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Studies of the charged lepton flavor violating process of μ−e− → e−e− in muonic atoms by the four
Fermi interaction [Y. Uesaka et al., Phys. Rev. D 93, 076006 (2016)] are extended to include the photonic
interaction. The wave functions of a muon and electrons are obtained by solving the Dirac equation with the
Coulomb interaction of a finite nuclear charge distribution. We find suppression of the μ−e− → e−e− rate
over the initial estimation for the photonic interaction, in contrast to enhancement for the four Fermi
interaction. It is due to the Coulomb interaction of scattering states and relativistic lepton wave functions.
This finding suggests that the atomic number dependence of the μ−e− → e−e− rate could be used to
distinguish between the photonic and the four Fermi interactions.
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I. INTRODUCTION

It has been well recognized that charged lepton flavor
violation (CLFV) is important to search for new physics
beyond the standard model. Rare processes of muons, such
as μþ → eþγ [1], μþ → eþe−eþ [2], and μ− → e− con-
version [3], have given the strongest constraints on new
physics models of CLFV interactions [4–7]. Furthermore, it
is expected that experimental sensitivity can be signifi-
cantly improved in near future measurements.
As a new promising process to search for CLFV

interaction, μ−e− → e−e− in a muonic atom was proposed
[8]. For heavy atoms with large atomic numbers (Z), large
enhancement of the μ−e− → e−e− rate due to the Coulomb
attraction of the lepton wave functions to a nucleus is
expected. Another advantage for μ−e− → e−e− is that it can
probe both the four Fermi contact and the photonic
interactions, as in the μþ → eþe−eþ decay and μ− → e−

conversion. In μ−e− → e−e−, a sum of the energies of two
electrons in the final state would be mμ þme − Bμ − Be,
wheremμ andme are the masses of a muon and an electron,
respectively, and Bμ and Be are binding energies of the
muon and electron in a muonic atom, respectively. The

energy of each electron in the final state is about mμ=2, and
they are emitted almost back-to-back. The search for
μ−e− → e−e− is proposed in the COMET Phase-I experi-
ment at J-PARC, Japan [9]. This new process could be
essential to identify the scenario of new physics via the
addition of sterile neutrinos at near future experiments [10].
The initial work [8] showed that the atomic number (Z)

dependence of the μ−e− → e−e− transition rate is expected
to be of Z3, owing to the probability density of the wave
functions of the Coulomb-bound electrons at origin. This
result was obtained by plane wave approximation of the
outgoing electrons and non-relativistic approximation of
the bound states. The role of the Coulomb interaction on
lepton wave function in muonic atom has been studied for
other processes, such as the muon decay in orbit (DIO)
[11–14] and the μ− − e− conversion [15–17]. In the context
of the DIO spectrum, the radiative correction has also been
researched [18,19]. In our previous work [20] for the case
of the four Fermi contact interaction, we have studied the
Coulomb interaction for emitted electrons by solving the
Dirac equation with a finite charge distribution of nuclei. It
was found that the Coulomb interaction is important not
only for the bound leptons but also for the emitted
electrons. Moreover, relativistic Dirac wave functions of
leptons with the Coulomb interaction of finite-ranged
nuclear charge distribution were found to play an important
role. As a result, the μ−e− → e−e− rate increases on an
atomic number Z stronger than Z3. For 208Pb, the μ−e− →
e−e− rate can be enhanced about 7 times larger than the
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previous expectation [8]. Apparently, improved treatment
of the Coulomb interaction should be made also for the
photonic contribution of μ−e− → e−e− process to obtain a
complete picture of the μ−e− → e−e− process.
In this work, we have made improved analyses for the

μ−e− → e−e− process for the photonic interaction. It is
noticed that the photonic interaction consists of two
vertices, the μeγ� CLFV interaction and the eeγ� electro-
magnetic interaction, together with long range photon
propagators. Since an overlap integral of each vertex
involves rapidly-oscillating scattering electrons and photon
wave functions and long range Coulomb bound state wave
functions, a careful numerical study for the photonic
interaction is required. In Sec. II, we start from the effective
CLFV interaction for the μ−e− → e−e− process. The
multipole expansion formula on the μ−e− → e−e− rate is
extended to the photonic interaction process. In Sec. III, the
improved treatments of lepton wave functions for the
photonic interaction, in particular the atomic number (Z)
dependence of the rate, are discussed. Then, we propose a
possibility to distinguish the photonic interaction from the
four Fermi interaction, by the atomic number (Z) depend-
ence and its angular-energy distribution of the emitted
electrons. Our analysis is summarized in Sec. IV.

II. FORMULATION

A. Effective interaction

The effective Lagrangian for μ−e− → e−e− consists of
the photonic interaction Lphoto and the four Fermi inter-
action Lcontact, as follows:

LCLFV ¼ Lphoto þ Lcontact; ð1Þ

where

Lphoto ¼ −
4GFffiffiffi

2
p mμ½ARēLσμνμR þ ALeRσμνμL�Fμν þ ½H:c:�;

ð2Þ

Lcontact ¼ −
4GFffiffiffi

2
p ½g1ðeLμRÞðeLeRÞ þ g2ðeRμLÞðeReLÞ

þ g3ðeRγμμRÞðeRγμeRÞ þ g4ðeLγμμLÞðeLγμeLÞ
þ g5ðeRγμμRÞðeLγμeLÞ þ g6ðeLγμμLÞðeRγμeRÞ�
þ ½H:c:�: ð3Þ

Here, GF ¼ 1.166 × 10−5 GeV−2 is the Fermi coupling
constant, and AL=R and gi (i ¼ 1;…; 6) are the coupling
constants which are determined by new physics models.
The left- and right-handed fields ψL=R are defined as
ψL=R ¼ PL=Rψ , using the projection operators PL=R ¼
ð1 ∓ γ5Þ=2.

The one-photon-exchange photonic interaction shown in
Fig. 1(a) is given by the photonic interaction in Eq. (2)
together with the electromagnetic interaction of

Lem ¼ −qeēγλeAλ: ð4Þ

Here qe ¼ −e is a charge of an electron. The four Fermi
interaction shown in Eq. (3) and Fig. 1(b) has been
studied [20].
We neglect the kinetic energy of the nucleus, Erec≃

q2=2M, where q is the momentum transfer to the nucleus
and M is the nuclear mass. As we will see, the largest
contribution to the transition rate arises from the region
where momentum transfer is almost zero, q ∼ 0. Even at the
boundary of kinetically allowed region, the momentum
transfer q is q ∼ 100 MeV. The nuclear kinetic energy can
be safely neglected compared with the total energy of the
emitted electron pair.
We evaluate the rate within the independent particle

picture of the muonic atom and the final state, where
interactions among electrons are neglected. On the other
hand, we take into account shielding of the nuclear charge
by the negative muon and assume that the charge of the
Coulomb potential is ðZ − 1Þe in calculating the wave
function of the bound electron.
The transition amplitudeM of μ−e− → e−e− is given by,

2πiδðEf − EiÞMðp1; s1; p2; s2; αμ; sμ; αe; seÞ

¼ hes1p1es2p2 jT
�
exp

�
i
Z

d4xðLCLFV þ LemÞ
��

jμsμ1Seseαei;

ð5Þ

with

Mðp1; s1; p2; s2; αμ; sμ; αe; seÞ
¼ Mphotoðp1; s1; p2; s2; αμ; sμ; αe; seÞ
þMcontactðp1; s1; p2; s2; αμ; sμ; αe; seÞ: ð6Þ

Here Ei and Ef are the energy of the initial and final state
given as Ei ¼ mμ − B1S

μ þme − Bαe
e and Ef ¼ Ep1

þ Ep2
,

(a) (b)

FIG. 1. The diagrams representing μ−e− → e−e−: the one-
photon-exchange photonic interaction (a) and the four Fermi
contact interaction (b). The black closed circle shows the CLFV
interaction.
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respectively. And Epi
is an energy of the electron with its

momentum pi and Bα
l is a binding energy of the lepton l in

the state α.
The principle quantum number n and κ [21,22] of the

bound muon and electron are collectively denoted by αμ
and αe, respectively. We assume the initial muon is in its
1S1=2 (n ¼ 1 and κ ¼ −1) state, while we have included
contribution of all bound electrons. The expression of
Mcontact is given asM in Eq. (4) of Ref. [20]. The amplitude
of the photonic interaction Mphoto is given as

Mphotoðp1; s1; p2; s2; 1S; sμ;αe; seÞ

¼
�
8GFffiffiffi

2
p mμqe

Z
d3x1d3x2Gνðx1; x2;mμ − B1S

μ − Ep1
Þ

× ψ̄e
p1;s1ðx1ÞσμνðALPL

þ ARPRÞψμ
1S;sμ

ðx1Þψ̄e
p2;s2ðx2Þγμψe

αe;seðx2Þ
�

− ½fp1; s1g ↔ fp2; s2g�; ð7Þ

where we consider only the leading term of the CLFV
couplings. The wave functions, ψs, are calculated by the
Dirac equation with nuclear Coulomb potential, including
the interaction with the nucleus nonperturbatively. The
second term fp1; s1g ↔ fp2; s2g is obtained by exchanging
the quantum numbers of the final electrons in the first term.
The photonic interaction is a finite range interaction
between the two leptons and Gνðx1; x2; q0Þ is defined as

Gνðx1; x2; q0Þ ¼
Z

d3q
ð2πÞ3

iqνe−iq·ðx1−x2Þ

jqj2 − q20 − iϵ
: ð8Þ

B. Multipole expansion

To proceed, we derive a multipole expansion of the
transition amplitude. Based on a standard partial wave
expansion of the scattering wave functions and the bound
state wave functions of Dirac particles given in Eqs. (11),
(12), and (13) of Ref. [20], the transition amplitude is
expressed as

Mðp1; s1; p2; s2; 1S; sμ; αe; seÞ ¼ 2
ffiffiffi
2

p
GF

X
κ1;κ2;ν1;ν2;m1;m2

ð4πÞ2ð−iÞlκ1þlκ2eiðδκ1þδκ2 Þ

× Ylκ1 ;m1
ðp̂1ÞYlκ2 ;m2

ðp̂2Þðlκ1 ; m1; 1=2; s1jjκ1 ; ν1Þðlκ2 ; m2; 1=2; s2jjκ2 ; ν2Þ
×
X
J;M

ðjκ1 ; ν1; jκ2 ; ν2jJ;MÞðj−1; sμ; jκe ; sejJ;MÞ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2jκ1 þ 1Þð2jκ2 þ 1Þð2jκe þ 1Þp

4π
NðJ; κ1; κ2; Ep1

; αeÞ; ð9Þ

where ðlκ; m; 1=2; sjjκ; νÞ and Ylκ ;mðp̂Þ are the Clebsch-Gordan coefficients and the spherical harmonics, respectively. Here
lκ, jκ are the orbital and the total angular momentum of the state with κ. δκ is a phase shift of the scattering state. The partial
wave amplitude, NðJ; κ1; κ2; Ep1

; αeÞ for the photonic and the contact interactions is given by

NðJ; κ1; κ2; Ep1
; αeÞ ¼ Nphoto þ Ncontact; ð10Þ

with

Nphoto ¼
X
i¼L=R

AiWiðJ; κ1; κ2; Ep1
;αeÞ ð11Þ

Ncontact ¼
X6
i¼1

giWiðJ; κ1; κ2; Ep1
; αeÞ: ð12Þ

HereWis (i ¼ 1; 2;…; 6) for the contact interaction are given in Ref. [20]. The amplitudes of the photonic interactionWL=R
are given as

WL=R ¼ 2mμ

i

ffiffiffiffiffiffi
πα

p X∞
l¼0

Xlþ1

j¼jl−1j

X3
λ¼1

½Xλðl; j; κ1; κ2; JÞ � iYλðl; j; κ1; κ2; JÞ�; ð13Þ

where � corresponds to L and R, respectively. Xλ and Yλ are expressed in terms of Z as
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X1ðl; j; κ1; κ2; JÞ ¼ ð−1ÞlþjfZl;l;1;j
gfgf ðJÞ þ Zl;l;1;j

fggf ðJÞ − Zl;l;1;j
gffg ðJÞ − Zl;l;1;j

fgfg ðJÞg; ð14Þ

X2ðl; j; κ1; κ2; JÞ ¼ fð2Þl−jðjÞfZl;j;0;j
gfgg ðJÞ þ Zl;j;0;j

fggg ðJÞ þ Zl;j;0;j
gfff ðJÞ þ Zl;j;0;j

fgff ðJÞg; ð15Þ

X3ðl; j; κ1; κ2; JÞ ¼ fð3Þl−jðjÞ
X

fla;lbg¼fl;jg;fj;lg
fZla;lb;1;j

gggf ðJÞ − Zla;lb;1;j
ffgf ðJÞ − Zla;lb;1;j

ggfg ðJÞ þ Zla;lb;1;j
fffg ðJÞg; ð16Þ

Y1ðl; j; κ1; κ2; JÞ ¼ ð−1ÞlþjfZl;l;1;j
gggf ðJÞ − Zl;l;1;j

ffgf ðJÞ − Zl;l;1;j
ggfg ðJÞ þ Zl;l;1;j

fffg ðJÞg; ð17Þ

Y2ðl; j; κ1; κ2; JÞ ¼ fð2Þl−jðjÞfZl;j;0;j
gggg ðJÞ − Zl;j;0;j

ffgg ðJÞ þ Zl;j;0;j
ggff ðJÞ − Zl;j;0;j

ffff ðJÞg; ð18Þ

Y3ðl; j; κ1; κ2; JÞ ¼ fð3Þl−jðjÞ
X

fla;lbg¼fl;jg;fj;lg
fZla;lb;1;j

gffg ðJÞ þ Zla;lb;1;j
fgfg ðJÞ − Zla;lb;1;j

gfgf ðJÞ − Zla;lb;1;j
fggf ðJÞg; ð19Þ

where

fð2Þh ðjÞ ¼

8>>>>><
>>>>>:

ffiffiffiffiffiffiffiffi
jþ1
2jþ1

q
ðh ¼ þ1Þ

0 ðh ¼ 0Þffiffiffiffiffiffiffiffi
j

2jþ1

q
ðh ¼ −1Þ

; fð3Þh ðjÞ ¼

8>>>>><
>>>>>:

ffiffiffiffiffiffiffiffi
j

2jþ1

q
ðh ¼ þ1Þ

0 ðh ¼ 0Þ
−

ffiffiffiffiffiffiffiffi
jþ1
2jþ1

q
ðh ¼ −1Þ

: ð20Þ

The matrix element Z, which consists of CLFV and the electromagnetic vertex and the photon propagator is given by,

Zla;lb;s;j
ABCD ðJÞ≡

�
q20

Z
∞

0

dr1r21A
κ1
p1
ðr1ÞBκμ

1;μðr1Þ
Z

∞

0

dr2r22F
q0
la;lb

ðr1; r2ÞCκ2
p2
ðr2ÞDκe

n;eðr2Þ

×ð−1ÞJþκ2þκeV
sAκ1;sBκμ
la;1;j

VsCκ2;sDκe
lb;s;j

Wðjκ1jκ21=2jκe ; JjÞ
�
− ð−1Þjκ1þjκ2−J½fp1; κ1g ↔ fp2; κ2g�; ð21Þ

where κμ ¼ −1 andWðabcd; efÞ is the Racah coefficient. Here, Aκ
pðrÞ; Cκ

pðrÞ and Bκ
n;μðrÞ; Dκ

n;eðrÞ are radial wave functions
of the scattering states (gκp; fκp) and the bound states (gκn;l; f

κ
n;l) given in Appendix and sA ¼ �1 for A ¼ g and A ¼ f,

respectively. q0 is q0 ¼ mμ − B1S
μ − Ep1

for the direct term, and q0 ¼ mμ − B1S
μ − Ep2

for the exchange term. The partial
wave expansion of the photon propagator is given as

Z
d3q
ð2πÞ3

qνe−iq·ðx1−x2Þ

jqj2 − q20 − iϵ
¼ q0∂ν

X
l;m

Y�
l;mðx̂1ÞYl;mðx̂2ÞFq0

l;lðx1; x2Þ; ð22Þ

where we have defined ∂ν ¼ ðiq0;∇1Þ and

Fq0
l1;l2

ðx1; x2Þ ¼ hð1Þl1
ðq0x1Þjl2ðq0x2Þθðx1 − x2Þ þ hð1Þl2

ðq0x2Þjl1ðq0x1Þθðx2 − x1Þ: ð23Þ

Here jl and hð1Þl are the spherical Bessel function and the first kind spherical Hankel function, respectively. The radial
integral of the CLFV vertex is extended in a range of the Bohr radius of the muon, while the integrand extends to the
electron Bohr radius for the electromagnetic vertex. Since the wave length of the electron scattering state around 50 MeV is
about 1=4 fm, a numerical integration for this radial integral is carefully made. The coefficient V s are given by reduced
matrix elements of the spin-orbital wave function by;
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Vκb;κa
l;s;j ¼ ð−1Þl 1þ ð−1Þlκbþlκaþl

2
ðjκb ; 1=2; jκa ;−1=2jj; 0Þ

×

8>>>>><
>>>>>:

δl;j ðs ¼ 0; j ¼ lÞ
ðj − κa − κbÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jð2jþ 1Þp ðs ¼ 1; j ¼ lþ 1Þ

ðκa − κbÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þp ðs ¼ 1; j ¼ lÞ

−ðjþ 1þ κa þ κbÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðjþ 1Þð2jþ 1Þp ðs ¼ 1; j ¼ l − 1Þ

: ð24Þ

Finally, the angular and energy distributions of the emitted electron are expressed in terms of the partial wave amplitude
by

d2Γαe

dEp1
d cos θ

¼ G2
F

2π3
jp1jjp2j

X
κ1;κ2;κ01;κ

0
2
;J;l

ð2J þ 1Þð2jκe þ 1Þð2jκ1 þ 1Þð2jκ2 þ 1Þð2jκ0
1
þ 1Þð2jκ0

2
þ 1Þ

×
1þ ð−1Þlκ1þlκ0

1
þl

2

1þ ð−1Þlκ2þlκ0
2
þl

2
i
−lκ1−lκ2þlκ0

1
þlκ0

2e
iðδκ1þδκ2−δκ01

−δκ0
2
Þ

× ðjκ1 ; 1=2; jκ01 ;−1=2jl; 0Þðjκ2 ; 1=2; jκ02 ;−1=2jl; 0ÞWðjκ1jκ2jκ01jκ02 ; JlÞ
× ð−1ÞJ−jκ2−jκ02NðJ; κ1; κ2; Ep1

; αeÞN�ðJ; κ01; κ02; Ep1
; αeÞPlðcos θÞ; ð25Þ

where PlðxÞ is Legendre polynomials. The total rate can be calculated by integrating the energy and angle:

Γ ¼ 1

2

X
αe

Z
mμ−B1S

μ −Bαe
e

me

dEp1

Z
1

−1
d cos θ

d2Γαe

dEp1
d cos θ

: ð26Þ

After taking into account the approximations employed in Ref. [8], the above formula for the photonic interaction can be
reduced to the following transparent formula of,

Γ0ðμ−e− → e−e−Þ ¼ 8me

π
ðZ − 1Þ3α4ðGFm2

μÞ2ðjARj2 þ jALj2Þ: ð27Þ

III. RESULTS

The wave functions of the bound muon and electron and
the emitted electrons in the final state are obtained by
solving Dirac equations with the Coulomb potential
numerically. We use the fourth-order Runge-Kutta method
to solve the differential equation. The Gauss-Legendre
quadrature is used to evaluate the overlap integrals ZABCD
in Eq. (21). The numerical calculation involves more
careful analysis than our previous study on the contact
interaction[20]. The numerical code for computation with
multipole expansion is verified by comparing with the
analytic result of model I in Table III.
We use the uniform nuclear charge distribution, ρCðrÞ,

for the Coulomb potential, which is given as

ρCðrÞ ¼
3Ze
4πR3

θðR − rÞ; ð28Þ

with R ¼ 1.2A1=3 fm. We have also examined a realistic
charge distribution of the Woods-Saxon form. However the

rate changes by less than 1% from that of the uniform
distribution. Therefore the uniform charge distribution is
decided to use in our calculation from now on. In order to
include the interaction between muon and electron approx-
imately, we use Z − 1 instead of Z in calculation of the
electron bound states. A sufficiently large number of partial
waves of the scattering electron state has to be included.
The convergence property of the rate against partial waves
is shown in Table I. The convergence property is almost
the same as the contact interaction. For 40Ca, we have to
sum the partial waves up to jκj ≤ 13ð18Þ to suppress the

TABLE I. The convergence property of Γ=Γ0. The maximum
values of jκj included for the rates in each column are given in the
first low.

Nuclei jκj ≤ 1 jκj ≤ 5 jκj ≤ 10 jκj ≤ 20

40Ca 0.0762 0.482 0.641 0.663
120Sn 0.125 0.396 0.406 0.406
208Pb 0.109 0.270 0.271 0.271
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truncation error to less than 1%(0.1%). For larger Z nuclei,
the rate converges faster due to a smaller radius of the
bound muon.
For the photonic interaction, the effective interaction is

not local due to the propagation of virtual photons. In
principle, the bound electrons other than 1S state could
contribute to the rate. The contributions to the rate from
each atomic orbit, normalized to those of 1S state, are
shown in Table II. The contributions of nS wave bound
electrons are suppressed approximately by a factor of 1=n3,
which can be expected by the value of the electron wave
function at the origin. It is found the contributions of the
non-S wave bound electrons are larger than that of the
contact interaction. However it is still very small, compared
with those of 1S electrons. The total rate for 208Pb is
enhanced by about 20% by including the electrons other
than the 1S state. In order to reduce the truncation error to
less than 2%, the 1S, 2S, and 3S electrons should be
included in the summation.

A. Rate of the photonic interaction

The ratio of the μ−e− → e−e− rates, Γ=Γ0, is studied to
examine the roles of Coulomb interaction of the scattering
state and the relativistic wave function of the bound states.
For simplicity, we set AR ¼ 0 and start discussions includ-
ing only the contribution of the 1S electron bound state. We
introduce three models summarized in Table III. In the
model I, the scattering electrons are plane waves (PLW) and
the wave function of bound electron is non-relativistic
(Non. Rel.). The ratio of Γ=Γ0 is shown in a dashed line of
Fig. 2. Due to the finite size of the muon wave function, it is
decreasing linearly as Z, even though the approximation for
the lepton wave functions are the same in this work and
Ref. [8]. This is observed in our previous work [20] for the
contact interaction. In the model II, we replaced the bound

state wave functions in the model I by relativistic one
(Rel.). The result is shown in a dash-two-dotted line. The
relativistic effect of a bound electron at small distance
makes the overlap integral larger and the ratio becomes 1–
1.2. Finally, we use the Coulomb distorted wave (DW) for
the electron scattering state in the model III. The ratio is
shown in a solid line. By taking into account the Coulomb
distortion and the relativistic bound state wave functions,
the rate is strongly suppressed compared with Γ0, which is
quite different from large enhancement obtained for the
contact interaction. The ratio is 0.27 (0.66) for 208Pb (40Ca).
To understand the mechanism of the suppression of the

μ−e− → e−e− rate, we study a typical transition density,

ρtrðrÞ ¼ j0ðq0rÞg−1p1
ðrÞg−11;μðrÞ; ð29Þ

which indicates the partial transition density of a bound
muon (1S) to a scattering electron (κ ¼ −1) and a photon
(l ¼ 0). Here we select the most important kinematical
region p1 ¼ ðmμ − BμÞ=2 ¼ q0, ignoring the electron
mass. The transition densities calculated by using the
PLW and DW electron wave functions are shown in
Fig. 3. In the PLW case, ρtr is positive definite, since
the wave length of the scattering electrons is the same as
that of virtual photons. On the other hand, ρtr changes its
sign and oscillates because of the Coulomb attraction for
the electron. The same mechanism also can be applied to
the vertex of the bound electron transition. Therefore the
distortion of final electrons suppresses the transition rate.
In terms of the momentum space, the suppression of the

μ−e− → e−e− rate for the photonic interaction can be
understood as follows. The momenta of the electron and
virtual photon are transferred to the bound muon or the

TABLE II. The relative contributions to the rate from electrons in different atomic orbits under theM shell and the
4S orbit, for 208Pb. The spins are summed over. They are normalized by the 1S contribution.

1S 2S 2P 3S 3P 3D 4S Total

1 0.15 7.3 × 10−3 4.3 × 10−2 2.6 × 10−3 2.5 × 10−5 1.8 × 10−2 1.21

TABLE III. Models for the electron wave functions. The
relativistic bound state wave function (Rel.) and distorted wave
of the scattering state (DW) are calculated in by the Coulomb
potential from an uniform nuclear charge density. The non-
relativistic bound state wave function (Non.) is obtained by using
a point charge density.

Model Bound electron Scattering electron

I Non. Rel. PLW
II Rel. PLW
III Rel. DW

FIG. 2. The Z dependence of Γ=Γ0. The ratios Γ=Γ0 of model I,
II, and III are shown in dashed, dash-two-dotted, and solid curves,
respectively.
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electron at each vertex for the photonic interaction. Main
contribution to the rate is when the both electron and virtual
photons carry about a half of the muon mass, so that the
momentum transfer to the bound states is almost zero.
While this is true for the asymptotic momentum of the
electron, the Coulomb attraction increases local momentum
of the electrons being close to the nucleus. This brings a
mismatch of the virtual photon and the electron momenta
and increases the momentum transfer to the bound leptons
and hence the transition probability is reduced. A similar
suppression mechanism of the transition rate was pointed
out in Ref. [15] for the μ− → e− conversion process.
The branching ratio of μ−e− → e−e− by the photonic

interaction is given as

Brðμ−e− → e−e−Þ≡ ~τμΓðμ−e− → e−e−Þ; ð30Þ
where ~τμ is a mean life time of the muonic atom, given
in Ref. [23]. The upper limit of this branching ratio is
calculated by using AR and AL, which are constrained from
the experimental upper limit of μþ → eþγ. The branching
ratio Brðμþ → eþγÞ ¼ Γðμþ → eþγÞ=Γðμþ → eþν̄μνeÞ is
given as

Brðμþ → eþγÞ ¼ 384π2ðjARj2 þ jALj2Þ: ð31Þ
Assuming the dominance of the photonic interaction, the
upper limit of Brðμ−e− → e−e−Þ can be expressed by using
Bmax, which is current upper limit of Brðμþ → eþγÞ as,

Brðμ−e− → e−e−Þ

<
Brðμ−e− → e−e−Þ
Brðμþ → eþγÞ Bmax

¼ 4ðZ − 1Þ3α4 me

mμ

~τμ
τμ

Γðμ−e− → e−e−Þ
Γ0ðμ−e− → e−e−ÞBmax; ð32Þ

where τμ is the mean life time of a free muon. The upper
limit of the branching ratio [Eq. (32)] is calculated as a

function of Z by using Bmax ¼ 4.2 × 10−13 by the MEG
experiment [1]. The dashed (blue) line in Fig. 4 shows the
result of previous work [8], whereas the results of this work
with taking into account the 1S electrons and all the bound
electrons are shown in a solid (red) and dotted (orange)
lines, respectively. From the improved estimations using
the relativistic Coulomb lepton wave functions, the branch-
ing ratio Brðμ−e− → e−e−Þ is about 10−19 for 208Pb. The
non-1S bound electrons increase the branching ratio by
about 20%.

B. Distinguishing mechanisms of CLFV interactions

Having completed to study the μ−e− → e−e− process for
both the contact and the photonic interactions, we study a
possibility to distinguish the CLFV mechanism of the
μ−e− → e−e− process in muonic atoms. For this purpose
we consider four simplified models: (i) contact interaction,
where the electrons are emitted with the same chirality

g1 ≠ 0; AL=R ¼ 0; and gj≠1 ¼ 0. ð33Þ
(ii) contact interaction, where the electrons are emitted with
opposite chirality

g5 ≠ 0; AL=R ¼ 0; and gj≠5 ¼ 0. ð34Þ
(iii) photonic interaction

AL ≠ 0; AR ¼ 0; and gi ¼ 0: ð35Þ
(iv) both of contact and photonic interactions

g1 ¼ 100AL ≠ 0; AR ¼ 0; and gj≠1 ¼ 0: ð36Þ
We have chosen g1=AL ¼ 100 in the model (iv), while
g1=AL ∼ 270 using the current upper limits of AL and g1.
The Z dependence of μ−e− → e−e− is shown in Fig. 5. The
ratios of the models (i) (in a solid line) and (ii) (in a dashed

FIG. 3. The transition density r2ρtrðrÞ for 208Pb. The dash-two-
dotted and solid curves show the transition density using PLW
and DW scattering electron, respectively. Here, the bound muon
is treated relativistically in both curves.

FIG. 4. Upper limits on Brðμ−e− → e−e−Þ, constrained by the
experimental upper limits of Brðμþ → eþγÞ < 4.2 × 10−13 [1].
The dashed (blue) curve shows the result of previous work [8].
Our results including only the 1S electrons and all the 1S
electrons are shown by the solid (red) and the dotted (orange)
lines, respectively.
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line) strongly increase as Z. One would need precise
measurements to discriminate the model (i) from (ii). On
the other hand, the model (iii) exhibits a moderately
increase as Z. We may expect the contribution from both
the photonic and the contact interactions in the model (iv)
and the Z dependence is drawn as a dotted line in Fig. 5.
Thus, we can distinguish the CLFV interactions and their
dominance by the Z dependence of μ−e− → e−e−.
The energy and angular distributions of the emitted

electrons also depend on the mechanism of the CLFV
interaction. The differential rate of the photonic interaction
[model (iii)] and the contact interaction [model (i)] are
shown in Fig. 6 and Fig. 7, respectively. The tail distribu-
tions of backward electrons for the contact interaction are
more frequent than for the photonic interaction. The
difference between the model (i) and (ii) appears only
when the two electrons are ejected in the same direction
(cos θ ∼ 1), where the Pauli principle is most effective, as
discussed in [20]. The distribution of the emitted electrons
and the Z dependence of the rate would be useful to identify

the mechanism of the CLFV interactions contributing
to μ−e− → e−e−.

IV. SUMMARY

We have analyzed the μ−e− → e−e− CLFV process in
muonic atoms. Together with our previous analysis [20] for
the contact interaction and the present work for the
photonic interaction, we find that the relativistic treatment
of the emitted electrons and bound leptons is essentially
important for their qualitative understanding the rate, in
particular the atomic number Z dependence of the rate and
the angular and energy distribution of electrons. The Z
dependence of the μ−e− → e−e− rate and the distributions
of emitted electrons would be useful to distinguish between
the photonic and the four Fermi contact CLFV interactions.
So far one cannot distinguish the g1 term from the g2 term
by using these observables. Therefore the chiral structure of
the CLFV interaction should be explored and it would be
discussed in our future works.
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APPENDIX: LEPTON WAVE FUNCTIONS

The lepton wave functions used in our works are given
for its completeness[20]. The scattering state of an electron
with its momentum p and its z-component of spin s for the
incoming boundary condition can be expressed as

ψeð−Þ
p;s ðrÞ ¼

X
κ;ν;m

4πilκðlκ;m;1=2; sjjκ;νÞY�
lκ ;m

ðp̂Þe−iδκψκ
p;νðrÞ;

ðA1Þ

FIG. 5. Z dependence of μ−e− → e−e− generated by four
different models. They are normalized by the rate for Z ¼ 20.
A solid red line shows the case of model (i), a dashed black line
shows that of model (ii), a dash-dotted green one shows that of
model (iii), and a dotted orange one shows that of model (iv).

FIG. 7. The double differential rate in model (i) for 208Pb. This
figure is printed in Ref. [20].

FIG. 6. The double differential rate in model (iii) for 208Pb.
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where δκ is a phase shift for the partial wave κ. The wave
function ψκ

p;νðrÞ is represented by the radial wave function
gκpðrÞ, fκpðrÞ and the angular-spin wave function χκ [21,22]
as follows:

ψκ
p;νðrÞ ¼

�
gκpðrÞχνκðr̂Þ
ifκpðrÞχν−κðr̂Þ

�
: ðA2Þ

Furthermore, the wave function of a bound lepton l ¼ μ, e
is given as

ψ l
α;sðrÞ ¼

� gκn;lðrÞχsκðr̂Þ
ifκn;lðrÞχs−κðr̂Þ

�
; ðA3Þ

where s is a z-component of spin of the bound state.
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