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Nonlinear responses of chiral fluids from Kinetic theory

Yoshimasa Hidaka,' Shi Pu,’ and Di-Lun Yang'
"Theoretical Research Division, Nishina Center, RIKEN, Wako, Saitama 351-0198, Japan
% THEMS Program, RIKEN, Wako, Saitama 351-0198, Japan
3Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

® (Received 13 October 2017; published 8 January 2018)

The second-order nonlinear responses of inviscid chiral fluids near local equilibrium are investigated by
applying the chiral kinetic theory (CKT) incorporating side-jump effects. It is shown that the local
equilibrium distribution function can be nontrivially introduced in a comoving frame with respect to the
fluid velocity when the quantum corrections in collisions are involved. For the study of anomalous
transport, contributions from both quantum corrections in anomalous hydrodynamic equations of motion
and those from the CKT and Wigner functions are considered under the relaxation-time (RT)
approximation, which result in anomalous charge Hall currents propagating along the cross product of
the background electric field and the temperature (or chemical-potential) gradient and of the temperature
and chemical-potential gradients. On the other hand, the nonlinear quantum correction on the charge
density vanishes in the classical RT approximation, which in fact satisfies the matching condition given by

the anomalous equation obtained from the CKT.
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I. INTRODUCTION

In recent years, there have been mounting interests in the
transport of relativistic Weyl fermions in both nuclear
physics and condensed matter systems. One of the renowned
examples is the study of chiral magnetic effect (CME)
associated with the chiral anomaly, from which a vector-
charge current is generated along magnetic fields for Weyl
fermions, Jy, = 0B, where oy represents the CME con-
ductivity characterized by chiral imbalance and the coef-
ficient of chiral anomaly [1]. Such an effect draws much
attention for the research in heavy ion collisions, where a
system with approximated chiral symmetry could be real-
ized in quark gluon plasmas (QGP). In addition, a strong
magnetic field generated by colliding nuclei and the local
chiral imbalance stemming from topological excitations
makes heavy ion collisions a suitable testing ground for
CME [2-5]. On the other hand, in Weyl semimetals, the
quasiparticles at Weyl nodes mimic relativistic Weyl fer-
mions. By pumping a nonzero axial chemical potential
through applied electric and magnetic fields parallel to each
other, longitudinal negative magneto-resistance associated
with CME has been recently observed [6]. Moreover, not
only magnetic fields but also vorticity could trigger an
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anomalous current, known as the chiral vortical effect (CVE)
[7]. As the counter part of vector currents, both magnetic
fields and vorticity could also induce axial currents, where
the former case is dubbed as chiral separation effect (CSE)
[3]. The interplay between CME and CSE could further
yield propagating charge-density waves [8], which only rely
on local fluctuations of vector and axial charges and hence
exist even in the absence of net vector/axial chemical
potentials. Such charge-density waves known as chiral
magnetic waves (CMW) could lead to potentially measur-
able observables in heavy ion collisions [9]. There are also
some studies for axial currents induced by electric fields via
interactions [10-12].

On the theoretical side, these quantum effects particularly
for CME/CVE associated with quantum anomalies have
been investigated from various approaches including field
theories based on Kubo formula [3,4,13], kinetic theory [14—
23], relativistic hydrodynamics [24-28], lattice simulations
[29-35], and gauge/gravity duality [36-39]. Peculiarly,
recent progress in chiral kinetic theory (CKT) with the
manifestation of Lorenz symmetry and the incorporation of
collisions has facilitated our understandings on anomalous
transport out of equilibrium [40-42]. It is found that the
presence of side-jump terms in Wigner functions or equiv-
alently the modified Lorentz transformation of distribution
functions pertinent to side-jump phenomena of Weyl fer-
mions is crucial for Lorentz covariance and the contribution
to CVE. Regarding the Lorentz covariance of CKT, see
Refs. [18,23] for the derivation through Wigner functions of
relativistic fluids near equilibrium and Refs. [43,44] for a
different approach by using the worldline formalism.

Published by the American Physical Society


https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.97.016004&domain=pdf&date_stamp=2018-01-08
https://doi.org/10.1103/PhysRevD.97.016004
https://doi.org/10.1103/PhysRevD.97.016004
https://doi.org/10.1103/PhysRevD.97.016004
https://doi.org/10.1103/PhysRevD.97.016004
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

YOSHIMASA HIDAKA, SHI PU, and DI-LUN YANG

PHYS. REV. D 97, 016004 (2018)

Although it is generally believed that the linear response
such as CME conductivity oy is protected by chiral
anomaly and independent of the interactions, the nonlinear
responses of Weyl fermions could be affected by inter-
actions. Moreover, it has been recently pointed out that the
frequency dependent CME conductivity oz(w) could be
modified by collisions, the energy shift from the magnetic-
moment coupling, and magnetization currents associated
with side jumps in the nonequilibrium case [4,21,45]. On
the other hand, the coupling independence of the CVE
coefficient is in general under debate." Similar to the case
for background fields, the nonlinear responses involving
vorticity may be influenced by interactions as well. In
anomalous hydrodynamics, one could classify the possible
second-order corrections related to anomalies based on
symmetries and thermodynamics [28]. However, it is useful
to utilize microscopic theories such as CKT to obtain such
coefficients and analyze their dependence on thermody-
namical properties.The second-order nonlinear transport in
Weyl-fermion systems have been recently studied with CKT
in Refs. [51-53]. Nonetheless, these studies aim at systems
in the absence of collective motion for quasi-particles,
which are applicable for Weyl semimetals such that the
interaction among quasiparticles is suppressed by their
collisions with impurities and phonons. In such cases, the
energy-momentum conservation could be violated when
neglecting the backreaction upon environments. On the
contrary, in QGP, the fluidlike properties of Weyl fermions
should be taken due to strong coupling and hydrodynamics
impose the energy-momentum conservation. Although in
reality the QGP coupling could be too strong for the
legitimacy of a kinetic-theory description, there exists a
temporal window in early times of heavy ion collisions such
that the kinetic theory is applicable to delineate the collective
motion of quasiparticles, e.g., see Ref. [54] for the boost
invariant formation of CKT and the so-called chiral circular
displacement, and Refs. [22,55] for the very recent numeri-
cal simulations of CKT in heavy ion collisions.

Furthermore, even in Weyl semimetals, the strongly
interacting quasirelativistic plasma could be possibly real-
ized and the hydrodynamics of Weyl fermions should be
considered. See e.g., Ref. [56] for such a discussion and the
references therein for Dirac fluids in graphene. Therefore,
in the comparison with the studies [51,52], it is also of
interest to consider the nonlinear response of CKT under
the constraint of hydrodynamics.

In this paper, we investigate second-order nonlinear
responses in a chiral fluid with background fields and
vorticity by employing the CKT derived from quantum

'For one of the CVE coefficients only depending on temper-
ature and contributing to axial currents, it is proposed that such a
coefficient could be protected by mixed-axial-gravitational
anomaly [13,39], while it is found there exists an exceptional
case [46,47]. See Refs. [48-50] for some following works.

field theories [42]. Due to the involvement of side-jump
terms in collisions, it is nontrivial to show the definition of
local equilibrium distributions functions in a proper frame.
We tackle this issue first and then focus on nonlinear
responses with respect to local fluctuations away from
equilibrium led by background fields and local temperature/
chemical-potential gradients for right-handed Weyl fer-
mions. In the following, we briefly mention our strategy
and summarize some important findings. To solve for the
corresponding nonlinear responses perturbatively in gra-
dient expansions, we first apply continuity equations to
derive anomalous hydrodynamic equations of motion
(EOM) given the first-order transport coefficients obtained
from equilibrium Wigner functions. Next, we implement
CKT to obtain the nonequilibrium corrections of distribu-
tions functions in aid of anomalous hydrodynamic EOM.
Given the nonequilibrium distribution functions, we
directly compute the charge current and charge density
defined by Wigner functions. For simplicity, we neglect
viscous corrections and utilize the relaxation-time (RT)
approximation for the study of nonlinear responses.
Through the paper, we refer quantum corrections to the
corrections at O(#) in the Wigner-function approach, which
originate from the spin of Weyl fermions and anomalies,
e.g., some nonlinear responses are from combination of the
side-jump and anomalous hydrodynamic transports. The
higher-order corrections in O(#?) are beyond the scope of
this paper. To give a quick view and simple explanation,
here we summarize our findings in short:

(1) When quantum corrections from side jumps in
collisions are considered, the local equilibrium
distribution functions can be defined in the frame
in accordance to the fluid velocity.

(2) Without applying anomalous hydrodynamic EOM,
which corresponds to a system breaking energy-
momentum conservation due to the interaction with
the environment, the quantum corrections of the
second-order responses for charge currents under a
“naive” RT approximation give the terms propor-
tional to V x E and E x Vy, which agree with the
findings in [51,52]. Here E and i denote an electric
field and a chemical potential.

(3) By using anomalous hydrodynamic EOM, which
corresponds to an isolated system, the transport
coefficients for the VX E and E x Vu terms in
charge currents are modified. Furthermore, the E x
VT and (Vu) x (VT) terms emerge from hydro-
dynamics, where T denotes temperature.

(4) For an inviscid chiral fluid, vorticity does not affect
the nonlinear responses in charge currents up to the
second order.

(5) Except for the implicit quantum corrections from
collisions, the nonlinear quantum correction on
charge density vanishes with hydrodynamic EOM
in the RT approximation. The result is consistent with
the matching condition from the anomalous equation.
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We note that a relevant study was previous presented in
Ref. [57], whereas the background fields were not included
and the subtlety of local equilibrium stemming from side
jumps was not discussed therein.

The paper is organized as following: In Sec. II, we
investigate the interacting Weyl fermions in local equilibrium
from the Wigner-function approach. In Sec. III, we work out
the nonequilibrium distribution functions involving the
second-order quantum corrections for an inviscid chiral fluid
by using CKT and hydrodynamic EOM. In Sec. 1V, we
implement the non-equilibrium distribution functions to
compute the second-order quantum corrections for the
charge current and density. We also analyze the correspond-
ing vector/axial currents in high-temperature and large-
chemical-potential limits. In the beginning of each section
above, we briefly explain our strategy and highlight the key
equations and findings, which could be helpful for readers
who are not interested in the details of computations. In
Sec. V, we make brief discussions and outlook. For reference,
we include the conventions and some widely-used relations
in Appendices despite some overlap with the context. We
also present the details of some calculations therein.

Throughout this work, we have choose the metric
N =diag{+,—,—,—}. Therefore, the fluid velocity u* sat-
isfying u*u, = 1, and the projector is given by @ = n* —
uu’. We also use the Levi-Civita symbol €% and

choose €123 = —¢j1p3 = 1.

II. LOCAL EQUILIBRIUM WIGNER FUNCTIONS

Before working on nonlinear responses away from
equilibrium, first we would like to review the chiral kinetic
theory with side-jump based on the Wigner-function
approach in Sec. II A. Because of side jumps, the distribu-
tion function becomes frame dependent stemming
from % corrections. Therefore, we need to define the local-
equilibrium distribution function in a proper way.
Consequently, we review the well-defined case in global
equilibrium in Sec. II B, where the explicit form of the
global-equilibrium distribution function for an arbitrary
frame is shown in Eq. (12). Then we further investigate
the case in local equilibrium in Sec. II C. It turns out that the
local-equilibrium distribution function can be introduced in
a co-moving frame with the form in Eq. (12) such that the
collisional kernel in CKT vanishes for at least 2 to 2
scattering. The explicit expression of the corresponding
Wigner function in local equilibrium is presented in Eq. (21).

A. Wigner functions and chiral kinetic theory

Wigner functions are defined as the Wigner transforma-
tion of lesser/greater propagators,

3<) (g, X) = /d4Ye%S<(>)(x,y), (1)

where §<(x,y)=(y" (y)w(x)) and $7 (x,y) = (w(x)y " (y))
as the expectation values of fermionic correlators with
Y=x-—y and X = (x+y)/2. Here the gauge link is
implicitly embedded to keep gauge invariance and hence
g, denotes the canonical momentum. As shown in
Ref. [42], by solving Dirac equations up to O(#), the
perturbative solution for the less propagators of right-
handed Weyl fermions is given by

5%(¢.X) = 5,5%(q.X)

= 5,212(q - ) (45() " + ho(a?) Sy DS

96(q*) (n
+ hgﬂyaﬂqua[)’ za(qz) fE] )) ’ (2)

where &(q - n) represents the sign of g - n, 6* = (1, —6) are
the spin matrices, and

oz €Ml/0{ﬂ (3)
=———qg.n
") = 2(q - n) "

denotes the spin tensor depending on a frame vector n*. The
choice of a frame corresponds to the choice of an observer
and n* as a timelike vector represents the four velocity of

this observer. Here we denote Dy f ) Ayf ) _ Cy, where
A, =0, + F,0.Cy = S5 71 — 27 £ with £ being

less/greater self-energies and £ and 7" = 1 — £\ being
the distribution functions of incoming and outgoing par-
ticles, respectively. In a general case, the distribution
functions here are frame dependent, which follows the
modified Lorentz transformation between frames”

herq, n;j n,

(') _ pn)
/ 2q-u)g )

g =Jq

D,fy. (4)

Note that both the energy-momentum tensor and currents
can be directly obtained from Wigner functions,’

*The transformation between different frames here is equiv-
alent to the inverse Lorentz transformation of ¢* and X*. Due to
the side-jump term associated with S’(‘n”) in Wigner functions, the

distribution function is no longer a scalar, which thus undergoes
the nontrivial frame transformation or equivalently the modified
Lorentz transformation upon phase-space coordinates. One may
refer to Ref. [42] for more details. As we will discuss later, the
explicit expression of distribution functions sometimes may have
to be introduced in a particular frame.

When performing the explicit computations of currents and
energy-momentum tensors from Wigner functions, one actually
takes normal ordering and drops infinite constants coming from
the anticommutation relation of fermions.
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5+ g3,

dq .
= 2/(2—7$S<ﬂ
(5)

In Ref. [42], n* is chosen to be independent of ¢ and X
except for the part inside collisional kernel, which corre-
sponds to the choice of a global observer in the lab frame.
However, when choosing a local observer, n* could depend
on spacetime coordinates and the CKT has to be modified.
Assuming the frame vector n* only depends on X, we find

(27)*

ASH=0,5% 1 F,, 0,3
=2né<q-n>{5<q2>q-A+hé<q V[F (9451%)D,

+ 800 (OuF )y (0,5,

ut pv

06 q2 v 1 n
A 50, et s
(6)

and
7 SoH— %7 S=H

06(q?
—2a(q-1) ()4 hen 0,0, Fog i ). ()

From AﬂS = Z;S TH— Z;:S’ <H_ carrying out similar com-
putations as in Ref. [42], the corresponding CKT takes the
form,

5(612 - h%) { [q A fzfl(w>E) ) (0uF )04
+ 1l (g, X)] =g c} =0, (8)

where

{1 (9.X) = (0,574)D

el 1,q49"(0,n,)
fd _ D
2q n <Q(1(8unu) q-n > p (9)

comes from the choice of a local observer. Here the
electromagnetic fields are defined thorough the frame
vector n*,

v —
n F;w fE”,

€uapBin” + ngE,

1
Eeﬂ”o’ﬂnl,Faﬂ = B,

Faﬂ = — - I’laEﬂ. (10)

Note that C, implicitly incorporates % corrections since it
contains at least one internal line of Weyl fermions in the
self-energy, which is true for most of realistic scattering

processes, and the side-jump term will in general be
involved. One can alternatively write the CKT as

ny

fzS( >E
{q D+—LED, 1S (0,F,) 0 +
q-n

ut’pv

+h(8,8)D, | £
=0. (11)

When taking n* = (1,0) and using the on-shell condition,
the CKT reduces to the usual three-momentum form in
Refs. [17,42].

B. Global equilibrium cases

It is shown from the semiclassical approach that a global
equilibrium distribution function of a rotating Weyl fluid
could be defined frame-independently [41]. We shall first
present an equivalent description in Wigner functions and
discuss an obstacle for the generalization to local equilib-
rium. Following the definition in Ref. [41], we take the
distribution function of right-handed fermions as

v

1= (-5 ).

(12)

ZQ(”) =(e9+ 1)1,

where f = 1/T is the inverse of temperature T, i = u/T
with y the charge chemical potential, and u* represents the
fluid velocity. In our further calculations, we also often use
the ordinary distribution function without side jumps,

=+ 1) g=pgu—p  (13)

We shall find that Eq. (12) gives rise to the distribution
functions in global equilibrium with constant 7" and u. For
general conditions, we may decompose the derivative of u,
into symmetric/antisymmetric parts 0,u, = 6,, + @,
where 6, = (0,u, +0,u,)/2 and w,, = (0,u,—0,u,)/2.
By introducing the fluid vorticity

' =Py, (0,up), (14)

N[ —

we may further rewrite the antisymmetric part as
a)aﬂ = —€aﬂ/wa)ﬂlftv + Kaﬂ7
1
Kop = 3 (gt - Oug — ugu - Ouy,), (15)

and the dual tensor

(Z)ﬂv—lﬂvaﬂw —lﬂvaﬂ - Oup + ut — ' ut
=5 "/}72 uqlt - ug u w’ut.

(16)

By inserting Eq. (12) into Eq. (2) and using the relation
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S/)D (Z)/w’
v () r
S @+ 4" Vp = =5

we obtain

§<H =278(q - n){ [5(q2)<q” +§[u"(q-w)—w"(61'u)]5q.u

h
- (6””“ﬁq,,uau -Oug) 0y

hq”Sp” w
_T(a )0, hS(n)E,,@q,u>
va 85(6]2) 0 v
R g, Fop— o £ =ns(@)sec,p. (1)

where we define

(q-u)
T

81/T_qg<o-va+’<va)7 E,=E,+To,p.
(18)

For a rotating fluid with constant 7 and u such that

T, (Bu,) = —€,q5u” 0, the Wigner function reduces to

s =2uta-n{ [o() (o +51 0 0)-0(a 00,

95(¢%)
P 204

+ hew b g, F } 9 _ns(q )S’;,j)cb}. (19)

The original side-jump term combined with the spin-
tensor correction in fg! results in a frame-independent
contribution associated with vorticity, which suggests that

f(qo) should be also frame independent and the relevant
parameters 7', u, and u* could be defined universally in
arbitrary frames. Given that the collisional kernel vanishes
in the center of mass (COM) frame as a no-jump frame
[41,42], it should now vanish in an arbitrary frame for
global equilibrium. Therefore, the Wigner functions for
a purfly rotating Weyl fluid in global equilibrium takes the
form

Sit=2e(q-n) [ o(62) ¢ + 5 4 -0) - -0 )

95(q?
+ heﬂy(lﬂquaﬂ 28(22):| fEIO) . (20)

Nonetheless, when 7', y, and u,, are local parameters, which
contribute to not only the vorticity, Eq. (17) also indicates

*Frame dependence of the sign function é(q - n) does not affect
the conclusion.

that these parameters are no longer frame independent
under 7 corrections. Although one can introduce local-
equilibrium distribution functions in the COM frame such
that the collisional kernel vanishes, which is equivalent to
introduce multiple observers for different scattering events
with different momenta of incoming and outgoing particles,
it is impractical since we may only solve for the distribution
function with just one observer in CKT. Technically, in
CKT, the Wigner function in A - §< cannot work in the
COM frame when T, p, and #* depend on the momenta of
other scattered particles as a consequence of their 7
corrections.

Since it is formidable to find a general expression of
the local equilibrium distribution function for an arbi-
trary frame such as Eq. (12) in global equilibrium, we
may downgrade the problem to seek for the local
equilibrium function in a particular frame, from which
one can implement the modified Lorentz transformation
to write down the corresponding distribution functions
in different frames. Fortunately, we find that setting
n* = u* as the comoving frame with the expression in
Eq. (12) fits our purpose, which yields the vanishing
collisional kernel in 2 to 2 scattering albeit the proof is
somewhat technical as we will show in the following
subsection.

C. Local equilibrium cases

By taking n* = u* with the distribution function in
Eq. (12), the Wigner function can be written as

S =2xe(q - u)5(q?)

06(q? ealu
X (q” + fLS’(“L:) A, + he*P g, F (g )> qq< )

aﬁqu
—2n2(q-1) |8(6°) (¢ + 5 ¥+ 0) = (1)

he' P F

—hS"”anu> f“”a S(q )]fq. (21)

Here the collisional corrections in the side-jump term do
not contribute to Sleq since C, at O(1) should be propor-
tional to either g, or u,. Given that f(qo> = e—ﬂ@'“—wfg(’),
where the bar for f, here corresponds to the distribution
functions for outgoing particles, we can write down a
relation between the less and greater propagators,

eq a ~ 57 — (vw - Sleq @ Speq - 1)

L e s
ZT(q M) ﬁ leqa | -

St — e=Plau—p) (S‘>ﬂ
(22)

For the leading-order 2 to 2 Coulomb scattering as
considered in Ref. [42], using Eq. (22), one finds
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Sig  Z° = Sieg - =7 = had(q?) /

k’4( k')
where we introduced a compact notation for the
integral,

d*q' d*kd*K’
[ = [ o a k= k)aa" 605K,
q kK (27)
(24)
and
v / 1 / /
2q.q") = =5 ((q-u)(q" - w) = (q-o)(q"-u))
etvaby -
——q,E3(q) . 25
M Tranil (') da (25)

Here |[M|? is the squared matrix element for the 2 to 2
scattering process:

_|_

IM? = 4e? [(q ), (¢ q’)]z.

(g-k)  (q-K)

The vorticity cancels out in the sum of ¥(q, ¢') and 7(¢’, )
appeared in Eq. (23):

(26)

\ \ MP?
Seq 27 = Sieg 127 = h”‘s(qz)/ i Ak KT

e (B

90

where E(q) =E-TVi+ (V(q-u) + (q-V)u)/2. It
turns out that this integral actually vanishes, which can
be shown based on the symmetry as discussed below.
Apparently, the TV terms in the integral cancel each other.
Now, considering the inversion of spatial momentum and
electric fields (q —» —q, q¢' = —q', k » -k, kK’ - —k’,
E — —E). In Eq. (29), we find that the integral is an odd
function under the inversion. On the contrary, from the
remaining terms in the integral, a nonvanishing collisional
kernel should only be proportionaltoq - E and (q-V)(q-u)
and thus should be “even” under the inversion. Accordingly,
the integral in Eq. (29) and the full collisional kernel should
vanish. We thus conclude that Eq. (21) indeed corresponds
to the local equilibrium Wigner function at least when
considering only 2 to 2 scattering.

ITII. NONEQUILIBRIUM DISTRIBUTION
FUNCTIONS

Our final goal is to evaluate second-order quantum
corrections on the charge current and density when the

©_ 70 FOR g q

)+ q) =2k k) =2 (K k)], (23)

. 5 et by, E 5(q
1q.94)+x(d.q) = q,,qa(

—
|
=
—
_Q
~—
N—

T (¢"-u) (q-u)
(27)
and thus
S’Eeq.z<_5‘feq,z>
e/wa/}
—fln’é(q2)/kk’4|<M )fq f fk fk’ i
o (Bld) BN Eﬂ(k/)_E,,,(m
{q"q"<(61’-u) (q-u)> k"k“((k’~u) (k-@)]'
(28)

It is clear to see that the vorticity-related part, which is
actually independent of frames, vanishes by symmetry.
This finding agrees with the case in global equilibrium.
Now, we shall deal with the rest part pertinent to Eﬂ.

For convenience, we can work in the local rest frame
w* = (1,u(X)) such that u ~ 0 and 9,u° ~ 0 yet d,u # 0.
Then we find

s e T
E(q) n (E(K) Ek)
B (RO o

|
system is slightly away from local equilibrium. To handle
this problem, we follow the standard strategy: expanding all
the quantities and evolution equations in the power series of
f and space-time derivative 0. In the previous section, we
have defined the distribution function in local equilibrium.
Nevertheless, we have to first derive the nonequilibrium
distribution functions led by fluctuations up to the O(45?).
In addition, since we consider a closed system, we shall
impose the energy-momentum conservation through
anomalous hydrodynamics dictated by continuity equations
in Eq. (36) as constrains for CKT.

In Sec. III A, we derive the equations of motion (EOM)
for anomalous hydrodynamics necessary for the study of
corrections on nonequilibrium distribution functions.
Those anomalous-hydrodynamic EOM will govern the
dynamics of free thermodynamic parameters such as 7,
u, and u* in local-equilibrium distribution functions as
shown in Eq. (44). Later, these relations have to be applied
when solving the nonequilibrium distribution function
perturbatively from CKT.
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Subsequently, in Sec. III B the nonequilibrium distribu-
tion function is perturbatively solved from CKT by using
an ansatz in Eq. (56) with the RT approximation. The
corresponding solutions are presented in Egs. (59) and (60),
where the quantum part is further composed of three pieces
coming from the # corrections in CKT, hydrodynamic
EOM, and postulated terms in collisions, respectively.

A. Anomalous hydrodynamic equations

Now, armed with the local equilibrium Wigner function
in Eq. (21), we may first proceed to reproduce first-order
anomalous transport coefficients in hydrodynamics, which
have been studied from various approaches (e.g., see
Refs. [14,58] and the references therein). On the other
hand, we will also derive the hydrodynamic EOM with
quantum corrections, which further contribute to the
second-order transport.

In local equilibrium, the constitutive relations for energy-
momentum tensors and charge currents are given by

T — e — pO + Tl + I,
J# = Nou" + vhon + V. (30)

where @ =y — y*u” and e and p denote the energy
density and pressure, respectively. Here the subindices
“non” and “dis” represent the nondissipative and dissipative
corrections, respectively. The nondissipative corrections
come from anomalous transport, which can be written as

hen = A, (0 u” + o*u*) + hég(BFu + But),
Vhon = hogB* + ho 0, (31)

where £, and £y contribute to the heat conductivity and op
and o, corresponds to the charge conductivity of CME
and CVE, respectively. Note that the electromagnetic fields
are defined in Eq. (10). Such decompositions we applied are
more convenient to be embedded into CKT, which
are distinct from the Landau frame implemented in the
previous studies of anomalous hydrodynamics such as in
Ref. [24,59].

We may compute the nondissipative contributions of
energy-momentum tensors and currents from the Wigner
functions in local equilibrium,

d*q N N
T{’e”q = w'ue — pO* + Ihon = /W(Q”Sfeg + q”Slzg),

Jo N+ vl =2 [ LD e (32)
leq ol Vnon (27[)4 leq’

whereas the dissipative parts stem from nonequilibrium
corrections associated with collisions. In practice, it is more
convenient to work in the local rest frame to derive the
transport coefficients and plug them back into the

constitutive relations. By employing Eq. (21) and carrying

out direct computations, we find
7”2 =2 =4 T3 =3

120 4 " 822
(33)
T’ 3 H
Oy 12 < + 7‘[2 )’ OB 47[2 ’ (3 )

and

T3 i T? 3i*\ o
- 7 - = 1 —_— :—w_
&, 6<ﬂ+ﬂ2> Ny, &p 24< +ﬂ2> > (35)

Note that E* term in 5‘;" does not contribute to v, and [Thsy,
which can be shown in direct calculations. The anomalous
coefficients obtained above agree with what have been
found previously e.g., from Kubo formulas [58] or hydro-
dynamics with second-law of thermodynamics [25].
Subsequently, using the continuity equations,

h
T =Fr],  0J'=_(E-B). (36
T

and taking the projections, we obtain

u,0,T" = (e + p)0-u+u-0e + h(w - 9&, + &,0 - @
(@ u) - 0)E, + &l u)(D- )
+ Eyuyu - 0w*) + (0 <> B) + u, 0,113
=(e+p)0-u+u-de+hlw-9&,+E,0 @
+ Eyuyu - 0w*) + (0 <> B) + u, 0,113
= u, ], (37)

and

070,T" = (e + p)u - Ou* — 0*p + u*(u - Op)
+ hlé, (@ )u* + E,0%0 - u + 0 (u - 0)&,
+ &, (u- 0)w* — u*é uu - 0w” + (w <> B)]
+ @36,411’;;
= (F* +u"E)J,. (38)

For convenience, we will work in the local rest frame and
our goal is to solve for the time derivatives of parameters 7,
j, and u. In addition, the incorporation of ¢/ and ITj
will result in O(9?) corrections on dyu, 9T, and Oyji.
Consequently, 4 and IL;, which could yield quantum
corrections at least for O(79%) in CKT, will be omitted. The
calculations in a covariant form are shown in Appendix B.

For simplicity, we further drop the viscous corrections.
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Working in the local rest frame and implementing
the constitutive relations, the continuity equations give
rise to

OpN¢ = —71[60 : Vaw + 26,0 - Jdyu + B - Vo

+op0-B]+ 4h (E - B), (39)

472
Ope = —h(w - VE, +E,0- @+ &, - Dyu)
- fl(B . VfB +§Ba B +§BB . aou)

+ h(o,(E -®) + op(E - B)), (40)

(e + p)opu = Vp — NoE + hlw0yé,, + &,00w + Byép
+ &50oB = (¢ + 0,,) (@ x B)]. (41)

In aid of Bianchi identity 9, F** = 0 and 9,&@" = 0, which
takes explicit forms as

0-B-2E -w—B-0yu=0,
0B+ Bxw+ (VXE-E x09yu) =0, (42)

and
0-w—2w-0yu=0, aom—%Vx(Bou)zo, (43)

we perturbatively solve the continuity equations up to O(#)
and obtain the hydrodynamic EOM,

T - N
- =hE - (TyB+T,07).
dopt = h€ - (igB + fi,oT), (44)
and
VT NyE
dou=0ou® + hdysu, Jpu® =427
T 4p
E x

~ ~ VT -
h&ﬁu:h(UEVxE—i—UT T +U;,E><Vﬂ>, (45)
where the coefficients involved have the following
dimensions in energy, TB((‘,) 1 O(T73), FB(w) - o(T73),
U erni O(T2). The explicit forms of these coefficients
read

T NoAT (i +7°)
Op=Ur= 3+ 17)

E= YT =56, [( fi +7°) 20

~ T’ o S, A S Ng
U”:384pzﬂ2|:No(3ﬂ + )+/4T(,u +7[) 20—(0_? ’

(46)

. 150 (157* + 50727 + 197%)

Tp=-— ,
B 2(15p% + 62 + 7a%) (150 + 30272 + T2%) T3
_ 5(451° + 75 n* — 9t — 72%)

T,=- 5
Y (15p* 4 6p%a? + %) (155* +30p2 2% + 72 T3
(47)

. 3(75u° + 375 n? + 285p*n* + 497°)
HB = 50150* + 6p2n* + 12 (158" + 30242 + 12T
3(75u® + 225j*n* + 65f*n* — 212%)
(15u* + 6p° 7> + Tx*) (155* + 30p* 2% + 72T
(48)

law =

On can make a quick crosscheck with what have been
found in the Landau frame, for which we shall shift the
fluid velocity as

-~ {“a)y Bﬂ
i = w4 p S BB (49)
€+ p
which yields
J{leq = Noilﬂ + fl&w(l)ﬂ + h(}BBM, (50)
where
N, N,
5(1):0(0_ ng, 83203—0—58. (51)
e+p e+p

By using the result in Eq. (45), we derive

~ VT Nog flU
Ol =—— — -2 B, 52
ot T + 4p 8p @ (52)

which is in accordance with the finding in Ref. [59]. As
discussed therein, this equation is responsible for the chiral
Alfven waves.

B. Nonequilibrium responses from CKT

In this section, we would like to investigate the second-
order corrections in terms of gradient expansions on the
distribution functions when a system is slightly driven
away from local equilibrium by external background fields
and temperature/chemical-potential gradients. We work in
the n* = u* frame and the CKT in Eq. (8) can be written as

Sﬂtl; H u
{q A+ (; ?u) A+ S (0, F )0 +1(D,8) A, | £
= Cun, (53)
where
1 ?:)E” PH
Crn = q"C, + 1 TR C,+ fl(apS(w)CM. (54)
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The explicit form of 8/,5’(’;’) is evaluated as

5 1 {w,, _(qg-o)u" (q- w)q"}
P (u) 2 q-u (q~u)2
ewvab U,q,q"
+ 2q -u (anﬂV (Jﬂﬂ + Kﬁp)) (55)

We then introduce the perturbatlon on distribution functions,

£ = p = 5f, = of) + nofl, (56)

in which we further decompose the classical and quantum
corrections. In order to just analyze nonequilibrium trans-
port qualitatively and derive analytic expressions, we will
implement the RT approximation to simplify the collisional
terms. Nevertheless, in nonequilibrium states, the nonzero
collisional terms also include 7 corrections. For complete-
ness, we approximate

1 q'A,
Cat = —— h Sf g 57
full TR(‘] u+ q- )>fq (57)
where A, could be proportional to B,,, @, E,, etc. at O(0).

Here the relaxation time 7y is regarded as a dimensionful
|

" E,
éfgz_ﬁ?{{q-A+h WL A, + RS
q-u

(q-u)
5lei:TR{Tu-6ﬁ+(q'u)+aT

hTR

(q-u)*

5f¢ =~ (q-E)q- A1

Here, 5f% and 51 come from the explicit 7 corrections in
CKT and the 7 corrections from hydrodynamic EOM,
respectively. However, the last one fg stems from the 7
corrections of collisions. Note that in the local rest frame,
q - A must be linear to q given that it is at O(9). We may

|

of ¢ =hrg [8- (Ths+40T 5)B+ (Thy+q0T,)0T) +q- <0EVXE+0T

— hq'u - Oéu,,

constant under the “naive” RT approximation, which
describes how long the system could return to the equilib-
rium state. The perturbative solution then takes the form,

. S E
of, = - (1-R0A) | WA,
" q-u q-u (q-u)
i hs (aﬂppywzw(a,,sfg)mﬂ] e (58)

In general, the classical part of the nonequilibrium distri-
bution function 8f(¢) should also involve second-order terms
responsible for e.g., classical Hall effects. These terms
may contribute to higher-order quantum transport starting
from O(h3?) in currents, while we only focus on second-
order quantum corrections and hence omit such terms.
Consequently, we have

TRq E
q.

of) = =0, fy- (59)

Based on Eq. (58), one finds that the quantum corrections
in the nonequilibrium dlstrlbutlon function can be decom-
posed into three parts, héfq = éf’C + 5fH + 5f¢, where

(aﬂ /w)af] + h(a/)S/()g))Aﬂ] ?Iq —q- AfE]())},

0
dgufy),

(60)

I
accordingly take g - A = —q - A with A = A without the
loss of generality.

Now, o fz;‘ can be read out from hydrodynamic
EOM in Egs. (44) and (45). In the local rest frame,
we have

ExVT

+U,E xv;zﬂ 0,1y, (61)

The derivation of § ff is somewhat complicated yet straightforward, for which we present some details of calculations in
Appendix B. By using Eq. (C7), in the local rest frame, we find

’h) 90

(e (G 7) +v<x)

2q
(g
q
1o <T30M+q B0u)(2~ 00,0~

%

q000T
T

a5 hm{[ o0 VT_’_(q‘w)gq-E)jL(fI‘a)(fI'w)_(‘l‘w)<q_g_M>aqo
)

qo T

Opu) X VT
<1—qoaqo>)+qow-aou+( ou) q-(s—‘“ )}}aqofé‘”.

90 T

(62)
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Here the terms in the first two lines of Eq. (62) are
independent of hydrodynamic EOM. When including the
hydrodynamic corrections in Eq. (62), only the leading-
order hydrodynamic EOM are needed. Therefore, one can
in fact drop the terms containing 93T and Oyp in Eq. (62),
which are at the order of O(%) shown in Eq. (44) while we
keep them here simply for completeness.

IV. NONLINEAR EFFECTS IN NONEQUILIBRIUM
CURRENTS

After deriving the second-order nonequilibrium distri-
bution function from the previous section, we will then
insert it into the Wigner function and evaluate the second-
order quantum corrections upon the charge current and
density in Sec. IV A and Sec. IV B, respectively. The final
result of anomalous Hall currents triggered by electric
fields and temperature/chemical-potential gradients is
shown in Eq. (75). On the other hand, we also show that
the non-equilibrium correction on charge density can only
be contributed by the postulated 7 corrections in collisions
as shown in Eq. (84), which agrees with the matching

|
5]0 —2h/(

27)°
5JQ:2h/(d‘)’

2q,

condition led by Eq. (87) from CKT. Finally, in Sec. IV C,
with the inclusion of left-handed fermions, we present the
vector/axial charge currents with second-order quantum
corrections in high/low-temperature limits.

A. Charge currents

Given the nonequilibrium distribution function, we may
start to compute the second-order responses in charge
currents. We shall focus on just quantum corrections and
neglect classical effects. From Egs. (2) and (5), the quantum
corrections of the nonequilibrium current read

51ty =2h / (‘2173135(61 0)5()

2 (6;41/(1/)’ quaA +€/41/a/3F ﬂaqv) 5fq :| )

(63)

{CI" 5f4f

In the local rest frame, the charge density and charge
current accordingly take the form,

g )(2)<€105fq + 20,08 )
1 c
&(g0)5(¢?) {qafé@ — 3 (@ XV (4 X E)0p0 — 4oE x Vo)o7

L (B - (q- B)V, + B(q- vq>>5fﬂ , (64)

where V, = 0/0q. We will now evaluate the charge current in the following.
We shall first consider the current led by fq ), which consists of three parts shown in Eq. (60). We first compute the

contribution from §f%, which yields

8 = 2/(621;13@(40)5@2)(15]‘5

_ hzg d4 Vi VT
VT 0oT
- (E- 13- 2 )aou ~o(To0a2 - w0) + PP (1 = 000 )| ) (63)

Implementing the useful integrals in Appendix A and the Bianchi identity in Eq. (43), we find

TRh
5.]}( = _Tﬂz

where 11’2.._

4
81y = 2/ (217313@@ 1)8(q%)g0f i = ””R/ (2,33

which results in

1
l:—/,lv xE—-E x (TV/Z +ﬁVT —ﬂaou) - T(ﬂVﬂ + IIVT)aou +0)T(3/,480/2 +4]1(90T> +511 T2V X (a()u) s

are defined in Eqgs. (A14)—(A20). Next, we consider the contribution from 5f7¢,

d4

2
(90)5(4%) 2 (9000 0f . (66)
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h ~ . ExVT -
5JH——6—’[RIZT3<UEV><E+UT x —l—UﬁExVﬁ) (67)
Subsequently, the third part stemming from collisions is given by
d*q 2ntg A [ diq 00T  TOoji 0
8Jc=2 --525C:R/—-52L ) 00ry)- 68
Jo=2 [ 5 5ela- wotayanss =52 [ S ataoted) (S + ) o (68)
Performing the integral, we find
h 00T
sc =~ "RA (KT | 15a), (69)
67 T

Note that 6J¢ vanishes after applying the hydrodynamic EOM in Eq. (44).
Finally, we have to consider the contributions from Jf (q°) in Eq. (64). We first evaluate the part related to the curl term and
electric fields, which gives

44 h c
6lp = —2/#5(%))5(6]2)2—%((] XV +(qxE)9, — qoE x vq)5f£1)

_hrg [ dYq 5 2Ex VT 2T(E x Vj) 2 doT
=3 | @y €(q0)8(q )[( VXE+ 7 T 7 +2q T —— @y
\%a
(09 x @) + B (3 + 0000 + o00) % (1 + a0 ) 008 (70)

Performing the integral, we obtain

8 = —%hz [(=uV X E +2uE x VT + 2TE x Vi) — 611Tw(0yT) + (uTV x (Opu) + pE x Ogu — 21, T(Opu) x VT)].
T
(71)

Nonetheless, there exists a missing contribution in 6/ when considering just the “naive” RT approximation treating 7y as a

constant. In practice, 7z should be a function of T and u. The magnetization current stemming from q x V&f ,(f> in the
integrand could further gives rise to

A .
/ B Ea0O) 5 2 (Ver)g - 0, )

= 12x 2(11TVT W(E —TVp)) x ((9rtr)VT + (0p7x) Vi)

n

= 52 (HOr7R = 1107R) (Vi) X (VT) + (e = TOreg)E x VT — i(Oz7p) E x Vi), (72)

which may generate E x VT and (Vu) x (VT) terms even in the absence of hydrodynamics depending on the detailed
structure of 7. For making fair comparisons with previous studies, in which 6J,, is ignored [51,52], we will apply the
“naive” RT approximation and thus omit 4J,. The rest part related to magnetic fields reads

a* h
oy = ‘2/ ﬁ (0)0(°) 3, (a0BOy0 = (4 B)Vy +Bla- V))of,”

_hTRB/gT‘;g(qo)g( )KT(’? +q°a° >8qo+a° ] Dg0fs.

which yields
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h
8l = —T?B(Taoﬁ + adyT). (73)

Apparently, 6J5 = 0 from hydrodynamics.
Combining all the contributions, we eventually obtain

oJo=0Jk+0Jy+dJc+ g+ dJp
hTR
1272

[<2(4 — L,T*UR)V X E + (1 4+ 20,T*U,)E x Vu + 21L,T(TU; — pU, )E x VT

31,T?

+ 2A(8,T + T,j)]. (74)

By omitting the terms including time derivatives and taking U erp = 0, itis clear to see that only the V x E and E x Vu
terms contribute to the nonequilibrium charge current in the absence of hydrodynamics, which agrees with what have been
found in Refs. [51,52]. Now, by using hydrodynamic EOM in Egs. (44) and (45) to replace the time derivatives of 7', ji, and
u with explicit expressions, the nonequilibrium charge current becomes

8l = —% {—2 <,¢ — LT, - %) VxE + <ﬁ + I‘Z;V°> (Vu) x (VT)
+ <<1 —’1—?) + 20,20, + 3;1;2 <12V—§ + 6w>>E x Vu
+ <212T(TfJT —uU,) = 2 +;ﬂv; + g (NO — 6uo, — 3";\/3))19 x VT] , (75)
where we utilize
%Vx(@ou)—%(M—kNOVxE—i—T(N?%—Zaw)ExVﬁ) + O(h) (76)

from hydrodynamic EOM in the calculation. Except for the modifications of the transport coefficient for V x E and E x Vu
terms, E x VT and (Vu) x (VT) terms emerge in hydrodynamics. Note that here the vorticity does not affect 6] in the
inviscid case. Also, in contrast to the anomalous Hall current above from quantum corrections, the classical Hall current
obtained from the kinetic theory in weak fields and the RT approximation is proportional to 7% instead of 7 as shown ine.g.,
Refs. [12,51].

B. Charge density

Following Eq. (64), we can further evaluate the charge density. Similar to the computation for currents, we first consider
the contribution led by §f%, which yields

d4
=2 [ £ (a- wolaiaar

- d*q _ N gow-VT (0-&) qo(V-w) 0
= 2TR/ (2ﬂ')3 G(QO)S(Q )5 |:—&) : g + T + 3 + 3 B quOw
o VT
+ % (a) g-d T )aqo + %m - Oou(2 = 040) + qow - ou 8q0f,(,0). (77)

By employing the Bianchi identity for vorticity in Eq. (A13) and performing the integral, we obtain

7
5J,°C:2—:;[/4(0-S—IlTw-VT—Iszw-aou]. (78)
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Next, considering the quantum corrections from hydro-
dynamic EOM, we find

d4
o =2 [ S 8sela-alaor

~2hry [ (‘;’ﬂ‘; (g - 05(g)a0€ - [T(isB + i)

+qo(TB + T,0T)10,0f. (79)
which results in

hTR

879, = Py [(E-B)T*(11jig + I, Tp)

+ (8 ! a))T4(Il/'~lm + IZT(H)]' (80)

As opposed to the case for the charge current, the relevant
parts in hydrodynamic EOM are 9T and Oyji. For the
charge density, there is only magnetic-field related term
coming from the side-jump term associated with magneti-
zation currents as shown in Eq. (64). We thus evaluate

d*q _ n
8J% == Z/WG(CIoﬁ(Cf) EB : Vq5f510>

B d*q _ , B
—ZTR/WG(C]O)S(Q )2—%

BVT
X (—B €+ qp

T

+ QOBaou) 8q0f£10) (81)

and derive

d*q

aﬂJﬂ::' (E-B)+2/

7[2

—
o
S

S~—

~&(q - u) [é(qz)q - C + he"PCF oy —+

hTR

8JY = ~52 (=(B- &)+ paB-VT + uBoou).  (82)

Finally, considering the 7 corrections in collisions, we find
570 =2 / L9 (g 03(a)85
C (2”)3 q

4
— 2hy / (‘2’7‘)@@(%)6@2)

1
X — |:—A'8+6]()
390

A-VT
+qoA - Opu 3q0f510),

(83)
which gives

hTR

S =——=
67>

~A-E+RA-VT +uA-doul.  (84)

Combining all pieces together and utilizing the hydro-
dynamic EOM, it turns out that except for 6J%, the
nonlinear quantum corrections on charge density vanishes,

8JY + 619, +6J% =0, (85)

Nonetheless, the finding is not surprising, which in fact
agrees with the matching condition of the RT approxima-
tion as shown below. As found in Appendix C, the CKT
gives rise to

Al

: (86)

For realistic collisions, the integral with collisional terms should automatically vanish in accordance with energy-
momentum conservation. In the case for C; = 0, we may rewrite the last term as

854(‘12)] —2 / i‘@@(qo)a(qZ)%(l +h326'10v“>co. (87)

d4q _ v
2 / We(q - u) |:5(q2)6] -C+ he’“’“ﬂCMFaﬂ 4

(27)

Applying the RT approximation in Eq. (57) for ¢oCy = Cgy, such a vanishing term results in the matching condition

2/57?35(‘1'14)5(42)(1+M;4;]qu)cfun_—2/(6;76)l35

Note that the ¢ - A term in the RT approximation and that
in of qC cancel each other. Apparently, this matching
condition in general leads to the vanishing charge density
from interactions J?m = 0. One can easily check that the
classical contribution above is zero. Then the vanishing

quantum correction is consistent with (85). Nevertheless,

(qo)5(q2)f—z<5fff)+

"BV, .
> q5fg)+5f§+5f2;>—o. (88)
0

the matching condition here does not exclude the contri-
bution from & fg for the charge density.

C. Vector/axial-charge currents

So far, we have considered only the responses for right-
handed fermions. One can implement the same approach to
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derive the responses for left-handed fermions, for which the
corrections are the same as those for right-handed fermions
with just an overall sign difference. Combining the contri-
butions from both right-handed and left-handed fermions, we
can compute the vector/axial charge currents. Due to the
complexity of transport coefficients in hydrodynamics, we
may focus on just high-temperature and large-chemical-
potential limits. In addition, only the quantum corrections
will be presented. One may refer to Ref. [51] for a complete
study with the classical second-order effects in vector/axial
charge currents in the absence of collective motion.

From Eq. (75), in the high-temperature limit jip/;, <1,
the right/left-handed charge currents are given by

hTR MR/L
5JQR/L::FW Hr/LV < E+ T ExVT
1 12u
—EEXV,uR/L—f— R/L(VHR/L)X(VT)’ (89)

where we append the subindices R/L to u for representing
right/left-handed chemical potentials and the overall minus/
plus signs are for right/left-handed fermions, respectively.
Here we preserve the leading-order contribution in terms of
the small-jig/; expansion for each relevant term. On the
contrary, for jig/; > 1, the right/left-handed charge cur-
rents reduce to

hrg [ °T? 2up/L
6. =+—= VxE ExVT
JQR/L 471'2 3”R/L % + 3T x
2 v 2ug)r v v
—gEX HR/L — 3T ( ﬂR/L) (VT1)|, (90)

viathe 1/fig,; expansion. Here some of transport coefficients
change signs in different limits, for which the reason in
underlying physics is unclear. However, as mentioned
previously, in more pragmatic cases, one should also incor-
porate the contributions from 6J,, shown in Eq. (72). In
general, to pin down the signs and numerical values of these
transport coefficients, we certainly have to work beyond the
RT approximation, whereas their dependence on 7" and pg /1.
could be qualitatively captured by the results above.

We may now introduce the vector/axial-charge currents,
Jv/a =Jg £J. Considering both the right/left-handed
fermions, we obtain, for high temperature jig,; < 1,

h 7
R ﬂAVXE—F%

1
5JQV:_— EXVT—EEXVIMA

6
+;V(MvﬂA)

hr
SJQA — ——R

x (VT)} ,

ﬂVvXE+2 E x VT—EEXVIMV

#2905 +43) x (V7). 1)

where py 4 = pg + pp. Note that in the extreme case
with zero net chemical potentials, only the E x Vuy )y
terms contribute to the vector/axial currents. In the large-
chemical-potential limit jig,; > 1, one finds

htg [ 47°T?u,
oy =R |21 gy g ExVT
Jov =4 {3< SRR
2
—3Ex Vi, —_v(ﬂVﬂA) x (VT)} :
flTR 4ﬂ'T,LlV 2V
5 UL Y ExVT
Joa =42 L(2 — ) +3T x
2
S3EX Ty = VU R < (V)| )

As opposed to the high-temperature limit, here the dom-
inant contributions in vector/axial charge currents come
from E x VT and (Vuy ) x (VT) terms.

V. DISCUSSIONS AND OUTLOOK

In this paper, we have investigated the dissipative
quantum transport of inviscid chiral fluids incorporating
background fields and vorticity up to the second order via
the CKT with a RT approximation. It is found that some of
anomalous Hall currents emerge from the anomalous-
hydrodynamic corrections. Furthermore, we show that
the vanishing quantum correction upon the charge density
(except for the potential contributions from quantum
corrections in collisions) agrees with the matching con-
dition obtained from CKT based on the energy-momentum
conservation.

Although we find extra Hall currents coming from the
cross product of electric fields and temperature-gradient
and that of the temperature and chemical-potential gra-
dients given by anomalous hydrodynamic corrections, we
also indicate that such terms could possibly led by the
temperature/chemical-potential dependence of relaxation
time even in the absence of hydrodynamics. In phenom-
enology, this implies that the aforementioned anomalous
Hall currents could possibly exist in Weyl semimetals even
in the absence of collective motion for quasiparticles. The
study along such a direction will be presented elsewhere.
On the other hand, the possible quantum corrections in
collisions stemming from side jumps may contribute to the
charge density. In fact, for realistic collisions, the anoma-
lous equation does not force the correction on the charge
density to be always zero. It is found in a recent study that
the direct product of magnetic fields and vorticity can
modify the charge density for Weyl fermions in the lowest
Landau level [60]. However, we suspect such an effect may
be at O(h?) in the Wigner-function approach with weak
background fields. In addition, even though the quantum
corrections in collisions characterized by the RT approxi-
mation does not influence the charge current in inviscid
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fluids, this may not be the case for viscous ones. To further
explore the nonlinear quantum transport for viscous chiral
fluids, the current RT approximation may be insufficient.
Either directly tackling realistic yet complicated collisional
kernels including side-jump effects or developing more
applicable approximations for collisions should be pursued
in the future.
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APPENDIX A: CONVENTIONS AND
USEFUL RELATIONS

In this paper, we use the most negative spacetime metric
M, = diag(1,—1,-1,-1) and we define "% = —¢,;, =
€k with €'? = 1. Also, ji = /T and n* denotes the frame
vector and u* represents the fluid velocity.

The fluid vorticity is defined as

T 1
o' = Ee"”"ﬂu,ﬁa(ﬁuﬂ) = Eeﬂ”“ﬂuy((?auﬂ). (A1)
We apply the decompositions
ou, =0, +w,, 0, 5 (O,u, +0yu,),
1
Wy = 5(8"”” o,u,) (A2)

and

Wop = —eaﬂﬂywﬂu" +Kops  Kap= 3 (uau . auﬁ —uglt aua),

(A3)
which gives
u,0,T
T0,(pu,) = —eﬂmﬂuﬂw"’ + Ky + 0 — DTﬂ (A4)
We also introduce the dual tensor
- 1 1
" = Ee"mﬂa)aﬁ = EG”D“ﬂuau Oug + o'u’ — w*u*,
1 -
W = _ieuvaﬂwaﬂ ) (A5)

In the n* frame, the electromagnetic fields are given by

nF,, =E

1ﬂmﬂ F .= B+
w Ee nytgp = ’

F(l/} = —eﬂ,,aﬁB”n” + I’lﬁEa — naEﬁ. (A6)

When n# = u*, the Bianchi identity 9,F" = 0 yields

0-B—=2E-w+ B'u-0u, =0, (A7)
and
u-0B” +B°0-u—B-0u + uB'u-du,
+ e (upd,Ey + u,Equ - Oug) = 0. (A8)
In the local rest frame, it becomes
0-B+2E-w—B-0yu=0,
1
0yB +B(0 - u) _E((B -V)u+B - (Vu))
+Bxw+ (VXE—-E X dyu)=0. (A9)
In the paper, we also widely use the notation
By=g+ o,
p=Cpt 0l —4 (046 + Kpo )
& =E,+To,pu. (A10)
Similar to F,,, 0,0 =0 gives (using o — —B¥,
P up — ~Ep)
0w+ 2wu-0u, =0, (A11)
and
u-0a’ +a’d-u—aw-ouw +uwaw'u-ou,
€/}/wt[)’
+ T uﬂaﬂ(u . 8Ma) =0. (A12)

In the local rest frame, we accordingly have
V-w =0,

80w+w8-u:%[(a)-V)u+V(w~u)—Vx(8014)].

(A13)
There exist useful integrals:
L4 o)) D0 f© = — Ald
- W (90)0(4%)q5 "' Ogof T a2 ( )
d*q _
10——(47T2)T_1/(27[)39(610)5(6]2)8q0f(0) =p,  (Al5)
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4
—(4n*)T2 / (;176)13 9(‘]0>5(C12)(I0540f(0)

L.
=t (A16)
I, = —(42)T73 d'q 0(q0)5(¢*)q20 0 f
2 (27[)3 90 q7)40 40
= p(p@* + %), (A17)
I3 = —(47°)T~* d'q 0(q0)5(q*)q30,0f ¥
3 (27[)3 qO q qO qO
:71—5+27zu A, (A18)
2 _ et [ d'q 2 2 £(0)
I = —(4n°)T WG(CIO)‘%Q )(]anof
= 21, (A19)
d4
If) — _(471'2)T—2/ a 6)1 0(q0)d(q )qoa 0f
= -31,. (A20)

APPENDIX B: COVARIANT ANOMALOUS
HYDRODYNAMIC EQUATIONS

From Eq. (33), the equation of states in this case is
€ =3p. (B3)

We choose f = 1/T and j as thermal variables and rewrite
the thermodynamical relations,

1
gﬁd€ = pdp = —(e + p)dp + Nodj,
d(pp) = —edp + Nodfi. (B4)
where
9(Bp) 9(Bp)
=—" Nog=—=|. B5
op ’ op B (B3)
Since d(fp) is a total derivative, then we obtain,
6N0 66
—| =-—| =-3NyT, B6
.= e, = (B6)

For convenience, we also derivative some useful

From Eq. (38), we obtain, relations,
1 /)
@Dﬂa + . a v + Ey 2650
HT T(” )u T(e+ p) 8T0“’_T’ 8 6, = 28T,
(oK E 1 6
3Ny
<B1) aTéw - T ’ Mé(u - (u
with Orép = 07, Orép = opT,
B = ExBY(D - u) + O (u- 0)(EBy) + (B - D)u Dpe = 47 dye = 3NT. (B7)
+ gmwﬂ (a : I/l) + @,u(l(u : a) (fu)w(l) + 5(1)(0) : a)uﬂ'
(B2) with C = — 4. Then, Eq. (B1) reduces to,
|
NoT 1 1
. v % -V.T _ vpaf B
(u-0)u €+p5 +7Vu +fl€+p26w€ w, By
n (% (- 0)T + oy T(u- 0) | B + 20~ DB + -0 (B (1 - D))
et p) T u opT(u-0)u 26a, u 26‘” u Ug U
nh 3NO — y v a v
et T(u-a)T+2owT(u-8);4 @ + No(u - )’ + No(0®(u - O)u,)u” |, (B8)

where V, = ©,,0". Inserting (u - O)u” into Eqs. (A8) and (A12), we get
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N
(u-9)B* = e (9,E,)uy + (—u*B° + ¢ E u,) <€i Es+ = V T) + eV B u,wp, (B9)
and,
B NoT 3T 3N L _ NoT _
(u- )" = —w (e e E 4= V T> u + 3% <20w — €0>€” Pu,(0,i1)Ep — s pa)”(u -0\
1 NO 1 NO 1
- "y, (0,T)Es + ~ mwaby O Ez ——a'(u-O)T, B10
2T(€+p)€ uu(a ) ﬂ+2€+p€ uvaﬂ T (I/t ) ( )
where we have used,
(u-0)(Oqup) = Op((u - O)ug) — Ou® + Wuwp + g e ((1 - O)u? )ul @, (B11)
and,
NoT NoT 377 3N?
aT< 0 >=0, a,,( 0 ) (2%——0). (B12)
€e+p e+p 4 ¢ €

Then, we can further express (u - d)u” in Eq. (B8) with the results of Egs. (B9) and (B10), then we find, up to O(#),

v NO v 1 M 2 =2\ _ (2 =2 vpaf _ upaP
(u-O)u* = 1 —& 96 <2p (7° + p*) = (27 +3p%) | [Te”"™u,(0,T)Es — €7 u,0,Ep
_ NOT _l& 2 =2 i 2 =2 vpaf} =
h96pﬂ2 [ 2,2 w(m* + i )+4p (7* +352) | €9V u, (0, j1) Ep. (B13)
Similarly, Eq. (37) and 9,J* = h(E - B)/(4x) can be rewritten as,
(e+p)BT(u-9)p+d-u)+3Ny(u-d)f + All, =0,
ON, ‘ _
No(BT(u-0)f+0-u)+——<| (u-0)p+ hll, =0, Bl4
where
1_[1 = _gBBM(u ! 8)”;4 + aﬂ(‘gBBﬂ) - éwwﬂ(u ' a)ull + aﬂ(éwwﬂ) + O'B<E ' B) + aa)(E : a))’
I, = 0,(oB* + 0,0") — CE - B. (B15)

We can solve (u-0)7T and (u - 0)u from Egs. (B14) with
0-u=0,

2To,I1; — 3N TTI
(u-0)T = p =20 1= 220772
9N — 8eo,,
_ —3NOH1 +4€H2
g =h——————. B16
(- O T(9N3 - 8¢o,,) (B16)

By using Eqgs. (B9), (B10), and (B13), we finally obtain,

3NZT
4p >(5'w)’

NoT NoT
I, = (CT+03 >B E+ <263T 26, —> >(a)5)
4p 4p

(B17)

N,
I, = (03—0w—0>B-ST+ <26a,T—
4p

[

In the local rest frame, Eqgs. (B13), (B16), and (B17) will
reduce to Egs. (46), (47), and (48).

APPENDIX C: CALCULATIONS OF 2ND-ORDER
RESPONSES IN CKT

Taking n* = u* for Eq. (12),
function can be written as

the local-equilibrium

(0-q)

3= o of ) =5 S0l (C)
which comes from
h (0-q)
-~ /w —
2 St 0u P = W5 (C2)
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based on S’(l::)(dﬂb +  — T7'u,0,T) = 0. This A correction in fg! contributes to one of the relevant terms,

w q-w
hg - ASFL) = hg - A(( . u) aq,ufg‘”)

2q
_ (crw)(q‘E) _h (q-0T)(q-0) (q-0) , |
——hT ufq 2q - [(q I)(q-w) - T _(q-u)q O
" <waFaﬂq/f n (q -(a;).(z)- E)ﬂaq_ufgm'

On the other hand, the side-jump term yields

ny

S h

(ll) ﬂ (0)

h Afy =—= [ w-E)+
(q-u) 1 2 ( )

EVg-w o~

and
1S (0,F )01y = 1S( (0,E,) + Fu(D,1,))0 4
=h [sf(‘;)(aﬂEy +F(0,, +K,)) +% (E ‘o — “’F—“”qﬂ Dyl ).
The derivatives acting on the side-jump term result in

©_ _h (-0 (q- w)q
Ol __5{(””_ g-u  (q-up? Edud i’

7} w
+ m |:(CI : u)w”(g;w - K/u/)qy - (q : CU)M”(GW - K,uu)q + (qwq)#] q~uf510)

et 1,400"
- m auw T

(0' + K, )} Eﬂaq,ufﬁ,o).

Combining all relevant terms above, we derive

S’(W>E c
g8 +n (OMF/,D)(?Z—FhapS’(’Z)Aﬂ] «
oz 0 h[lge)q-E), (g-@)-9T) (q-0)Tu-0p (q-0)(q- )
=—q-E0,..fq +5 {(q-u)z (1=(gq-u)d,,) + 7 + - + 7 u
(g Oa- . ‘w) 25“E,E
. B la @) u-0q-u) (q-0T)(q a))+ () +ZS,,D<8E T Fa, +K,))
q-u Tq-u (q-u)

el 1, 949" = 0
- wﬂ(KﬂI/ - Gﬂv>qy - q-u <Q(1K;w - q .au (O-;lp + Kﬂp) Eﬂ aq'ufsl )7

where we use u¥(k

w — O

w) = 0 and w (6,5 + K,5) = u - Oug.

APPENDIX D: ANOMALOUS EQUATION FROM CKT

(C3)

(C4)

(C5)

In this Appendix, we shall perform the derivation of the anomalous equation in Eq. (86) from CKT by introducing natural

boundary conditions at infinity. Based on CKT, the divergence of currents can be written as

016004-18



NONLINEAR RESPONSES OF CHIRAL FLUIDS FROM ...

PHYS. REV. D 97, 016004 (2018)

d*q

aﬂ]ﬂ :_2/_<Fp”%3<ﬂ_z<_3>+z> S<)

(27)*

=2 [ S el Epd( 100 )+ 0E OIS DY)

(2z)°

0,5(g?
+ pewarp, ST

4

where we utilize

o , R e ( 05(¢%)
Zeﬂ ﬂFaﬂFﬂﬂaiaqvé(q2) = 56” ﬂFaﬂFﬂﬂ% <qU =0.

Here f 5;” is a general distribution function depending on g*
and X*. The first classical term corresponding to Lorentz
force in Eq. (D1) shall vanishes albeit the implicit 7

corrections encoded in f 51"), which is due to the fact that
this integrand is a total derivative with respect to g*. Here
we introduce the following boundary conditions,

F(go > 0.4.X) =0,
Fi(go = 0,4, X) = £ (g9 = —c0,¢,X) = =1,  (D3)

Kf 4 = 8(a%)q - C = he™PC,F 15

8%5(612)}’ (Dl)

4

“o0f (D2)

where gy = ¢ - n. The conditions assume the vanishing
distribution functions at infinity, while the —1 in the second
equality above comes from the anticommutation relation
for fermions. By using such boundary conditions, one can
explicitly show

a* n
D) / ﬁaq -n)F,,0(q*)(¢" £y = 0.

Next, we consider the side-jump term, which yields

(D4)

2

d4 n
—2/#é(q'”)th#&Z(é(qz)Sl(l:)D”fé ))
_. [ da (Exq) [é(qO)
(27)* 2 |q0] qo=—00

=0,

qo=00 2
ngzn)(%’ql')] —h/d?gi)?é(%) [S(CZ))

((I” (B-D)-(q- B)D”)fgn) 9=

N==>

(D5)

where ¢, denotes the spatial momentum perpendicular to g in the second integral above and we introduce the boundary

condition

(Duf i) gsmc0 = (Puf 4" oo = 0

(Do)

such that the derivatives of distribution functions for (anti)particles in phase space and collisions vanish at infinity.
Finally, using the integration by part and subsequently performing the integration with ¢, the (’9,1,,6((]2) term gives

d4q
(2n)’

d*q

= h(E-B) / 2(27)|q| (O =

é(q- n)he’”’“/}FaﬂFpﬂq”T "

v2) (73 (lal. @) - 75" (~lal. @),

(D7)

where f as a function of g denotes the distribution function with the on-shell condition and E and B are defined in the n*

frame. Here £|q| in the parentheses of ffln> distinguish the particles and antiparticles. Note that here 04| and V4 are partial
derivatives. We should apply the chain rule to rewrite them in terms of total derivatives. By utilizing

d

m (lq

7q> = (8|q\ =+ (1 ’ vq)f(|q

.q).

.q) = (Vq+a9y)f(la

d
d—qf(\q .q), (D8)
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where § = q/|q|, we obtain

& 2 2\ ( £ln
[ 5o - VDU (g

_ / L(La _d
2(2z)°|q| \dlq| ¥~ dq

)

@) - 7{"(~lal. )

= /% ((diq'—dvq)@m - <d%—?13q) 'Vq> (f¢"(la

.q) - /9 (~|a

@) — 4 (~lal. q))

.4q))- (DY)

Next, we implement the integration by part and find that the integral becomes

d’q (d d
1 (/9 ——.V
/ 2(27)|q| \d|q| ¥ aq "9

)0 da

@)~ 7 (~lal. q))

3
- / ﬁ@q +4-Vy) (e (lal.9) - /4" (~lal.9))

. dq  d
-/ 2@ar el Ve 19

which turns out to be a surface term. We thus derive

d’q

/m Ry = VA (a

d

Q n n
— [ o [l - £ -l

2(2x)3
which results in the chiral anomaly

4

d v
—2/—qé(q-n)h€”"“ﬁFaﬂFpﬂ d

(27)*

The divergence of currents then reads

h d4q _ > B
0,0 =& ) +2 [ L eq ) |s(q)q ¢ + nemerc, F,, 22|

47?

(27)*

L) — 4 (~lal. q)). (D10)
.q) - ¢’ (~lal. @)
W)t o1y
94,6(q%) h
— 0ty =52 (E-B). (D12)
0,6(q%) (DI13)

4

In realistic cases, the integral with collisional terms should vanish and the divergence of currents gives rise to the well-

known anomalous equation.
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