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We revisit the description of the Pomeron within the effective string theory of QCD. Using a string
duality relation, we show how the static potential maps onto the high-energy scattering amplitude that
exhibits the Pomeron behavior. Besides the Pomeron intercept and slope, new additional terms stemming
from the higher order string corrections are shown to affect both the growth of the nucleon’s size at high
energies and its profile in impact parameter space. The stringy description also allows for an odderon that
only disappears in critical dimension. Some of the Pomeron’s features that emerge within the effective
string description can be studied at the future EIC collider.
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I. INTRODUCTION

Hadron-hadron scattering at high energy is dominated by
the exchange of weakly interacting Pomerons and Reggeons
with vacuum and meson quantum numbers respectively.
Many decades ago, a description of this process within the
effective Reggeon field theory was pioneered by Gribov and
collaborators [1].
A first principle approach to Reggeon physics in the

context of weakly coupled QCD was succesfully obtained
by re-summing rapidity ordered Feynman graphs [2]. The
Balitsky-Fadin-Kuraev-Lipatov Pomeron [2] emerges in
leading order through the re-summed two-gluon ring
diagrams with vacuum quantum numbers. Few nonpertur-
bative approaches to Reggeon physics in the context of
QCD have also been attempted, ranging from the stochastic
vacuum [3] to a Reggeized graviton in holography [4].
Here, we will be interested in the Pomeron as a semi-
classical stringy instanton or in short the Bazar-Khatzeev-
Yee-Zahed (BKYZ) Pomeron [5].
The BKYZ Pomeron carries intrinsic temperature and

entropy [6], i.e. T ¼ χ=ð2πbÞ with χ ¼ lnðs=s0Þ being the
relative rapidity of the pair of hadrons scattering at the
impact parameter b. As a result, a new phenomenon in
hadron-hadron scattering at large energy may take place
when the intrinsic temperature of the string becomes
comparable to the Hagedorn temperature. A highly excited
and long string with large energy and entropy becomes a

string ball, which, when cut, can lead to the large
multiplicity states observed in hadron-hadron energies at
collider energies.
In this paper wewill focus on the systematics of the QCD

effective string theory (EST), when the hadron-hadron
scattering at large

ffiffiffi
s

p
is dominated by exchange of weakly

fluctuating strings in a tube configuration. In Sec. II we
review what is known about QCD strings from two sources:
(i) the effective string theory (EST) and (ii) numerical
studies of lattice gauge theory. Each is focused on the static
potential between pointlike and heavy color charges. In
Sec. III we use the string duality relation, and translate
those results from the static potential to the Pomeron
scattering amplitude. The phase of the Pomeron is addressed
both empirically and theoretically in the context of theBKYZ
Pomeron in Sec. IV. The evidence of the odderon from the
time-like or t > 0 region is reviewed in Sec.Vusing the latest
lattice results. A charge odd analogue to the charge even
Pomeron is identified as the stringy odderon. In Secs. VI
and VII we discuss the empirical evidence for the size and
shape of the Pomeron at collider energies, and suggest their
theoretical descrptions using the EST of the Pomeron. Our
summary and conclusions are in Sec. VIII. In the Appendix
we briefly detail the unitarization of the string amplitudes
for fixed signature in the EST.

II. EFFECTIVE STRING THEORY
AND THE STATIC POTENTIAL

At large distances, the leading contribution to the static
and heavy quark-antiquark potential V0ðrÞ in pure Yang-
Mills theory is the famous linear potential

V0ðrÞ ¼ σTr ð1Þ
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with σT as the fundamental string tension. In QCD with
light quarks this behavior is only valid till some distance
due to screening by light quarks in the form of two heavy-
light mesons. This effect will be ignored below.
Long strings are described uniquely by the Polyakov-

Luscher action [7,8] (an expanded form of the Nambu-Goto
action) in the form

S ¼ −σT
Z
M
d2xð1þ ∂αXi∂αXiÞ ð2Þ

The integration is over the world volume of the string M
with embedded coordinates Xi in D-dimensions. The first
contribution is the area of the world sheet, and the second
contribution captures the fluctuations of the world sheet in
leading order in the derivatives.
Since the QCD string is extended and therefore not

fundamental, its description in terms of an action is
“effective” in the generic sense, organized in increasing
derivative contributions each with new coefficients. These
contributions are generically split into bulk M and boun-
dary ∂M terms. The former add pairs of derivatives to the
Polyakov-Luscher action. The first of such a contribution in
the gauge fixed as in (2), was proposed by Polyakov [7]

þ 1

κ

Z
d2xð __Xμ __Xμ þ 2 _X0μ _X0

μ þ X00μX00
μÞ ð3Þ

which is seen to be conformal with the dimensionless
extrinsic curvature. Higher derivative contributions are
restricted by Lorentz (rotational in Euclidean time) sym-
metry. The boundary contributions are also restricted by
symmetry. The leading contribution is a constant μ, plus
higher derivatives. We will only consider the so-called b2
contribution with specifically

Sb ¼
Z
∂M

d2xðμþ b2ð∂0∂1XiÞ2Þ: ð4Þ

All the terms in (2)–(4) contribute to the static potential
(1). The first contribution stems from the string vibrations
as described in the quadratic term (2),

σTr

�
1þ V0

σTr2

�
: ð5Þ

It is Luscher universal term with V0 ¼ −π=12 in
4-dimensions [8]. Using string dualities, Luscher and
Weisz [9] have shown that the next and higher contribution
is universal

σTr

�
1þ V0

σTr2
−
1

8

�
V0

σTr2

�
2
�
: ð6Þ

These contributions are part of a string of contributions
re-summed by Arvis [10] using the Nambu-Goto action

VArvisðrÞ ¼ σTr

�
1 −

π

6

1

σTr2

�1
2

: ð7Þ

For further discussion of the static QQ̄ potential stemming
from the ESTwe refer to recent work in [11]. To order 1=r4

all the bare contributions to the potential are known

VðrÞ ≈ σTr − μ −
πD⊥
24r

−
π2

2σr3

�
D⊥
24

�
2

þ
~b2
r4

þ � � � ð8Þ

with general number of transverse dimensions
D⊥ ¼ D − 2. The μ term receives both perturbative and
nonperturbative contributions. The former are UV sensitive
and in dimensional regularization renormalize to zero, as
we assume throughout. The latter are not accounted for
in the conformal Nambu-Goto string, but arise from the
extrinsic curvature term (4) in the form [12–14].

D⊥
4

ffiffiffiffiffi
σκ

p
→ μ: ð9Þ

Note that this contribution amounts to a negative boundary
mass term in (4), and vanishes for D ¼ 4 spacetime-
dimensions. It is finite for D⊥ > 2 in the holographic
AdS/QCD approach. The third and fourth contributions
in (8) are Luscher and Luscher-Weisz universal terms in
arbitrary dimensions, both reproduced by expanding Arvis
potential; see [15] for a related discussion of the role of
Luscher terms in the Pomeron structure. The last contri-
bution is induced by the derivative-dependent string boun-
dary contribution (4). (Note that even if the string ends
are constant in external space, they still may depend on the
2-dimensional coordinates on the world volume of a
vibrating string).
We will not discuss the extensive holographic studies of

the EST and related potential [11], but proceed to lattice
simulations of the heavy-quark potential. These studies
have now reached a high degree of precision, shedding light
on the relevance and limitation of the string description. In
a recent investigation by Brandt [16] considerable accuracy
was obtained for the potential at zero temperature and for
pure gauge SU(2) and SU(3) theories. As can be seen from
Fig. 3 in [16], the interquark potential is described to an
accuracy of one-per-mille, clearly showing that both
Luscher’s universal terms,1=r,1=r3 are correctly reproduced
by the numerical simulations. Indeed, for r=r0 > 1.5 (or
r > 0.75 fm for Sommer’s parameter r0 ¼ 0.5 fm) these
two contributions describe the potential extremely well.
Expanding further to order 1=r5, or keeping the complete

square root in Arvis potential (7), would not improve the
agreement with the lattice potential, since the measured
potential turns up and opposite to the expansion. Brandt
lattice simulations [16] have convincingly demonstrated
that the next correction is of order 1=r4 with the opposite
sign. The extracted contribution fixes the b2 coefficient
in (8) as
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~b2 ¼ −
π3D⊥
60

b2 ð10Þ

with the numerically fitted values

bSUð2Þ
2 σ3=2T ¼ −0.0257ð3Þð38Þð17Þð3Þ

bSUð3Þ
2 σ3=2T ¼ −0.0187ð2Þð13Þð4Þð2Þ ð11Þ

(for the details and explanation regarding the procedure and
meaning of the errors we refer to [16]). Note that the overall
contribution of this term to the potential is positive. What
this means is that at r ≈ r0 ¼ 0.5 fm the static potential
contains a wiggle, visible however only with a good
magnifying glass since its relative magnitude is 10−3.
We will now explain how this impacts the scattering
amplitude of color singlet dipoles at large

ffiffiffi
s

p
.

III. FROM THE STATIC POTENTIAL
TO THE POMERON

The (Euclidean) world-volume of the string for a static
and heavy inter-quark potential is a rectangle with the size
ℏ=T in time and r in space. It is assumed that r ≪ ℏ=T and
the string is not excited. In contrast, the BKYZ Pomeron [5]
is derived from a stringy instanton with the world volume
of a shape of a “tube,” with a mean circumference β ¼
2πb=χ and length b, the impact parameter. In this case a
string is little excited when it is long in space, b ≫ β, the
opposite of the condition above.
As discussed in the Appendix of [17], one can map the

two problems at hand via some duality relation, by
exchanging time and space, and also by adding another
mirror image of a potential and match the boundary
conditions. In this case the two partition functions of the
string and its excitations become identical. The explicit
transformation is

2b ↔
ℏ
T
; β ↔ 2r: ð12Þ

Assuming the correspondence between the potential and
the Pomeron is exact we can map the potential (8) onto the
Pomeron scattering amplitude in impact parameter space as

Aðβ; bÞ ≈ 2isK ≈ 2ise−Sðβ;bÞ ð13Þ

with explicitly

S ¼ þσβb − 2μb −
πD⊥
6

b
β

−
8π2

σ

b
β3

�
D⊥
24

�
2

−
25b ~b2
β4

ð14Þ

with σ ¼ σT=2 and 2πσT ¼ 1=α0R. Now, we can recall
the parameters of the “tube” and set β ¼ 2πb=χ, with the
shorthand notation

χ ¼ lnðs=s0Þ: ð15Þ

Following this substitution, one observes that the leading
and subleading terms have very different roles and energy
dependence. For instance, the leading two contributions
with a rapidity dependence in (13) are

e
χ
D⊥
12
− b2

4χα0
P ð16Þ

with the Pomeron intercept of Δ ¼ D⊥
12
, and the term

responsible for the Pomeron slope. The latter yields the
famous Gribov diffusion, at the origin of the large-distance
growth of the hadrons according to the “diffusive law”

b2 ∼ χ ¼ ln

�
s
s0

�
ð17Þ

which exists equally for perturbative gluons and strings.
Furthermore, one should recognize that the stringy

Pomeron approach exists in two versions, the flat space
and the holographic ones. In the former case the space has
two flat transverse directionsD⊥ ¼ 2, while in the latter the
string also propagates in the third and curved dimension.
Since Gribov diffusion also takes place along this
coordinate, identified with the “scale” of the incoming
dipoles, the expressions we will use are a bit modified from
the standard expressions. One such effect, derived for the
BKYZ Pomeron in [18], is the modification of the Pomeron
intercept

D⊥
12

→
D⊥
12

�
1 −

3ðD⊥ − 1Þ2
2D⊥

ffiffiffi
λ

p
�
: ð18Þ

Here D⊥ ¼ 3 and λ ¼ g2Nc is the ’t Hooft coupling,
assumed to be large. In the range of λ ¼ 20–40, (18) is
in the range 0.14–0.18. For the numerical analyses to
follow, we will use for the Pomeron intercept the value
αPð0Þ − 1 ¼ ΔP ¼ 0.18. (This happens to be not far from
the flat space value of 1

6
¼ 0.166.)

At the end of this section, let us discuss the way we fix
the absolute units used in this work. There is a dilemma,
well known in the literature. One textbook approach is to
rely on the slope of the mesonic/baryonic trajectories
α0R ¼ 1=ð2πσTÞ ≈ 0.9 GeV−2, related with the fundamental
tension of the open strings. If so, the closed strings
glueballs should have trajectories with α0glueballs ¼ α0R=2 ≈
0.45 GeV−2 as the tension is doubled. Using those canoni-
cal values is one option to fix the scale. However,
multiple fits to the Pomeron produce different and much
smaller values for αP. The earlier fits in [19] yield
α0P ¼ 0.14� 0.03 GeV−2, while the later ones in [20] yield
α0P ¼ 0.25 GeV−2. We note that the string tension is
warped in holography, and one would expect an effective
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σT and therefore an effective α0R on average. This issue will
not be addressed here.
Inour previouspaper [6]weused the results of latticegauge

simulations [21], as reproduced in Fig. 1, which explains this
deviation by the fact that the leading trajectory—apparently
unlike the second one—is not linear but has a quadratic term.
Our fitted value for αP ¼ 0.20 GeV−2. We will be using this
value to fix the units in this work.

IV. THE PHASE OF THE POMERON

Experimentally, the Pomeron scattering amplitude exi-
bits both a real and imaginary part. The real part is
measured at two locations: at small t ≈ 0, by observing
the interference with the weak Coulomb scattering, and at
the location of the diffractive peak where the imaginary part
vanishes. For the interference measurement, the results are
expressed in terms of the so called ρ parameter

ρ ¼ ReðAðs; t ¼ 0ÞÞ
ImðAðs; t ¼ 0ÞÞ : ð19Þ

The recent TOTEM data [22] give

ρð ffiffiffi
s

p ¼ 8 TeVÞ ¼ 0.12� 0.03: ð20Þ

The textbook description of the Regge scattering ampli-
tudes relates the ρ− parameter with the signature factor
which for small t is captured by the phase factor e−

i
2
πΔP. It is

small if ΔP is small, in agreement with data.
We now note how similar terms appear in the stringy

amplitudes, starting from the positive definite charge
signature C ¼ þ1, the Pomeron. Such a phase appears
when analytically continuing the Euclidean scattering
amplitude at angle θ to π þ θ for the cross channel, as
illustrated in Fig. 2 for quark-quark scattering. The result
after integrating over the impact parameter and keeping
only the two leading contributions in (14) is for theC ¼ þ1
signature

Aþðt; sÞ ≈ 2is

�
π

2
gsaD

�
2

× ððlnðsÞÞ1−D⊥
2 sαPðtÞ þ ðlnð−sÞÞ1−D⊥

2 ð−sÞαPðtÞÞ
ð21Þ

with αPðtÞ ¼ Δþ α0Pt. At large
ffiffiffi
s

p
and small t, (21) is also

characterized by an extra phase e−
i
2
πΔ in agreement with

textbooks. However, we note that while the pre-exponential
factors with lnðsÞ disappear in 4-d flat space, i.e. D⊥ ¼ 2,
as in the textbooks, they do not forD⊥ > 2 as is the case of
the holographic model [see (18)]. The additional preexpo-
nential factors stem in this case from the diffusion in the
additional holographic direction, and are thus completely
necessary. Their inclusion through the branch lnð−sÞ≡
lnðsÞ þ iπ produces a correction to the phase which is
asymptotically subleading at infinite χ, but at current
energies is about −15% (it enters with the opposite sign
to the standard phase.) So, accurate measurements of the
energy dependence of the phase can be sensitive to Gribov
diffusion in the 5th dimension.

V. THE ODDERON

Let us start with the phenomenology of glueballs. One
can get some information about the odderon Regge
trajectory following the same procedure as we used e.g.
in [6]. Specifically, this consists in: 1/ plotting the known
masses (squared) of the appropriate glueballs; 2/ connect-
ing those by plausible lines, to learn the relevant slope of
the trajectories; 3/ extrapolating the upper trajectory to
t ¼ 0. The corresponding plot for the masses of glueball
with positive C parity, taken from the lattice study by
Meyer [21], is shown in Fig. 1 for completeness.
It is straightforward to extend it to glueballs with negative

C-parity aswell, aswe show inFig. 3. First,we note that there
are 4 glueballs with negativeP ¼ −1 (vector-like) and 4with
positive P ¼ þ1 (axial-like) spatial parity. As seen from this
figure, it appears that 6 of those 8 states make three pairs
defining straight and parallel lines with the same (within
errors) slope, namely α0 ¼ 0.32 GeV2. Furthermore,we note

MM
0 5 10 15 20

4

2

2

4

6

FIG. 1. Positive C-parity glueball according to lattice gauge
simulations [21]. The lines are our fit to Regge trajectories [6].

FIG. 2. Euclidean rendering of the qq scattering amplitude at
relative angle θ and the qq̄ scattering amplitude at angle θ þ π.
The continuation to Minkowski space follows through θ → −iχ
with the latter as the charge conjugate of the former. The
relevance of this construction for the Pomeron and the Odderon
is detailed in the text.
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that the lowest (the leftest) vector JPC ¼ 1−− state seems to
belong to the second trajectory. This feature is the same as for
the positiveC parity case, inwhich the lowest scalar 0þþ also
belongs to the second trajectory. We take both features as
indications that the trajectories are correct as drawn here.
Now, with only two states on the upmost trajectory, one

can only define uniquely a straight line. Extrapolation of
those to t ¼ 0 would indicate that the odderon intercept
αOð0Þ is negative. If so, its contribution is suppressed by at
least one power of s compared to the Pomeron, or

ffiffiffi
s

p
compared to the mesonic Regge trajectories: in this case it
is way too small to be observed at RHIC/Tevatron/LHC
energies.
However, we know from experiment (the scattering data

at negative t for the Pomeron) as well as from the positive
C-parity plot (in which one knows 3 states, J ¼ 2, 4, 6)
that the upper Pomeron trajectory is not linear but curved.
One may speculate that the same feature would hold for
the odderon as illustrated by the speculative dashed line
in Fig. 3.
On the theoretical side, the stringy description of the

Pomeron also allows for a stringy odderon. The dipole-
dipole scattering with negative signature follows the same
reasoning as that for the positive signature in (21), with now
the result

A−ðt; sÞ ≈ 2is

�
π

2
gsaD

�
2

× ððlnðsÞÞ1−D⊥
2 sαPðtÞ − ðlnð−sÞÞ1−D⊥

2 ð−sÞαPðtÞÞ
ð22Þ

At large
ffiffiffi
s

p
and small t, the amplitude (22) is only

parametrically suppressed from (21) by tanðπΔ=2Þ.

Remarkably, for the critical bosonic string with
Δ ¼ D⊥=12 ¼ 2, the odderon amplitude vanishes identi-
cally. This is not the case, for the holographic string with
2 < D⊥ ≤ 3, where the suppression is parametrically small
(especially for our empirical value of ΔP ¼ 0.18), but with
an odderon with the same intercept as the Pomeron. The
inclusion of the higher stringy corrections should not alter
qualitatively these observations.
Summarizing this section: the negative C-parity glue-

balls hint toward the existence of a set of Regge trajectories,
with a slope different from any other set. If the leading
trajectory is curved, the location of its intercept αOð0Þ is
likely to lie between zero and one. The odderon drops out
from the critical bosonic string, but otherwise carries a
similar intercept as the Pomeron for the noncritical and
holographic string. While its relative contribution is small,
its reliable observation would also be an indication to
diffusion in the 5th dimension.

VI. THE POMERON SHAPE

A. Phenomenology

The main information we have about the shape of the
scattering amplitudeΩðs; bÞ can be summarized as follows.
One observable is the total cross section, which is related to
it via the optical theorem

σtot ¼ 4π

Z
dbb ImðΩðs; bÞÞ: ð23Þ

Some data points for the cross section are shown in the
upper plot of Fig. 4. As well known, the cross section more
than double from ISR to LHC energies. However, one
should be aware that the low energy plots are affected by
the Reggeons other than the Pomeron. Their contribution
(from the PDG) is shown by the dotted line in the left
corner.
Another important parameter is the elastic slope B

Bðt ¼ 0Þ ¼
�
−
d ln σe
djtj

�
0

¼ 1

2
hb2iΩ: ð24Þ

The corresponding data are shown in the middle plot of
Fig. 4. Their value also grows with the collision energy,
which is due to the effective growth of the proton size
induced by Gribov diffusion process.
In order to understand what these data tell us about the

shape of the profile, it is useful also to plot their dimen-
sionless ratio

R≡ σtotðsÞ
BðsÞ ð25Þ

with the cross section expressed in GeV−2. This ratio is
plotted in the lower plot in Fig. 4. In order to understand
what the ratio (25) tells us, it is convenient to compare it to

0 5 10 15 20 25

–2

0

2

4

6

8

FIG. 3. C ¼ −1 parity glueballs on a Regge plot, showing their
angular momentum J versus their squared mass M2ðGeVÞ2. The
two upper (blue) points and lines are for the negative spatial
parity P ¼ −1 glueballs, and the lower (red) ones are for the
P ¼ þ1. The masses are from lattice gauge simulations [21]. The
lines shows the hypothetical behavior of the Regge trajectories.
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some simplified models for the shape, such as e.g. the
black disc

Ωbd ¼ θðbmax − bÞ; Rbd ¼ 8π; ð26Þ

the Gaussian without a prefactor

ΩG ¼ e−b
2=2b2

0 ; RG ¼ 4π; ð27Þ

and the exponential, also without a prefactor

ΩE ¼ e−b=b0 ; RE ¼ 4π

3
: ð28Þ

The high energy values of the ratio are far from the two
extreme shapes, and rather close to the Gaussian value. The
low energy profiles are in fact also near-Gaussian, but with
the prefactor smaller than one, as we will discuss below.

B. The Pomeron shape and the mass of the string’s ends

As we already noted above, the shapes of the Balitsky-
Fadin-Kuraev-Lipatov and BKYZ Pomeron scattering
amplitudes Aðs; bÞ are both Gaussian, as is typical for
diffusive processes. The prefactor, however, growing as sΔ,
at high enough energy violates the unitarity.
A generic resolution for this situation is well known: one

has to include the “multi-Pomeron effect,” see e.g. [23] and
references therein. A standard procedure is Glauber uni-
tarization, which follows from the substitution

K → Ω≡ 1 − e−K: ð29Þ

The two leading terms in K compensate each other when

χΔ ≈
b2black
4χα0P

: ð30Þ

For b < bblack the interaction is too strong, multiple
Pomeron exchanges screen each other, and the proton is
effectively black. Asymptotically, we have bblack ∼ χ2.
The purpose of this subsection is to incorporate these

effects, and also see whether the fit to the data may indicate
a nonzero value of the first higher order term μ. A technical
point is that standard Reggeon expressions for the ampli-
tude contains the nucleon form factors f2NðtÞ times the
Regge factor sαðtÞ. However, in order to perform unitariza-
tion (accounting for multi-Pomerons) one has to proceed to
the coordinate profile, and in this case the product involves
the convolution of functions, which is unnecessary com-
plicated. A simple way out, sufficient for the purpose of this
section, is to use Gaussian form factors f2NðqÞ ¼ e−Aq

2

which allows us to derive the coordinate profile analytically

Kðs; bÞ ¼ C exp

�
ΔPχ −

b2

4ðAþ α0PχÞ
þ 2μb

�
ð31Þ

where the normalization constant C ¼ 2.2 is fitted to the
TOTEM data, as all higher order stringy contributions
decreasing with b are for now neglected. We remark that
while the occurrence of A in (31) is exact for one-Pomeron

6 8 10 12 14 16 18 20
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6 8 10 12 14 16 18 20
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6
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14

FIG. 4. The upper plot shows σtot in mb versus the log of the
collision energy χ ¼ lnðs=s0Þ. The left-side (low energy) data points
at

ffiffiffi
s

p ¼ 27; 63 GeV are from the old ISR measurements, and the
three right-side points, for

ffiffiffi
s

p ¼ 2.76; 7; 8 TeV are from the
TOTEM measurements. The dotted line in the lower plot indicates
the contribution of the Reggeons other than the Pomeron (from the
PDG fit.) Themiddle plot shows the elastic slopeB (GeV−2), and the
lower plot is their ratio. The curves are for the profile shown in Fig. 5.
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exchange, it is only an approximation in the unitarizedmulti-
Pomeron resummation in the Glauber substitution (29).
A negative μ shifts the maximum of the profile function

away from b ¼ 0, and modifies the shape in a way shown
(for the unitarized profile functions) in Fig. 5. It turned out
that the shape of the amplitude is sensitive to even small
nonzero μ.
Now we invite the reader to look at Fig. 4 again, now

paying attention to the curves. In order to fit the upper plot,
for the cross section, we used a smaller Pomeron intercept
Δ ¼ 0.09. The middle plot, for the elastic slope, is however
independent of its value. One can see that the profile shape
corresponding to μ ¼ 0, the dashed line in the middle plot,
describes the growth of BðχÞ quite well (but is not good for
the value of the ratio at the highest LHC point

ffiffiffi
s

p ¼ 7 TeV
shown. The solid line is better on that. The fact that it
misses the low energy points is less serious since one needs
to subtract the non-Pomeron contributions. The upcoming
LHC data for twice larger beam energy will clarify the
situation, but for now we see that a small negative μ has a
potential to make the description better. Perhaps the
optimum, inside the simple ansatz for the shape we use,
is somewhere in between these two curves.
The purpose of these comparisons is not to get an excellent

fit to the data, as there are already several of those on the
market, using multiparameter and rather arbitrary functions.
Ourmainmessage here is that the profile shape—and the two
observables reflecting it—are very sensitive even to rather
small μ. We think this comparison tells us that its value is
definitely small, perhaps slightly negative.
There are also some theoretical justifications for a

nonzero μ, with a suggested sign. In fact, we already
mentioned it in (9): the extrinsic curvature term in the
action does indeed produce such a contribution, see
[12,13]. One may further ask if lattice studies of the
potential can also help to find the magnitude of μ.
Unfortunately, on the lattice the constant term in the

potential μ ∼ 1=a is singular in the a → 0 continuum limit
(a pointlike charge). A subtraction is possible, but the
accuracy of the remaining finite part is not good enough.
Concluding this section, let us also mention another

(admittedly much more exotic) origin for the BðsÞ, σðsÞ
growth with energy: a hypothetical repulsive string self-
interaction, briefly discussed in [17].

C. The Pomeron profile and the Hagedorn transition

In our paper [6] we discussed the transition between
the stringy and perturbative regime, using the so-called
Hagedorn transition in which strings get highly excited. At
the beginning of this paper we have discussed the static
potential, in which a specific structure—the “wiggle”
indicating a transition between two regimes—has been
identified. Furthermore, we argued that a stringy duality
can connect the static potential and the scattering ampli-
tude, in a well-defined way.
Now, let us discuss the issue phenomenologically.

Suppose a “wiggle” is also present in the Pomeron profile
function: what observables should be used to locate it?
Our first comment is that pp collisions at LHC energies

already have a certain structure in its unitarized profile
function, namely the black disc. Obviously any structure in
the amplitude inside the black disc, for r < rbd, is unob-
servable. To go around this difficulty one can either return
to much lower energies of pp collisions, or focus on γp
collisions at the future Electron-Ion Collider.
Suppose now that the wiggle happens at impact param-

eters outside the black disc region. For simplicity, let us
imagine a small peak in the profile function at certain
value of the impact parameter bpeak > rbd. A Fourier-Bessel
transform to momentum space will produce an oscillating
signal ∼J0ðqbpeakÞ. Its minimum is at qbpeak ≈ 4, and the
second peak is at qbpeak ≈ 7, not far from 2π.
In fact TOTEM at 8 TeV does observe certain non-

Gaussian deviations of the elastic peak, parametrized by
a simple Gaussian econst�t, with a minimum located at
q2 ≈ 0.1 GeV2. If this corresponds to a structure in the
profile function, its location should be at

bpeak ¼
4

0.316 GeV
≈ 2.5 fm: ð32Þ

This distance is way too far for the location of the
Hagedorn transition. The corresponding tube temperature
is way too low, and cannot correspond to this transition.

VII. SUMMARY

The effective string theory suggests corrections to the
fundamental string Lagrangian, and elucidates how these
corrections modify the linearly rising potential at shorter
distances. QCD lattice numerical simulations do indeed
reveal two universal “Luscher terms” and a new
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FIG. 5. The unitarized profile function Ω ¼ 1 − e−K, for
ffiffiffi
s

p ¼
8000 GeV (upper blue curve) and 62 GeV (lower red curve),
versus the impact parameter b (GeV−1). The solid curves at all
plots are for the parameters A ¼ 7. GeV−2, μ ¼ −0.04 GeV, and
the dashed ones are for A ¼ 4.5 GeV−2, μ ¼ 0. The dotted line in
the lower plot indicate the contribution of the Reggeons other
than the Pomeron.
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nonuniversal term at even shorter distances responsible for
the appearance of a wiggle in the potential. Albeit small in
amplitude, it clearly marks the transition from the pertur-
bative to the stringy regime.
The description of the static heavy quark potential in

QCD can be mapped onto the Pomeron scattering ampli-
tude by string duality. We have suggested that the scattering
amplitude can provide a more direct test of the string
dynamics than the static potential. We have discussed the
effects predicted by those approaches, for the Pomeron size
and shape. The future experiments at the Electron-Ion
Collider should allow, through the measurements of differ-
ential cross sections of γ�p scattering, to elucidate the
structure of the Pomeron and more accurately define the
domains of its pQCD and string descriptions.
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APPENDIX: UNITARIZATION
FOR FIXED SIGNATURE

The fully unitarized scattering amplitudes of given
charge conjugation signature T C¼� in impact parameter

space, follows from (13) in terms of K, and its charge
conjugate χ → χ − iπ in terms of ~K. Specifically, for fixed
impact parameter we have

T þ þ T − ¼ 2isð1 − e−Kþ ~KÞ
T þ − T − ¼ 2isð1 − e−K− ~KÞ ðA1Þ

or equivalently

T þ ¼ þ2isð1 − e−K cosh ~KÞ
T − ¼ −2ise−K sinh ~K ðA2Þ

The total cross sections for pp and pp̄ scattering can be
deduced from the forward scattering parts of (A1)

1

2
ðσpp̄ þ σppÞ ¼

4π

s
Im ~T þ

1

2
ðσpp̄ − σppÞ ¼

4π

s
Im ~T − ðA3Þ

where the Fourier transform at t ¼ 0 is subsumed in the
amplitudes in (A3).
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