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We perform a parameter fit in the standard model effective field theory (SMEFT) with an emphasis on
using regularized linear regression to tackle the issue of the large number of parameters in the SMEFT. In
regularized linear regression, a positive definite function of the parameters of interest is added to the usual
cost function. A cross-validation is performed to try to determine the optimal value of the regularization
parameter to use, but it selects the standard model (SM) as the best model to explain the measurements.
Nevertheless as proof of principle of this technique we apply it to fitting Higgs boson signal strengths
in SMEFT, including the latest Run-2 results. Results are presented in terms of the eigensystem of the
covariance matrix of the least squares estimators as it has a degree model-independent to it. We find several
results in this initial work: the SMEFT predicts the total width of the Higgs boson to be consistent with the
SM prediction; the ATLAS and CMS experiments at the LHC are currently sensitive to non-resonant
double Higgs boson production. Constraints are derived on the viable parameter space for electroweak
baryogenesis in the SMEFT, reinforcing the notion that a first order phase transition requires fairly low-
scale beyond the SM physics. Finally, we study which future experimental measurements would give the
most improvement on the global constraints on the Higgs sector of the SMEFT.

DOI: 10.1103/PhysRevD.97.015007

I. INTRODUCTION

The Higgs boson discovered at the Large Hadron
Collider (LHC) very much resembles the one predicted
by the standard model (SM) [1]. Unfortunately, to date,
no other particles have been discovered at the LHC [2],
indicating there is a mass gap between the SM and
whatever may lie beyond it.1 Such a separation of scales
lends itself to an effective field theory (EFT) treatment, and
the standard model effective field theory (SMEFT) is a
well-developed subject [5,6].
An issue when dealing with the SMEFT is the large

number of parameters it contains. There are 2,499 baryon
number preserving real parameters at dimension-6 [7],
and this number grows exponentially with the number
of dimensions [8]. Following the pioneering analysis of
Ref. [9] many parameter fits in the SMEFT have been

performed [10–45]. These more recent analyses have often
focused on constraining the Higgs sector of the SMEFT.
In this work, we also perform an SMEFT parameter fit,

but with an emphasis on a statistical technique aimed at
tackling the issue of the large number of parameters. In
particular, the technique we use is a regularized linear
regression, where a positive definite function of the param-
eters of interest is added to the usual cost function. This
prevents the fit from falling into an overfit solution, and, in
principle, allows information to be obtained about any
number of parameters. One application of this in particle
physics is unfolding a differential cross section from the
detector level to the truth level [46,47] Additionally, it is a
commonly used technique in machine learning [48,49], and
finds various applications in lattice physics; see e.g. [50–52].
As is typically done, a cross-validation is performed to

try to determine the optimal value of the regularization
parameter to use. However, it selects the SM as the best
model to explain the experimental measurements.
Nevertheless we persist in studying the SMEFT, contenting
ourselves to performing regularized fits with multiple
choices for the regularization parameter, and examining
how much regulator dependence various quantities have.
As proof of principle of this technique, we apply it to

fitting Higgs boson signal strengths, including the latest
Run-2 results. Following Ref. [32], we emphasize present-
ing results in terms of the eigensystem of the covariance
matrix of the least squares estimators as it has a degree
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1Exceptions to this could be a hidden sector with (sub-)GeV
particles, possibly related to dark matter [3], or the alignment
without decoupling limit of the two-Higgs doublet model [4].
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model-independent to it. Despite this being an initial study
we obtain several useful physics results. We show the
SMEFT predicts the total width of the Higgs boson, which
is not yet directly measured, to be consistent with the SM
prediction, and that the ATLAS and CMS experiments at
the LHC are currently sensitive to nonresonant double
Higgs boson production. We derive constraints on the
viable parameter space for electroweak (EW) baryogenesis
in the SMEFT, and reinforce the notion that a first-order
phase transition requires fairly low-scale beyond the SM
(BSM) physics. We study which future experimental
measurements would improve the global constraints on
the Higgs sector of the SMEFT the most. This is quantified
using ratios of the global determinant parameter (GDP) of
Ref. [53], which has a natural interpretation in terms of the
eigensystem of the covariance matrix.
We expect this technique to be of use to practitioners of

both bottom-up and top-down approaches to EFTs. In the
case of the former, this technique could be applied as
described in this work to more sophisticated SMEFT
predictions as well as data sets that included differential
measurements, or measurements from outside the Higgs
sector of the SMEFT such as EW precision data (EWPD),
triple gauge couplings, or flavor measurements. For the
latter, the regularization matrix provides a convenient way
to impose a prior assumptions about possible UV physics.
Additionally, another advantage of this approach is that it
makes it easy to determine the blind directions in parameter
space for a given data set.
The rest of the paper is organized as follows. SMEFT

predictions for Higgs boson processes including the Higgs
trilinear coupling are given in Sec. II. Next the fitting
procedures used in this work, and the statistical approaches
they employ, are described in Sec. III. The experimental
results used in these fits are compiled in Appendix A. The
results of our fits to the Higgs signal strength measurements
are then presented in Sec. IV with additional information
given in Appendixes B and C. Finally, we summarize our
findings in Sec. V.

II. STANDARD MODEL EFT PREDICTIONS

The Lagrangian of the SMEFT is given by

LSMEFT ¼ LSM þ Lð5Þ þ Lð6Þ þ � � � ; ð1Þ

where the superscript n in the non-SM terms indicates the
mass dimension of the operators contained in that term.
The Yukawa couplings and the dimension-6 Wilson

coefficients implicit in Eq. (1) are in general matrices in
flavor space. Additionally, Higgs boson interactions with
fermions inherently have a nontrivial flavor structure, and
thus it is important that whatever theoretical framework is
used to interpret Higgs measurement also have some non-
triviality in its flavor structure. With these considerations in
mind, the number of parameters can be reduced to a
somewhat manageable number of 18 by imposing a
Uð2Þ5 symmetry under which the first two generations
transform as doublets and the third generation as singlets
[54].2 In the basis of Ref. [59] with an approximate Uð2Þ5
flavor symmetry, these operators are QH, QH□, QHD, QHG,

QHW , QHB, QHWB, QuH
33
, QdH

33
, QeH

33
, Qð3Þ

Hl, Q
ð1Þ
Hl, Q

ð3Þ
Hq, Q

ð1Þ
Hq,

QHe, QHu, QHd, and Qll. Operators without a generation
label are Uð2Þ5 symmetric. See Ref. [60] for additional
parameter counting along these lines.
This is a proof of principle work regarding the usefulness

of the statistical methods in constraining SMEFT coeffi-
cients. As such we made an additional simplification with
respect to the SMEFT predictions. Specifically, we assume
that the production or decay of a Higgs boson involving a
pair of W or Z boson does not depend on the type of
fermion that producesW or Z, or the type of fermion theW
or Z decays into. Clearly both VBF and the associated Vh
production mechanisms involve quarks. On the other hand,
the best results of Higgs decays to Ws and Zs involve
leptonic decays of the vector bosons [1]. Given the
aforementioned assumptions, a subset of dimension-6
operators from Eq. (1) that is sufficient for our purposes is

ΔLð6Þ ¼cH
v2

∂μðH†HÞ∂μðH†HÞþcT
v2

���H†D
↔

μH
���2þc6

v2
ðH†HÞ3þðH†HÞ

v2
½cbðq̄L3dR3HÞþctðq̄L3uR3 ~HÞþcτðl̄L3eR3HÞþH:c:�

þ icW
v2

ðH†σiD
↔μ

HÞðDνWμνÞiþ
icB
v2

ðH†D
↔μ

HÞðDνBμνÞþ
icHW

v2
ðDμHÞ†σiðDνHÞWi

μνþ
icHB

v2
ðDμHÞ†ðDνHÞBμν

þcγ
v2
H†HBμνBμνþcg

v2
H†HGa

μνGaμν; ð2Þ

where v ¼ ð ffiffiffi
2

p
GFÞ−1=2 ≈ 246 GeV, and H†D

↔

μH≡
H†DμH − ðDμH†ÞH. Only third generation fermions

appear on the second line of (2), consistent with our
assumption of a Uð2Þ5 flavor symmetry. A factor of v−2

has been extracted from the Wilson coefficients to make
the ci dimensionless. We will address the effect of
different normalizations and UV assumptions later. This
set of 12 parameters is collected into a vector for later
convenience

2For applications of this symmetry in semileptonic B physics,
see e.g. [55–58].
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c⊤ ¼ fcH; cT; cγ; cg; cHW; cHB; cWcB; ct; cb; cτ; c6g; ð3Þ

where ⊤ indicates the transpose.
Numerical results for the Higgs boson decay rates in the SMEFT based on Eq. (2) are given in [5,7,61,62]. The

contribution to these decay rates from the Higgs trilinear coupling via electroweak loops is given in Ref. [63]. Combining
these results we have

Γðh → ττÞ
ΓSMðh → ττÞ≃ 1 − 2cH − 196cτ;

Γðh → μμÞ
ΓSMðh → μμÞ≃ 1 − 2cH;

Γðh → bbÞ
ΓSMðh → bbÞ≃ 1 − 2cH − 83cb − 0.0085ct;

Γðh → ccÞ
ΓSMðh → ccÞ≃ 1 − 2cH − 0.015ct; ð4Þ

and

Γðh → WW�Þ
ΓSMðh → WW�Þ≃ 1 − 2.02cH þ 0.72cW þ 0.61cHW − 0.057c6;

Γðh → ZZ�Þ
ΓSMðh → ZZ�Þ≃ 1 − 2.02cH − 4cT þ 0.66cW þ 0.34cB þ 0.49cHW þ 0.26cHB − 0.24cγ − 0.064c6;

Γðh → ZγÞ
ΓSMðh → ZγÞ≃ 1 − 2cH þ 0.12ct − 0.12cb − 0.0088cτ þ 1.38cW þ 151ð0.16cHW − 0.32cHB þ 1.58cγÞ;

Γðh → γγÞ
ΓSMðh → γγÞ≃ 1 − 2.01cH þ 0.54ct − 0.29cb − 0.69cτ þ 1.66cW − 863cγ − 0.038c6;

Γðh → ggÞ
ΓSMðh → ggÞ≃ 1 − 2.02cH − 2.13ct þ 4.17cb þ 589cg − 0.051c6: ð5Þ

The width of the Higgs boson in the SMEFT is determined based on Eqs. (4), (5) and the SM branching fractions given in
Ref. [64]. We find

Γh

ΓSM;h
≃ 1 − 2.007cH − 0.11cT − 1.61cγ þ 12.3cg þ 0.18cHW − 0.067cHB

þ 0.18cW þ 0.009cB − 0.187ct − 47.4cb − 12.3cτ − 0.018c6: ð6Þ
We take as numerical expression for Higgs boson production in the SMEFT the following:

σðgg → hÞ
σSMðgg → hÞ≃

Γðh → ggÞ
ΓSMðh → ggÞ ;

σðpp → jjhÞ
σSMðpp → jjhÞ≃ 1 − 2.02cH − cT − 0.06cγ þ 0.58cHW þ 0.085cHB þ 0.71cW þ 0.085cB − 0.05c6;

σðpp → WhÞ
σSMðpp → WhÞ≃ 1 − 2.03cH þ 0.61cHW þ 0.72cW − 0.081c6;

σðpp → ZhÞ
σSMðpp → ZhÞ≃ 1 − 2.04cH − 4cT − 0.24cγ þ 0.49cHW þ 0.34cHB þ 0.66cW þ 0.34cB − 0.095c6;

σðpp → tt̄hÞ
σSMðpp → tt̄hÞ≃ 1 − 2.11cH − 2.01ct − 0.29c6: ð7Þ

The relative fractions of WW and ZZ in the vector boson fusion (VBF) production process are approximations based on
Ref. [65]. Kinematic differences between production and decays modes, e.g. Γðh → WW�Þ versus σðpp → WhÞ, or
production cross sections at different center-of-mass energies, are not taken into account. Finally, the prediction for double-
Higgs boson production in the SMEFT (at 14 TeV and considering only top quarks in the loop) is [66]

σðgg → hhÞ
σSMðgg → hhÞ≃ 1þ 4.25cH − 469cg þ 3.7ct − 8.8c6: ð8Þ
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III. FITTING PROCEDURE

In this section, we discuss the statistics of the two types
of fits we perform. The first is the method of least squares
that is ubiquitous in high energy physics. We then discuss a
variations of this standard approach that can be used to
avoid overfitting, regularizing the least squares fit.
The 55 experimental measurements from Run 1 and

Run 2 used included in these fits are compiled in
Appendix A. The measurements are all Higgs boson signal
strengths. We do not consider differential or boosted Higgs
measurements in this work. In addition, we do not include
EWPD, triple gauge coupling, or flavor results in our fit.
Lastly, no attempt is made to take theoretical errors into
account in our fit whether they be from the SM prediction
or the SMEFT theory error [26,32,36].
We will perform fits to these measurements with and

without regularization, and for various choice of which
parameters can be nonzero. A cross-validation test is
performed to determine the optimal value of the regulari-
zation parameter to use in the fit.

A. Least squares review

We closely follow the presentation of the PDG [2] in
what follows. The chi-squared function in the case of
correlated measurements with covariance matrix Vij is

χ2ðcÞ ¼ ðy − μðcÞÞ⊤V−1ðy − μðcÞÞ; ð9Þ

where y is the vector of measurements, μðcÞ is the vector
of predictions and c is the vector of parameters to be
estimated.
We consider the case where the predicted values are

linear functions of the parameters

μðxi; cÞ ¼
Xm
j¼1

hjðxiÞcj: ð10Þ

In the standard case, hjðxÞ are m linearly independent
functions. In addition, m must be less than the number of
measurements, N. Furthermore, at leastm of the xi must be
distinct.
It will be useful in what follows to define Hi;j ¼ hjðxiÞ.

Consider as an example the leading-order SMEFT pre-
diction for the h → γγ decay rate from Eq. (5). From this
we see that, for instance, Hh→γγ;cW ¼ 1.66.
The least squares estimators for the parameters c are

defined through ∇χ2 ¼ 0,

ĉ ¼ ðH⊤V−1HÞ−1H⊤V−1y: ð11Þ

The inverse of the covariance matrix for the estimators is
given by Hessian of chi-squared function, 1

2
∇i∇jχ

2, or
equivalently

U ¼ ðH⊤V−1HÞ−1: ð12Þ

Note that for practical purposes we shift the ones in the
SMEFT predictions for the Higgs boson’s signal strengths
into the measured values.

B. Regularized linear regression

As mentioned in the previous subsection, there are a
number of conditions that must be satisfied for the standard
least squares approach to be used. This technique is not
useful when the covariance matrix of the estimators is ill-
defined, which would be the case if, for example, the Hi
are not sufficiently unique. These requirements can be
bypassed by regularizing the least squares fit. In a regu-
larized linear regression, the cost function is augmented
with a positive-definite function of the parameters. In
particular, the regularization makes the inverse of the
Hessian of the chi-squared function, the Fisher information,
well defined.
In this work, we use the following expression for the chi-

square function as it admits a closed form solution for the
least squares estimators

χ2ðcÞ ¼ ðy − μðcÞÞ⊤V−1ðy − μðcÞÞ þ c⊤κc; ð13Þ

with κ being a positive definite matrix. We primarily use the
simple parametrization κij ¼ κδij, which goes by several
names: ridge regression, Tikhonov regularization, and l2

penalization. This choice of κ is the frequentist analog of
adding the same Gaussian prior to each parameter of
interest. Comments on other choices for κ are made later.
Another commonly used regularization term is β

P
ijcij,

β > 0, which is known as Lasso regression or l1 penali-
zation. This is a frequentist analog of adding the same
Laplacian prior to each parameter of interest. One may also
choose to use elastic net regularization, a linear combina-
tion of ridge and Lasso regression. We save these methods
for future work.
In the case of ridge regression, the least squares

estimators are given by

ĉ ¼ ðH⊤V−1H þ κ1Þ−1H⊤V−1y; ð14Þ

with an obvious generalization for different choices of κij.
There is a similar modification to the covariance matrix

U ¼ ðH⊤V−1H þ κ1Þ−1: ð15Þ
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C. Cross-validation

In cross-validation, the measurements are randomly split
into training and validation groups.3 The number of
measurements assigned to the training group, nt, is varied
between 33 and 39 (60% to 71%) of the total n ¼ 55
measurements. The test is performed 300 times for each
value of nt considered, and a chi-squared for the training
set, χ2t , can be computed. The best-fit parameters are
determined from the training set using regularization linear
regression with some value of κ. These parameters are then
used to compute the chi-squared for just the validation
set, χ2v, which does not include a regularization term. The
optimal choice of κ is given by the value which minimizes
χ2v=nv, where nv ¼ n − nt is the number of measurements
in the validation group. See e.g. Refs. [48,49] for more
information about cross-validation.
The average result of the 2100 cross-validation tests for a

number of choices of κ between 10−3 and 103 are presented
in the left panel of Fig. 1. Here the cross-validation selects
κ → ∞, the standard model, as the best model to explain
the measurements. This is an uncommon result as typically
the validation curve, the orange curve marked with squares
in Fig. 1, has a local minimum at a finite value of κ. Another
way to think about this is that the SMEFT may give a lower
χ2 than the SM, but the goodness of fit is still better in the
SM. A similar conclusion, that the data prefer the SM over
the SMEFT, was drawn in a Bayesian analysis of b → sll
observables [67–69]
The story would change if there was a (hint of a) signal

for BSM physics. This is illustrated in the right panel of
Fig. 1. Here we have injected an artificial BSM signal by
setting the central values of all the tth signal strengths to

3.0 while leaving their uncertainties unchanged. In this
case, the cross-validation selects κ ≈ 1 as the best model as
it has the lowest (average) value of χ2v=nv.
Interestingly, in both panels of Fig. 1 the cross-validation

suggests the data are being underfit. A hallmark of a model
underfitting data is when the validation χ2v=nv is compa-
rable to, or smaller than, the training χ2t =nt. Both panels of
Fig. 1 then suggests that to avoid underfitting a value of κ
less than one should be chosen. In any case, as no finite
value of κ is preferred by the cross-validation, we will
typically use two choices for κ and see how much regulator
dependence there is in our predicted quantities.

IV. RESULTS

A. Covariance matrix eigensystem

It is instructive to examine the eigensystem of the
covariance matrix for the least squares estimators [32].
There are k ¼ 1…12 eigenvectors, Wk ¼ wkici, normal-
ized such that jwkj ¼ 1 with c given in Eq. (3). The square
root of an eigenvalue, σk, gives the one sigma range on
the allowed deviation of eigenvector, Wk, from its central
value.
Results for σk are reported in Fig. 2. The blue circles and

orange squares are the results of 12 parameter, regularized
fits with κ ¼ 1 and 10−2, respectively. From these fits,
we see that eigenvectors 1 and 2 are blind directions in
parameter space as far as Higgs boson signal strengths are
concerned. A direction k is called blind if σk ¼ 1=

ffiffiffi
κ

p
,

independent of the choice of κ. An advantage of this
approach is that it can quickly pick out these blind
directions. Explicit expression for the eigenvectors in the
κ ¼ 1 case are given in Appendix B. Additional plots are
presented in Appendix C.
In comparison, the green diamonds correspond to an

unregularized, 10-parameter least squares fit. The two

FIG. 1. (Left:) Cross-validation test to determine the optimal value of κ. The average χ2 per number of measurements is shown as a
function of κ. The blue circles and orange squares correspond to the training (χ2t =nt) and validation (χ2v=nv) data sets, respectively. The
cross-validation selects the SM (κ → ∞) as the best model to explain the measurements. (Right:) The same as on the left, but with an
artificial BSM signal injected. Here all tth signal strength central values have been fixed to 3.0 with their uncertainties left unchanged. In
this case, the cross-validation selects κ ≈ 1 as the best model as it has the lowest (average) value of χ2v=nv.

3We ignore correlations between measurements during cross-
validation.

STATISTICAL APPROACH TO HIGGS BOSON COUPLINGS … PHYS. REV. D 97, 015007 (2018)

015007-5



parameters removed from Eq. (3) are cT and g2cW þ g1cB,
which are two linear combinations of parameters appearing in
eigenvectors 1 and 2 of the regularized fits. This is not a
unique choice, but removing these combinations of param-
eters forces the oblique parameters S and T [70] to be zero
at tree level. However, we caution that when there are
many operators that can potentially be nonzero, cT and
g2cW þ g1cB need not be tiny to be consistent with EWPD
[9,13,32,71–73].
When regularization is not important, eigenvectors 5

through 12, there is excellent agreement between the
different cases. The bounds on eigenvectors 9 through
12 are at the level of a few permille or stronger. These
eigenvectors are composed almost exclusively of cb, cτ, cg,
and cγ , respectively. Weaker, percent level bounds, are
found for eigenvectors 5 through 8. The third eigenvector is
almost entirely composed of c6. Not surprisingly the
associated bound is weak, especially in the weakly and
nonregularized cases, while the regularization with κ ¼ 1
makes this bound artificially stronger. The correlation
between the eigenvectors in regularized and unregularized
cases is not exact, so a comparison of eigenvalues 2 and 4 is
approximate.
The purpose of the regulation parameter is to the

parameters of interest from becoming too large.
Specifically, the standard deviations of the least squares
estimators are regulated to have a maximum size

Δci ≲ 1ffiffiffi
κ

p : ð16Þ

Based on this, and given the normalization of the operators
in Eq. (2), a choice of κ can be seen as imposing a
prior assumption of the lowest possible scale of BSM
physics, Λmin, or as imposing an upper limit on a signal
strength from an experimental measurement. For example,
if κ is taken to be 1 (10) then from (2), (16) we have

Λmin ∼ vðΛmin ∼ 800 GeVÞ. The choice of κ ¼ 1 can be
seen as minimally enforcing the convergence of the EFT.
However, this interpretation depends on the normalization
of the operators in Eq. (2), with a different normalization
generally leading to a different interpretation. A choice of
the regularization parameter less than one could be used to
enforce an experimental upper limit on a process that is not
yet well measured, such as double Higgs boson production
[74,75] or Higgs boson decay to a Z boson and a photon
[76–78]. However, we do not pursue this approach, opting
to include h → Zγ signal strengths in our fits, and making
predictions for gg → hh. The interpretation also depends on
the structure of the regularization matrix, κij. For instance,
if one assumed a UV theory that is strongly-coupled, it
might make more sense to relate the entries of κij to the
size of the coefficients expected from naïve dimensional
analysis [79], rather than taking κij to be proportional to the
identity matrix.

B. Model independence of the eigensystem

Another way to understand the results is to look at
two-dimensional profiles of the fits. We focus on cγ and cg
in what follows. In doing so, we demonstrate that the
eigensystem has a certain amount of model-independence
to it. It would be interesting to investigate exactly how
model-independent the eigensystem is. The key point
discussed below is that marginalized allowed regions of
parameter space in the parameter basis are sensitive to
assumptions about the UV physics, whereas in the eigen-
basis this is not the case.
The left panel of Fig. 3 shows the one and two sigma

preferred values for cγ and cg—these regions are defined
by Δχ2 ¼ 2.30 and 6.18, respectively, with all other
parameters fixed to their central values—for five scenarios
to be defined. The blue and orange regions correspond to
regularized fits with all 12 parameters, and κ ¼ 1 and 10−2,
respectively. Darker (lighter) shading indicates the one
(two) sigma allowed region. The red region is an unregu-
larized least squares fit where the only two nonzero
parameters are cγ and cg. Furthermore the purple region
is also an unregularized least squares fit, but where the four
parameters are nonzero fcγ; cg; cHW; cHBg, and where cHW ,
cHB are marginalized over. There is a noticeable lack of
agreement between these different scenarios as to what are
the preferred central values of cγ and cg are. In fact, for the
fifth scenario, the unregularized 10-parameter fit described
above, the preferred central values do not show up in the
range of parameters plotted in Fig. 3. However, note that
the variances of and correlation between cγ and cg are the
same in all five cases.
To understand what is happening here consider the

right panel of Fig. 3. This shows the same five fits, but
in the plane of the eigenvectors W11 and W12, rather than
the parameters cg, cγ . All five fits agree perfectly as to what

FIG. 2. One sigma limits σk on the k ¼ 1…12 eigenvectorsWk of
the covariance matrix for the least squares estimators. The blue
circles and orange squares are the results of 12-parameter, regular-
ized fits with κ ¼ 1 and 10−2, respectively. The green diamonds
correspond to an unregularized, 10-parameter least squares fit.
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the preferred region is in this case. That such a difference
occurs is interesting because W12 and W11 are composed
almost exclusively cγ and cg, respectively; w12;γ ≈ w11;g≈
0.93. The difference, or lack thereof, between the central
values in a given scenario occurs because when the addi-
tional parameters are fixed to their central values, which in
turn forces cγðcgÞ away from the central value of
W12ðW11Þ. In the case of the fit with only cγ and cg
nonzero from the start, there are no additional parameters,
and allowed contours in the cg − cγ and W11 −W12 plane
are identical up to the rotating induced in going from one
basis to the other. This shows that eigensystem is a fairly
model-independent quantity. It depends only on the
SMEFT framework, and in the particular cases of W11

or W12, for example, that the parameters cγ or cg can be
nonzero, but with no additional assumption about which
parameters may or may not be nonzero.

C. Predictions

An advantage of having estimates for all of the coef-
ficients under consideration is that predictions can be made
for observables that have not been measured yet. For
example, a prediction can be made for the total width of
the Higgs boson. We find, using only Run-1 results,

ΓSMEFT;h

ΓSM;h
≃ 0.5� 0.4 ðRun 1Þ: ð17Þ

The Higgs decay rate to bottom quarks—the largest
branching fraction in the SM—was measured to be low
during Run 1 of the LHC, which explains why this value is

below the SM prediction. Adding results from Run 2,
which are closer to the SM prediction, we instead find

ΓSMEFT;h

ΓSM;h
≃ 0.9� 0.3 ðRun 1þ Run 2Þ: ð18Þ

As expected the central value is higher, and now the
prediction for the width of the Higgs boson in the
SMEFT is consistent with the SM prediction. In addition,
predictions can also be made for double Higgs boson
production. The CMS Run-2 upper limit for double Higgs
production is 19.2 times the SM prediction, at the 95% CL
[75]. The upper limit we derive for double Higgs produc-
tion in the SMEFT in the most general case is not
competitive with the experimental upper limit, indicating
that the experiments are currently sensitive to nonresonant
double Higgs production. Explicit bounds on double Higgs
production in the SMEFT in the general case are shown in
Appendix C, Fig. 8 specifically. On the other hand, in
specific scenarios tight bounds on double Higgs production
can be derived. For example, setting c6 to zero we
find σSMEFTðgg → hhÞ=σSMðgg → hhÞ≃ 1.4� 0.4.

D. Electroweak baryogenesis

The trilinear Higgs coupling plays an important role in
not only double Higgs production, but also in EW baryo-
genesis. To investigate the constraints on EW baryogenesis
in the SMEFT we switch to a more common notation:

cH ¼ 1

2
c̄H; c6 ¼ −

m2
h

2v2
c̄6: ð19Þ

FIG. 3. (Left:) Preferred parameter space in the cg − cγ plane based on the criteria Δχ2 ¼ 2.30 (darker shading) and 6.18 (lighter
shading). The central values of cγ and cg depend on the assumption of what additional parameters may be nonzero and how large they
can be, while the variances of and correlation between cγ and cg are the same in all cases. See the text for details about the five scenarios.
(Right:) In contrast, when the same fits are presented in terms of the eigenvectorsW11 andW12, perfect agreement between the five cases
is found. This indicates the eigensystem has a degree of model independence to it.
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Assuming temperature dependence only in the Higgs mass
parameter, requiring a first-order phase transition yields the
analytic bound [80–83]

2

3
< c̄6 < 2: ð20Þ

Reference [84] went further and considered the viable
parameter space for a first-order phase transition in the
c̄H − c̄6 plane. This parameter space is bounded by our fits,
and is shown in Fig. 4. A first-order phase transition occurs
in the wedge bounded by the red lines [84]. The blue and
green ellipses give the favored parameter space from the 12
parameter regularized fit with κ ¼ 1, and the 10 parameter
unregularized fit, respectively. Darker and lighter shading
again correspond to Δχ2 ¼ 2.30 and 6.18, respectively.
The parameter space shaded red is the favored result of
standard two parameter fit assuming only c̄H and c̄6 are
nonzero. Although the parameter space is constrained, EW
baryogenesis in the SMEFT is still viable provided the
cutoff scale is not too large. This is explicitly demonstrated
by a regularized fit with κ ¼ 10, shown by the purple
ellipses, which is not consistent with a first-order phase
transition at the one sigma level. A regularization param-
eter of 10 approximately corresponds to an effective
scale of 800 GeV, reinforcing the notion that successful
EW baryogenesis requires fairly low-scale BSM phys-
ics [80,85].

E. Future measurements

One may wonder which experimental measurements
would improve the global constraints the most. To this
end, we add to our fit one hypothetical future signal
strength of 1.0� 0.1 for various Higgs boson observables,
and see how this changes the fit. This is quantified using the
global determinant parameter of Ref. [53]. The GDP is
defined in our notation as

GDP ¼
�Y

j⊆k
σ2j

�1
m

; ð21Þ

where m is the total number of eigenvalues considered,
which need not be all 12 in general. In particular, we report
the ratio of the GDP with this additional hypothetical
measurement to the GDP of the 55 measurement fit
described previously. We confirm that ratios of GDPs do
not depend on the normalization of the operators. The list of
all observables that improve the constraints by themselves
are given in Tab. I. We use the unregularized, 10 parameter
fit in computing these GDPs. Some of the observables, such
as double Higgs production, are obvious candidates, but
others are less well known to be important for future Higgs
coupling constraints.

V. SUMMARY

In this work, we performed an SMEFT parameter fit with
an emphasis on a statistical technique aimed at tackling the
issue of the large number of parameters. The technique we
used is a regularized linear regression, where a positive
definite function of the parameters of interest is added to
the usual cost function. This prevents the fit from falling
into an overfit solution, and, in principle, allows informa-
tion to be obtained about any number of parameters. A
cross-validation was performed to try to determine the
optimal value of the regularization parameter to use. The
cross-validation instead selected the SM as the best fit,
so we contented ourselves to performing regularized fits
with multiple choices for the regularization parameter,
and examined how much regulator dependence various

TABLE I. Improvement in the global constraints by adding one
hypothetical signal strength of 1.0� 0.1 to the fit for various
Higgs observables. The improvement is quantified using the
ratio of the GDPs of the fits with/without the hypothetical
measurement.

Observable GDP ratio Observable GDP ratio

gg → hh 0.37 Wh, h → ZZ� 0.96
h → Zγ 0.71 VBF, h → bb̄ 0.98
h → cc̄ 0.80 Γh 0.98
h → μþμ− 0.80 Zh, h → τþτ− 0.99
tth, h → ZZ� 0.93 tth, h → bb̄ 0.99
Zh, h → ZZ� 0.94 ggF, h → bb̄ 0.99

FIG. 4. Constraints on the parameter space relevant for EW
baryogenesis in the SMEFT. A first-order phase transition occurs
in the wedge bounded by the red lines [84], and viable parameter
space still exists. The purple ellipses are the result of a regularized
fit with κ ¼ 10, which is not consistent with a first-order phase
transition at the one sigma level. A regularization parameter of 10
approximately corresponds to an effective scale of 800 GeV,
reinforcing the notion that successful EW baryogenesis requires
fairly low-scale BSM physics [80,85].
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quantities had. As proof of principle of this technique we
applied it to fitting Higgs boson signal strengths, including
the latest Run-2 results. We emphasized presenting results
in terms of the eigensystem of the covariance matrix of
the least squares estimators as it has a degree model-
independent to it. We showed the SMEFT predicts the total
width of the Higgs boson, which is not yet directly
measured, to be consistent with the SM prediction, and
that the ATLAS and CMS experiments at the LHC are
currently sensitive to nonresonant double Higgs boson
production. We derived constraints on the viable parameter
space for EW baryogenesis in the SMEFT, and reinforce the
notion that a first-order phase transition requires fairly low-
scale BSM physics. We studied which future experimental
measurements would improve the global constraints on the
Higgs sector of the SMEFT the most. This is quantified
using ratios of the GDP, which has a natural interpretation
in terms of the eigensystem of the covariance matrix. We
expect this technique to be of use to practitioners of both
bottom-up and top-down approaches to EFTs.
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APPENDIX A: EXPERIMENTAL RESULTS

The experimental results used in this analysis from Run 1
of the LHC are given in Table II. Similarly, the ATLAS and
CMS Run-2 results can be found in Tables III and IV,
respectively.

TABLE II. Run-1 experimental results used in this work. The Zγ result is from ATLAS [77]. CMS does not
provide a signal strength for h → Zγ although their 95% CL upper limit is stronger [76] than the ATLAS Run-1
result. All other results are taken from the combined ATLASþ CMS analysis of Ref. [1] with correlations taken
into account.

Production Decay Signal strength Production Decay Signal strength

ggF γγ 1.10þ0.23
−0.22 Wh bb 1.0� 0.5

ggF ZZ 1.13þ0.34
−0.31 Zh γγ 0.5þ3.0

−2.5
ggF WW 0.84� 0.17 Zh WW 5.9þ2.6

−2.2
ggF ττ 1.0� 0.6 Zh ττ 2.2þ2.2

−1.8
VBF γγ 1.3� 0.5 Zh bb 0.4� 0.4
VBF ZZ 0.1þ1.1

−0.6 tth γγ 2.2þ1.6
−1.3

VBF WW 1.2� 0.4 tth WW 5.0þ1.8
−1.7

VBF ττ 1.3� 0.4 tth ττ −1.9þ3.7
−3.3

Wh γγ 0.5þ1.3
−1.2 tth bb 1.1� 1.0

Wh WW 1.6þ1.2
−1.0 pp μμ 0.1� 2.5

Wh ττ −1.4� 1.4 pp Zγ 2.7þ4.6
−4.5

TABLE III. Run-2 ATLAS results used in this work. We estimate the signal strength for h → Zγ from Ref. [78],
which states that the upper limit for this process is 6.6 times the SM rate at 95% CL and that the significance of the
measurement is 0.5σ.

Production Decay Signal strength Reference Production Decay Signal strength Reference

pp μμ −0.1� 1.4 [86] ggF ZZ 1.11þ0.25
−0.22 [87]

Wh bb 1.35þ0.68
−0.59 [88] VBF ZZ 4.0þ1.8

−1.5 [87]
Zh bb 1.12þ0.50

−0.45 [88] VBF WW 1.7þ1.2
−0.9 [89]

ggF γγ 0.80þ0.19
−0.18 [90] Wh WW 3.2þ4.4

−4.2 [89]
VBF γγ 2.1� 0.6 [90] tth 2l0τh 4.0þ2.1

−1.7 [91]
Vh γγ 0.7þ0.9

−0.8 [90] tth 2l1τh 6.2þ3.6
−2.7 [91]

tth γγ 0.5� 0.6 [90] tth 3l 0.5þ1.7
−1.6 [91]

pp Zγ 1.3� 2.6 [78]
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APPENDIX B: EIGENVECTORS

The eigenvectors for the regularized fit with κ ¼ 1 are

W1 ≃ 0.99cB þ 0.09cHW þ 0.09cT − 0.08cW þ 0.05cHB;

W2 ≃ 0.67cHW − 0.56cW − 0.36cB þ 0.33cHB − 0.02cT;

W3 ≃ 0.99c6 − 0.13ct þ 0.05cW þ 0.03cHW þ 0.02cHB − 0.01cH;

W4 ≃ 0.67cW þ 0.45cHW þ 0.38cH − 0.38ct þ 0.24cHB − 0.09c6;

W5 ≃ 0.76ct þ 0.40cW − 0.32cH þ 0.24cHW þ 0.22cT þ 0.20cHB þ 0.06c6 − 0.02cB;

W6 ≃ 0.78cH þ 0.51ct − 0.32cT − 0.10cW þ 0.08c6 − 0.07cHB − 0.05cHW þ 0.03cb þ 0.03cB;

W7 ≃ 0.87cHB − 0.48cHW þ 0.09cH þ 0.09cT − 0.06cW − 0.03ct þ 0.01cb;

W8 ≃ 0.91cT þ 0.34cH − 0.16cHB − 0.11cW − 0.08cB − 0.03cHW þ 0.03cb þ 0.01c6;

W9 ≃ 0.97cb þ 0.24cτ − 0.07cg þ 0.04cγ − 0.03cH þ 0.02cW þ 0.01cHW − 0.01ct − 0.01cT;

W10 ≃ 0.97cτ − 0.24cb þ 0.05cg;

W11 ≃ 0.93cg þ 0.35cγ þ 0.06cb − 0.03cτ;

W12 ≃ 0.93cγ − 0.35cg − 0.07cb: ðB1Þ

All 12 parameters contribute to each eigenvector, but only percent level or higher contributions are shown. The blind
directions are (two linear combinations of) eigenvectors 1 and 2.

APPENDIX C: ADDITIONAL PLOTS

Another way to visualize the blind directions in the fit is
to use the pseudoinverse without regularization to invert the
Fisher information. Given a matrix A, its pseudoinverse,
Ap, is defined as

AApA ¼ A; ðC1Þ

as opposed to A−1A ¼ 1 for the case of the (genuine)
inverse. In this case, the eigenvalues of the blind directions

are zero, and there is no regulator dependence in any of the
other eigenvalues. This is shown in Fig. 5.
The combination of Run 1 and Run 2 works exactly as

expected, adding more data tightens the resulting bounds;
see Fig. 6. Many of the bounds are now driven by the
Run-2 results, but the contributions from the Run-1
measurements are still important. Furthermore, Run 2
shows more sensitivity to c6 as a result of its improved
tth measurements.
There is better agreement between different scenarios,

involving UV assumption or choice of regularization
parameter, in the eigenvectors basis even when the

TABLE IV. Run-2 CMS results used in this work.

Production Decay Signal strength Reference Production Decay Signal strength Reference

ggF ZZ 1.20� 0.20 [92] ggF γγ 1.11þ0.19
−0.18 [93]

0-jet ττ 0.84� 0.89 [94] VBF γγ 0.5þ0.6
−0.5 [93]

VBF ττ 1.11þ0.34
−0.35 [94] Vh γγ 2.3þ1.1

−1.0 [93]

tth 2l 1.7þ0.6
−0.5 [95] tth γγ 2.2þ0.9

−0.8 [93]

tth 3l 1.0þ0.8
−0.7 [95] 0-jet WW 0.9þ0.4

−0.3 [96]

tth 4l 0.9þ2.3
−1.6 [95] VBF WW 1.4� 0.8 [96]

tth ττ 0.72þ0.62
−0.53 [97] Wh WW −1.4� 1.5 [96]

Wh bb 1.7� 0.7 [98] Vh WW 2.1þ2.3
−2.2 [96]

Zh bb 0.9� 0.5 [98] tt bb −0.19þ0.82
−0.81 [99]
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correlation between the eigenvectors in the different
scenarios is not perfect. This is shown in Fig. 7, which
is the same as Fig. 3 but in the cg − ct plane (left), and the
W11 −W5 plane (right).
Bounds on double Higgs production, μðpp → hhÞ ¼

σðpp → hhÞ=σSMðpp → hhÞ, when all 12 parameters
are allowed to be nonzero as a function of the
regularization parameter κ are shown in Fig. 8. The
blue line gives the best fit values, and the darker and
lighter shaded regions are allowed at 1 and 2σ, respectively.
The dashed line is the experimental upper limit from
CMS [75].

FIG. 7. The same as Fig. 3 but in the cg − ct plane (left), and theW11 −W5 plane (right). The correlation between the eigenvectors in
the different scenarios is not perfect. Nevertheless the agreement between the different scenarios is better in the eigenvector basis.

FIG. 5. The same as Fig. 2, but with the results of the
pseudoinverse fit included as the red triangles. The eigenvalues
of the blind directions are zero when using the pseudoinverse with
regularization, and none of the other eigenvalues have regulator
dependence.

FIG. 6. Results of regularized fits with κ ¼ 10−2 using only
Run-1 results (orange squares), only Run-2 results (green
diamonds), and both runs (blue circles). Many of the bounds
are now driven by the Run-2 results, but the contributions from
the Run-1 measurements are still important.

FIG. 8. Bounds on double Higgs production, μðpp → hhÞ ¼
σðpp → hhÞ=σSMðpp → hhÞ, when all 12 parameters are al-
lowed to be nonzero as a function of the regularization parameter,
κ. The blue curve gives the best fit values, and the darker and
lighter shaded regions are allowed at 1 and 2σ, respectively. The
dashed line is the experimental upper limit from CMS [75].
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