportional to each other, as expected.
Finally, we solve the corresponding first-order equations
numerically by means of the finite-difference scheme, while
commenting on the main properties they engender.

A. The βðrÞ= β1 case

We go further into our investigation by choosing

βðrÞ ¼ β1 ¼
π

4
þ π

2
k; ð35Þ

from which one gets cos2 ð2β1Þ ¼ 0, the fundamental
constraint being reduced to

2k

g2
ffiffiffi
h

p d
dr

� ffiffiffiffi
V

p

sin α

�
¼ h

d
dr

ðcos αÞ; ð36Þ

whose solution is

VðαÞ ¼ g4

16k2
h3 sin2 ð2αÞ ð37Þ

or

Vðjϕ3jÞ ¼
g4h
4k2

jϕ3j2ðh − jϕ3j2Þ; ð38Þ

i.e., the potential supporting self-duality (here, we have
used C ¼ 0 for the integration constant).
We now implement (35) and (37) into (26), the resulting

expression being

εðrÞ ¼ k2B2

g2hsin2α
þ g4

16k2
h3sin2ð2αÞ

þ h

��
dα
dr

�
2

þ sin2α
r2

�
A
2
−m

�
2
�
; ð39Þ

from which we attain εðr → ∞Þ → 0 by imposing

αðr → ∞Þ → π

2
and Aðr → ∞Þ → 2m; ð40Þ

standing for the boundary conditions the profile functions
obey in the asymptotic limit. Here, it is particularly
interesting to note that, given the condition αðr → ∞Þ
→ π=2, the potential (38) spontaneously breaks the original
SUð3Þ symmetry into the SUð2Þ one.
In view of (35), (37), and (40), the energy lowerbound

(32) can be verified to be equal to

Ebps ¼∓ 4πhm; ð41Þ

the magnetic flux ΦB (34) standing for

ΦB ¼ −
4π

g
m; ð42Þ

from which we get that Ebps ¼ �ghΦB, both Ebps and ΦB

being proportional to each other and quantized according
to the winding number m, as expected. Here, we have used

ffiffiffiffiffiffi
V0

p

sin α0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − sin2 α0 cos2 ð2β1Þ

p ¼ g2
ffiffiffi
h

p

2k
h; ð43Þ

this way also verifying our previous assumption; see the
discussion just after (33).
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We also calculate, for completeness, the total electric
charge Qe the first-order vortices carry by integrating the
Gauss law (8). It gives

Qe ¼ 2π

Z
rρðrÞdr ¼ kΦB; ð44Þ

where ΦB is given by (42).
The first-order equations (30) and (31) can be rewritten

as

dα
dr

¼ � sin α
r

�
A
2
−m

�
; ð45Þ

1

r
dA
dr

¼∓ g4

4k2
h2 sin ð2αÞ sin α; ð46Þ

which must be solved according to the boundary conditions
(12) and (40).

B. The βðrÞ= β2 case

We now consider

βðrÞ ¼ β2 ¼
π

2
k; ð47Þ

via which one gets cos2 ð2β2Þ ¼ 1, the corresponding
constraint being

4k

g2
ffiffiffi
h

p d
dr

� ffiffiffiffi
V

p

sin ð2αÞ
�
¼ h

4

d
dr

ðcos ð2αÞÞ; ð48Þ

the solution standing for the self-dual potential, i.e.,

VðαÞ ¼ g4

16k2

�
h
4

�
3

sin2 ð4αÞ ð49Þ

or

Vðjϕ3jÞ ¼
g4

64k2h
jϕ3j2ðh − jϕ3j2Þðh − 2jϕ3j2Þ2; ð50Þ

where we have chosen C1 ¼ 0 for the integration constant.
We proceed in the very same way as before; i.e., we use

(47) and (49) into (26), from which one gets the general
expression

εðrÞ ¼ 4k2B2

g2hsin2ð2αÞ þ
g4

16k2

�
h
4

�
3

sin2ð4αÞ

þ h

��
dα
dr

�
2

þ sin2ð2αÞ
4r2

�
A
2
−m

�
2
�
; ð51Þ

the finite-energy requirement εðr → ∞Þ → 0 being
attained by those profile functions fulfilling

αðr → ∞Þ → π

4
and Aðr → ∞Þ → 2m; ð52Þ

i.e., the boundary conditions in the limit r → ∞.
Now, because of (47), (49), and (52), the energy bound

(32) reduces to

Ebps ¼∓ πhm; ð53Þ

the magnetic flux ΦB and the total electric charge Qe still
being given by (42) and (44), respectively. Therefore, one
gets that Ebps ¼ �ghΦB=4, the lower bound being propor-
tional to the flux of the magnetic field, both ones being
again quantized. Here, we have calculated

ffiffiffiffiffiffi
V0

p

sin α0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − sin2α0cos2ð2β2Þ

p ¼ g2
ffiffiffi
h

p

2k
h
4

ð54Þ

in order to verify our previous conjecture.
In this case, the first-order expressions (30) and (31) can

be written in the form

dα
dr

¼ � sin ð2αÞ
2r

�
A
2
−m

�
; ð55Þ

1

r
dA
dr

¼ ∓ g4

4k2

�
h
4

�
2

sin ð4αÞ sin ð2αÞ; ð56Þ

which must be considered in the presence of the conditions
(12) and (52).
It is worthwhile to point out that Eqs. (55) and (56) can

be obtained directly from those in (45) and (46) via the
redefinitions α → 2α and h → h=4, the energy bound and
the self-dual potential behaving in a similar way, the
magnetic flux remaining the same. Therefore, given that
the two first-order scenarios introduced above are phe-
nomenologically equivalent, one concludes with the exist-
ence of only one effective scenario. In this sense, from now
on, we focus our attention on those expressions coming
from βðrÞ ¼ β1 only.
In what follows, we depict the results we have found by

solving the first-order equations (45) and (46) by means of
the finite-difference prescription, according to the boundary
conditions (12) and (40). Here, we have considered the
lower signs in the first-order expressions (i.e.,m > 0 only),
while choosing h ¼ k ¼ 1 and g ¼ ffiffiffi

2
p

, for the sake of
simplicity. In this sense, we depict the solutions to the
profile functions αðrÞ and AðrÞ themselves, the magnetic
field BðrÞ (29), the BPS energy density εbpsðrÞ (33), the
electric potential A0ðrÞ (17), and the electric field EðrÞ ¼
−dA0=dr for m ¼ 1 (solid black line), m ¼ 2 (dashed blue
line), and m ¼ 3 (dash-dotted red line).
In Figs. 1 and 2, we plot the numerical profiles to the

functions αðrÞ and AðrÞ, respectively, from which we verify
the monotonic manner these fields use to approach
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conditions (12) and (40). In particular, we highlight the way
AðrÞ reaches the asymptotic value Aðr → ∞Þ → 2m.
Figure 3 shows the solutions to the magnetic field BðrÞ,

the resulting flux being confined on a ring centered at the
origin, its radius increasing as the winding number itself
increases. It is also interesting to note that the magnetic

field vanishes asymptotically, this way fulfilling the finite-
energy requirement εðr → ∞Þ → 0.
In Fig. 4, we depict the profiles to the energy density

εbpsðrÞ inherent to the first-order configurations; these
solutions also engender rings centered at r ¼ 0, their radii
(amplitudes) increasing (decreasing) as m increases. Here,
we point out that εbpsðr ¼ 0Þ vanishes for m ≠ 1.

FIG. 1. Numerical solutions to αðrÞ coming from (45) and (46)
in the presence of (12) and (40). Here, we have fixed h ¼ k ¼ 1

and g ¼ ffiffiffi
2

p
, varying the winding number: m ¼ 1 (solid black

line),m ¼ 2 (dashed blue line), andm ¼ 3 (dash-dotted red line).

FIG. 2. Numerical solutions to AðrÞ. Conventions as in Fig. 1,
the profiles being monotonic.

FIG. 3. Numerical solutions to the magnetic field BðrÞ. Con-
ventions as in Fig. 1. The profiles are rings centered at r ¼ 0.

FIG. 4. Numerical solutions to the energy density εbpsðrÞ.
Conventions as in Fig. 1, εbpsðr ¼ 0Þ vanishing for m ≠ 1.
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In Figs. 5 and 6, we present the solutions to the electric
potential A0ðrÞ and to the electric field EðrÞ inherent to it,
respectively, this last one behaving in the same general way
the magnetic field does (i.e., yielding well-defined rings),
both Eðr ¼ 0Þ and Eðr → ∞Þ vanishing identically.
We end this section by studying the Bogomol’nyi limit

supporting self-duality. In this sense, we proceed with the
linearization of the first-order equations (45) and (46)
around the boundary values (12) and (40), for m > 0

(lower signs in the first-order expressions), from which
we get the approximate solutions near the origin

αðrÞ ≈ C0rm ð57Þ
and

AðrÞ ≈ g4h2C2
0

4k2ðmþ 1Þ r
2ðmþ1Þ; ð58Þ

the asymptotic profiles reading

αðrÞ ≈ π

2
− C∞e−Mαr ð59Þ

and

AðrÞ ≈ 2m −
g2h
k

C∞re−MAr; ð60Þ

Mα ¼ MA ¼ g2h=2k being the masses of the correspond-
ing bosons (for h ¼ k ¼ 1 and g ¼ ffiffiffi

2
p

, both Mα and MA
equal the unity), the relation Mα=MA ¼ 1 defining the
Bogomol’nyi limit. Here, C0 and C∞ stand for real positive
integration constants to be fixed by requiring the correct
behavior at r ¼ 0 and r → ∞, respectively. Moreover,
given the approximate solutions above, the electric poten-
tial A0ðrÞ can be verified to satisfy

A0ðr ¼ 0Þ ¼ gh
k

and A0ðr → ∞Þ → 0; ð61Þ

which do not depend on the winding number m; see Fig. 5.

IV. FINAL COMMENTS AND PERSPECTIVES

We have investigated the first-order radially symmetric
solutions inherent to theCPð2Þmodel in the presence of the
Chern-Simons action, from which we have obtained regular
solitons saturating a quantized energy lower bound.
We have introduced the overall theory and the conven-

tions inherent to it, focusing our attention on those time-
independent configurations presenting radial symmetry. In
the sequel, we have applied the Bogomol’nyi prescription,
rewriting the expression for the effective energy in order
to introduce a well-defined lower bound (i.e., the
Bogomol’nyi bound). The point to be raised is that such
a construction was only possible due to a differential
constraint involving the potential supporting self-duality.
We have considered separately the cases defined by the

two different solutions the additional profile function βðrÞ
supports, this way verifying that these two contexts are
phenomenologically equivalent, therefore existing as only
one effective scenario. We have then solved the corre-
sponding first-order equations numerically by means of the
finite-difference algorithm, depicting the resulting profiles
we have found this way. We have pointed out the main

FIG. 5. Numerical solutions to the electric potential A0ðrÞ.
Conventions as in Fig. 1.

FIG. 6. Numerical solutions to the electric field EðrÞ. Con-
ventions as in Fig. 1, both Eðr ¼ 0Þ and Eðr → ∞Þ vanishing.
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properties the final configurations engender, also studying
the Bogomol’nyi limit explicitly.
We highlight that the results we have presented in this

work only hold for the radially symmetric structures
defined by the map in (10) and (11), being therefore not
possible to ensure that the original model supports first-
order solitons outside the radially symmetric proposal, such
a question lying beyond the scope of this article.
Ideas regarding future investigations include the search

for the nontopological first-order solitons coming from (1)

and the development of a well-defined self-dual framework
inherent to a CPð2Þ theory in the presence of both the
Maxwell and the Chern-Simons terms simultaneously.
These issues are currently under consideration, and we
hope provide positive results for an incoming contribution.
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