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The relations between the baryon-baryon elastic scattering phase shifts and the two-particle energy
spectrum in the elongated box are established. We studied the cases with both the periodic boundary
condition and twisted boundary condition in the center of mass frame. The framework is also extended to
the system of nonzero total momentum with periodic boundary condition in the moving frame. Moreover,
we discussed the sensitivity functions σðqÞ that represent the sensitivity of higher scattering phases. Our
analytical results will be helpful to extract the baryon-baryon elastic scattering phase shifts in the
continuum from lattice QCD data by using elongated boxes.
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I. INTRODUCTION

The phase shift for strong elastic scattering of two
hadrons is encoded in the basic knowledge on the strong
interaction, one of the four elementary interactions in
nature. The phase shift δl is related to the phase difference
between the outgoing and the ingoing l wave outside the
interaction range, and parametrizes the complicated form of
this interaction. The scattering length can be extracted from
its effective range expansion. The knowledge from the
phase shift also serves to study the resonance, such as in
Refs. [1–8]. In these references, the authors determined the
masses, the widths of the resonances K�ð892Þ, ρ, and a0 by
calculating the scattering phase shifts of πK, ηK coupled
channels, ππ, KK̄ coupled channels, and πη, KK̄ coupled
channels, etc. A phase shift crossing through π=2 is often a
indication of a resonance, of which the sharpness of the rise
allows to determine the property of resonance according to
Breit-Wigner type functional form.
In the aspect of particle and nuclear physics, unraveling

the origin of baryon forces based on the quantum chromo-
dynamics (QCD) is one of the most challenging issues. The
precise information on nuclear and hyperon forces serves as
the key ingredients to calculate properties of nuclei, dense
matter, and the structure of neutron stars [9–13]. According
to the baryon-baryon scattering phase shifts measured in
experiments, people established the relationships on real-
istic nuclear forces and the fundamental theories such as
QCD. However, scattering experiments with hyperons are
very difficult because of their short lives. Then, hyperon
forces suffer from large uncertainties. Under these

circumstances, it is most desirable to carry out the first-
principles calculations of baryon forces by lattice QCD. By
measuring appropriate correlation functions, energy eigen-
values of two-particle states in a finite box can be obtained.
Lüscher found out a relation, now commonly known as
Lüscher’s formula, which relates the energy of two-particle
state in a finite box of size L, i.e., EðLÞ, to the elastic
scattering phase shift δðEðLÞÞ of the two particles in the
continuum [14–17].
Owing to the advent of Lüscher’s formula, various lattice

studies, both quenched [18–25] and unquenched [26–35],
have been performed over the years to investigate the
scattering of hadrons. The original Lüscher’s formula was
derived for systems of two identical spinless particles in
center-of-mass (COM) frame with periodic boundary con-
dition in a cubic box. It restrains the applicability of the
formalism to the general hadron scattering. To overcome
the difficulties, one can of course consider asymmetric
volumes [36,37], or boosting the system to a frame that is
different from COM frame [38–42]. Both will enhance the
energy resolution of the problem. Another possible gener-
alization is to use the so-called twisted boundary conditions
advocated in Refs. [43–46]. Then, generalizations to
particles with spin [47–49] are also possible. For example,
in Refs. [50,51], Lüscher’s formulas have been extended to
elastic scattering of baryons. Generalized Lüscher’s for-
mula to the case of inelastic scattering commonly encoun-
tered in hadronic physics, is also important. Some attempts
have been made over the years, see Refs. [50–54].
In a cubic box, the three momenta of a single particle are

quantized according to k ¼ ð2π=LÞn with n ∈ Z3, where
Z3 is the set of 3-tuples of integers. In real simulations, large
values of L are needed to control lattice artifacts because of*lining@xatu.edu.cn
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these non-zero momentum modes. However, in the cubic
lattice, many low momentum modes are energy degenerates
such as modes (1,0,0), (0,1,0) and (0,0,1) since they relate to
eachother by the cubic symmetry. Thismeans that the second
lowest energy level of the particle with nonvanishing
momentum corresponds to n ¼ ð1; 1; 0Þ. If one would like
to measure these states on the lattice, even larger values of L
should be used.Oneway to remedy this is to use an elongated
box of size L × L × ηL, a specific asymmetric box, where η
is the elongation factor in the z-direction.Wewould have two
different low-lying one-particle energy with nonzero
momenta corresponding to n ¼ ð1; 0; 0Þ and n ¼ ð0; 0; 1Þ,
respectively. This implies that the energy resolution can be
enhanced by using the asymmetric box. The technique of
asymmetric box has first been applied to the calculation of
pion-pion elastic scattering [55] and later used in the study of
D�þ −D0

1 system [56]. In a recent comprehensive study,
Frank X. Lee and Andrei Alexandru have derived Lüscher’s
phase shift formulas for mesons and baryons elastic scatter-
ing in elongated boxes [57]. In their work, various scenarios,
such as moving and zero-momentum states in cubic and
elongated boxes, are systematically studied and relations
between them are also clarified. The derived formulas are
applicable to a wide set of meson-meson and meson-baryon
elastic scattering processes. Therefore they can be applied to
investigate various resonances, such as a1, Δ, Roper, and so
on. In this paper, we would like to synthesize the above
mentioned generalizations by trying to seek phase shift
formulas those are applicable for baryon-baryon elastic
scattering in the elongated box, which is helpful to study
properties of the low energy baryon-baryon scattering by
using lattice simulations.
Recently, in Ref. [47], nucleon-nucleon scattering

lengths in the 1S0 channel and 3S1-3D1 coupled channels
are determined. In Ref. [58], based on dispersion theory, the
scattering length of Λ − Λ and Ξ − N are extracted. In
Refs. [59–63], the authors investigated the scattering phase
shifts of N −Ω, Ω − Ω, Λc − N and Σc − N through the
interaction potential calculated by the equal-time Nambu-
Bethe-Salpeter (NBS) wave function measured on the
lattice. In principle, these baryon-baryon scattering can
also be studied by using lattice QCD simulations in
elongated boxes.
The organization of the paper is as follows. In Sec. II, we

start out by discussing scattering phase shift using a
quantum-mechanical model in COM frame in an elongated
box. Then, in Sec. III, we generalize the scattering phase
shift formulas in the elongated box: in subsection III A, we
provide scattering phase shift formulas for baryon-baryon
scattering in MF, and in subsection III B, we show the
scattering phase shift formulas for baryon-baryon scattering
in COM frame with the twisted boundary condition. In
Sec. IV, we obtain the results in a cubic box, and then
perform the consistency checks and have confirmed the
validation on the results in elongated boxes by comparing

the two cases. In Sec. V, we discuss the low momentum
expansion of scattering phase shift. The functions σðqÞ
representing the sensitivity of higher scattering phases are
obtained. In Sec. VI, we give a brief summary, and discuss
the possible applications of our derived formulas in real
lattice simulations.

II. PHASE SHIFT FORMULAS FOR
BARYON-BARYON SCATTERING IN
COM FRAME IN ELONGATED BOXES

In this section, we try to obtain phase shift formulas that
are applicable for baryon-baryon scattering in COM frame
in elongated boxes. Basically, we first derive the scattering
phase shift formulas for baryon-baryon scattering in a cubic
box in COM frame, and then generalize the formulas to the
case in elongated boxes.

A. Brief review of the basic Lüscher’s formula

In nonrelativistic quantum mechanics, after factoring out
the center-of-mass motions, the asymptotic form of the
wave function is written as

ψ sνðrÞ⟶r→∞
�
χsνeik·r þ

X
s0ν0

χs0ν0Ms0ν0;sν
eikr

r

�
: ð1Þ

In the remote past, the wave function reduces to an incident
plane wave with prescribed quantum numbers. Here χsν
designates spin-wave function, an eigenstate of spin angu-
lar momentum of s2 and ν with the eigenvalues given by
s ¼ 0, ν ¼ 0 (singlet state), or s ¼ 1, ν ¼ 1, −1, 0 (triplet
state). Ms0ν0;sν is the scattering amplitude. When one
chooses the z-axis to coincide with k, the scattering
amplitudes introduced above is related to the S-matrix
elements as [64]

Ms0ν0;sνðk · rÞ ¼ 1

2ik

X∞
l0¼0

X∞
l¼0

Xlþ1

J¼l−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πð2lþ 1Þ

p
iðl−l0Þ

× ðSJl0s0;ls − δl0lδs0sÞhJMjl0m0; s0ν0i
× hJMjl0; sνiYl0m0 ðrÞ: ð2Þ

From the Clebsch-Gordan coefficients hJMjl0m0; s0ν0i and
hJMjl0; sνi, we find M ¼ ν and m ¼ M − ν0. In the
previous equation, we have ignored the sum over M and
m for a given pair of ν and ν0. It is known that the phase
shift enters via S-matrix. Lüscher obtained a relation, which
relates the energy of two-particle state in a finite box of size
L, i.e., EðLÞ, to the elastic scattering phase δðEðLÞÞ of the
two particles in the continuum. This inspires us that if one
calculates two-particle scattering phase shifts, one should
derive the corresponding Lüscher’s formula firstly.
With the help of Eqs. (1) and (2), we obtain the following

asymptotic form of the wave function as
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ψ sνðrÞ ¼
X
s0JMll0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πð2lþ 1Þ

p
WJ

l0s0;lshJMjl0; sνiYl0s0
JMðrÞ;

ð3Þ

where Yl0s0
JMðrÞ is the spin spherical harmonics whose

explicit form is given by

Yls
JMðrÞ ¼

X
mν

YlmðrÞχsνhJMjlm; sνi: ð4Þ

In Eq. (3), WJ
l0s0;lsðrÞ is the radial wave function of the

two-particle scattering state. In the large r region, when
the two-particle interaction is ignored and the potential
vanishes, the wave function WJ

l0s0;lsðrÞ has the following
asymptotic form:

WJ
l0s0;lsðrÞ ¼

1

2ikr
iðl−l0Þ½SJl0s0;lseikr þ ð−1Þlþ1e−ikrδll0δss0 �:

ð5Þ

For baryon-baryon scattering, we enclose the two-
particle system in a cubic box of size L with periodic
boundary condition. In the outer region where the potential
vanishes, the wave function becomes

ψðrÞ ¼
X

s0JMll0s

½FJMlsWJ
l0s0;lsðrÞ�Yl0s0

JMðrÞ: ð6Þ

Then, we can expand the wave function into a linear
superposition of the singular periodic solutions, i.e.,
GJMlsðr; k2Þ, of the Helmholtz equation in the outer region.
Thus, one can get

ψðrÞ ¼
X1
s¼0

X∞
l¼0

Xlþ1

J¼l−1

XJ
M¼−J

υJMlsGJMlsðr; k2Þ: ð7Þ

Here, GJMlsðr; k2Þ can be further expanded in terms of
spherical harmonics:

GJMls ¼
ð−1Þlklþ1

4π

�
Yls
JMnlðkrÞ

þ
X
J0M0l0

McðsÞ
JMl;J0M0l0 ðk2ÞYl0s

J0M0jl0 ðkrÞ
�
; ð8Þ

where the explicit form of McðsÞ
JMl;J0M0l0 ðq2Þ with k ¼

ð2π=LÞq is written as

McðsÞ
JMl;J0M0l0 ðq2Þ ¼

X
mm0ν

hJMjlm; sνihJ0M0jl0m0; sνi

×Mc
lm;l0m0 ðq2Þ; ð9Þ

with

Mc
lm;l0m0 ðq2Þ ¼

Xlþl0

t¼jl−l0j

Xt
tz¼−t

ð−1Þlilþl0

π3=2qtþ1

× Zc
ttzðq2; ηÞhl0t0jl00ihlmttzjl0m0i

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þð2tþ 1Þ

ð2l0 þ 1Þ

s
: ð10Þ

For convenience, we introduce the short-hand function
ωc
lmðq2Þ for the zeta function,

ωc
lmðq2Þ ¼

Zc
lmðq2Þ

π3=2qlþ1
: ð11Þ

Then the zeta function in cubic boxes is written as

Zc
lmðq2Þ ¼

X
n

YlmðnÞ
n2 − q2

; ð12Þ

where YlmðnÞ ¼ nlYlmðθ;ϕÞ with n ¼ ðnx; ny; nzÞ ∈ Z3,
and Z3 is the set of 3-tuples of integers. One can get four
linear equations of the coefficients by comparing Eq. (6)
with Eq. (7). If there exist nontrivial solutions for them, the
determinant of the corresponding matrix must vanish which
leads to the basic form of Lüscher’s formula, i.e.,����X

l00
ðSJl00s0;ls − δll00δss0 ÞMcðs0Þ

JMl00;J0M0l0 ðk2Þ

− iδJJ0δMM0 ðSJl0s0;ls þ δll0δss0 Þ
���� ¼ 0: ð13Þ

B. Extension in elongated boxes in COM frame

In the following, we generalize the basic form of
Lüscher’s formula in the cubic box to that in the elongated
box. In this case, one can expand the wave function of the
system in the outer region as series of the modified matrix
elements MðsÞ

JMl;J0M0l0 ðq2; ηÞ, i.e.,

MðsÞ
JMl;J0M0l0 ðq2; ηÞ ¼

X
mm0ν

hJMjlm; sνihJ0M0jl0m0; sνi

×Mlm;l0m0 ðq2; ηÞ; ð14Þ

Mlm;l0m0 ðq2; ηÞ ¼
Xlþl0

t¼jl−l0j

Xt
tz¼−t

ð−1Þlilþl0

π3=2ηqtþ1

× Zttzð1; q2; ηÞhl0t0jl00ihlmttzjl0m0i

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þð2tþ 1Þ

ð2l0 þ 1Þ

s
: ð15Þ

Hereafter for convenience, we introduce the short-hand
function ωlmðq2; ηÞ with the zeta function as follows:
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ωlmðq2; ηÞ ¼
Zlmðq2; ηÞ
π3=2ηqlþ1

ð16Þ

Then the generalized zeta function in z-elongated boxes is
given by

Zlmðq2; ηÞ ¼
X
n

Ylmð ~nÞ
~n2 − q2

; ð17Þ

where Ylmð ~nÞ ¼ ~nlYlmðθ;ϕÞ. Here, the modified index ~n is
~n ¼ ðnx; ny; nz=ηÞ. Apart from the above-mentioned sub-
stitutions, an extra attention should also be paid to the
difference in symmetry. In order to discussLüscher’s formula
in the elongated box, the symmetry of two-particle system is
no longerOh but reduces toD4h group. This group contains
16 elements that can be divided into the following ten
conjugate classes: A�

1 ,A
�
2 ,B

�
1 ,B

�
2 , and E�. For instance,

for J ¼ 0, 1, 2 when the cutoff momentum Λ ¼ 2, the
decomposition into irreducible representation is given by
0� ¼ A�

1 , 1� ¼ A�
2 ⊕ E�, 2� ¼ A�

1 ⊕ B�
1 ⊕ B�

2 ⊕ E�,
respectively [57]. In a definite irreducible representation
of the D4h group, the basis vectors are labeled as
jΓ; ξ; J; l; s; ni, where Γ denotes the representation; ξ runs
from 1 to the number of the dimensions, and n runs from 1 to
the multiplicity of the representation. This basis can be
expressed by linear combinations of jJMlsi. The corre-
sponding matrix M is diagonal with respect to Γ and ξ by
Schur’s lemma [16]. If there is no multiplicity, the labels
n ¼ 1 and n0 ¼ 1 can be dropped. Therefore, in a definite
symmetry sector Γ, the explicit form of Lüscher’s formula is
given by Eq. (18).����X

l00
ðSJl00s0;ls − δll00δss0 ÞMðs0Þ

Jl00;J0l0 ðΓÞ

− iδJJ0 ðSJl0s0;ls þ δll0δss0 Þ
���� ¼ 0: ð18Þ

Before writing out the explicit form of the phase shift
formula, one should exploit the symmetry properties to
simplify the M matrix and the parity of the two-particle
system. First, the matrix is hermitian which constrains half
of the off-diagonal elements. Furthermore, a lot of short-
hand functions ωlmðq2; ηÞ vanish to satisfy certain con-
straints, which can be traced back to how the zeta function
behaves under the symmetry operations in the elongated
box. The properties follow Ref. [57]. Second, the total
angular momentum for two scattering particles with spin s1
and s2 is J ¼ s1 þ s2 þ l with l the relative orbital angular
momentum dubbed “partial waves.” For the asymptotic
states, the two particles are far away from each other so that
they are not interacting. Then, we can label the states with s
and si, where s ¼ s1 þ s2 is the total spin. The total angular
momentum J is conserved during the scattering process,
but both l and s may change. For the baryon-baryon elastic

scattering considered in this paper, the total spin s can take
0 (singlet state) or 1 (triplet states). Moreover, due to that
the orbital angular momentum also remains fixed in the
case with s ¼ 0, we have l ¼ J which is conserved, and the
parity is simply ð−1ÞJ. When s ¼ 1 for a given J, l takes
three different values, i.e., l ¼ J þ 1, J − 1, J. The first two
have the same parity ð−1ÞJþ1, but the parity for the third
one is ð−1ÞJ. The total parity of the two-particle state is
equal to Ptol ¼ P1P2ð−1Þl, where P1 and P2 are the
intrinsic parities of the two scattering particles. For sim-
plicity we assume that the intrinsic parity P1P2 is positive,
then the total parity is ð−1Þl. For parity-conserving theories
like QCD, there is no scattering between states with
opposite parity. Then we divide Lüscher’s formulas into
the Case a and Case b corresponding to the states with
parity ð−1ÞJþ1 and parity ð−1ÞJ respectively.

C. Application to Case a

In this case (s ¼ s0 ¼ 1, l ¼ J � 1), Lüscher’s formula
becomes����X

l00
ðSJl001;l1 − δll00 ÞMð1Þ

Jl00;J0l0 − iδJJ0 ðSJl01;l1 þ δll0 Þ
���� ¼ 0: ð19Þ

According to matrix elements Mð1Þ
Jl00;J0l0 given in Table I,

one can obtain the phase shift in the definite symmetry.
Then we list the phase shift with different irreducible
representations of the D4h group.
If we consider the explicit parity and also suppose that

the cutoff angular momentum is Λ ¼ 2, the decomposition
in this case becomes 0− ¼ A−

1 , 1þ ¼ Aþ
2 ⊕ Eþ,

2− ¼ A−
1 ⊕ B−

1 ⊕ B−
2 ⊕ E−. For instance, in the A−

1 rep-
resentation, the phase shift formula is Eq. (20) if we ignore
the mixing with J ¼ 2, l ¼ 3.���� cot δ01 − ω00 −

ffiffiffiffi
10

p
5
ω20

−
ffiffiffiffi
10

p
5
ω20 cot δ21 − ðω00 þ

ffiffi
5

p
5
ω20Þ

���� ¼ 0 ð20Þ

If we ignore the mixing with J ¼ 2, one can extract phase
shift δ01 from

cot δ01 ¼ ω00: ð21Þ
Next, to calculate phase shift δ21, we can consider repre-
sentation B−

1 , B
−
2 , and E−. If we ignore the mixing with

J ¼ 2, l ¼ 3, the phase shift formulas in these three
representations are written as

8>><
>>:

cot δ21 ¼ ω00 −
ffiffi
5

p
5
ω20

cot δ21 ¼ ω00 −
ffiffi
5

p
5
ω20

cot δ21 ¼ ω00 þ
ffiffi
5

p
10
ω20

: ð22Þ

Finally, let us discuss the quantum number JP ¼ 1þ of
the two-particle state in Aþ

2 and Eþ representations, i.e., the
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total angular momentum J is fixed for 1. There is a mixing
between l ¼ J − 1 ¼ 0 (S-wave) and l ¼ J þ 1 ¼ 2 (D-
wave). To proceed, we need to parametrize S-matrix. First
we note that Smust be unitary (conservation of probability)
and symmetric (reciprocity) due to the T-invariance of the
strong interactions. Thus the 2 × 2 S-matrix is determined
by three real parameters. We use the “eigenphase con-
vention” of Blatt and Biedenharn [65] in Eq. (23),

S2×2¼
�
cosϵ −sinϵ

sinϵ cosϵ

��
e2iδα 0

0 e2iδβ

��
cosϵ sinϵ

−sinϵ cosϵ

�

ð23Þ

where δα and δβ are the scattering phase shifts correspond-
ing to two eigenstates of the S-matrix called “α” and “β”
waves respectively. At low energies, the α-wave is pre-
dominantly S-wave with a small admixture of the D-wave,
while the β-wave is predominantly D-wave with a small
admixture of the S-wave. Therefore, it hardly needs to be
emphasized that the eigenphaseshifts δα and δβ are not to be
thought of as phase shifts for the states l ¼ 0 and l ¼ 2,
respectively. There are no such phase shifts due to that
neither of these two states is an eigenstate of the scattering
matrix. The “mixture parameter” ϵ, which determines the
“correct” mixtures of these two states, is an essential
parameter in the scattering matrix and enters explicitly
into the differential cross section. Thus, in Aþ

2 representa-
tion, the phase shift formula is shown in Eq. (24),

����ðS2×2 − I2×2Þ
 

ω00

ffiffiffiffi
10

p
5
ω20ffiffiffiffi

10
p
5
ω20 ω00 þ

ffiffi
5

p
5
ω20

!

− iðS2×2 þ I2×2Þ
���� ¼ 0; ð24Þ

where I2×2 is a 2 × 2 unit matrix. Similarly, for Eþ
representation, we can obtain the phase shift formula by

substituting corresponding Mð1Þ
Jl00;J0l0 according to Table I

with Eq. (24).

D. Application to Case b

For this case (l ¼ l0 ¼ l00 ¼ J, s ¼ 0, 1), the Lüscher’s
formula can be expressed as Eq. (25).

����X
l00
ðSJl00s0;ls − δll00δss0 ÞMðs0Þ

Jl00;J0l0 − iδJJ0 ðSJls0;ls þ δss0 Þ
���� ¼ 0:

ð25Þ

If we consider the explicit parity and also suppose that the
cutoff angular momentum is Λ ¼ 2, the decomposition
in this case becomes 0þ ¼ Aþ

1 , 1− ¼ A−
2 ⊕ E−, 2þ ¼

Aþ
1 ⊕ Bþ

1 ⊕ Bþ
2 ⊕ Eþ. Then, we parameterize the S-

matrix again using the “eigenphase convention” of Blatt
and Biedenharn [65], whose explicit form is similar to
Eq. (23). Thus, δα and δβ are the scattering phase shifts
corresponding to two eigenstates of the S-matrix named
“α” and “β” waves respectively. At low energy, however,
the α-wave is predominantly s ¼ 0 with a small admixture
of the s ¼ 1, while the β-wave is predominantly s ¼ 1 with
a small admixture of the s ¼ 0. According to the nonzero
matrix elements, one can obtain phase shift formula in a
definite symmetry. For example, if we focus on the Aþ

1

representation with positive parity that corresponds J ¼ 0
and ignore the index l and l0, both of which are unity, the
phase shift formula is given by Eq. (26).

TABLE I. D4h symmetry group for angular momentum up to
J ¼ 2 and l ¼ 3. For the parity ð−1ÞJ�1, the matrix elements

Mð1Þ
Jl;J0l0 ðΓÞ are presented in each irreducible representations

sector.

Γ J l J0 l0 Mð1Þ
Jl;J0l0 ðΓÞ

A−
1 0 1 0 1 ω00

0 1 2 1 −
ffiffiffiffi
10

p
5
ω20

0 1 2 3 −
ffiffiffiffi
15

p
5
ω20

2 1 2 1 ω00 þ
ffiffi
5

p
5
ω20

2 1 2 3
ffiffiffiffi
30

p
35

ω20 þ 2
ffiffi
6

p
7
ω40

2 3 2 3 ω00 þ 8
ffiffi
5

p
35

ω20 þ 2
7
ω40

Aþ
2

1 0 1 0 ω00

1 0 1 2
ffiffiffiffi
10

p
5
ω20

1 2 1 2 ω00 þ
ffiffi
5

p
5
ω20

B−
1 2 1 2 1 ω00 −

ffiffi
5

p
5
ω20

2 1 2 3 −
ffiffiffiffi
30

p
35

ω20 þ
ffiffi
6

p
21
ω40 þ 2

ffiffiffiffiffiffi
105

p
21

ω44

2 3 2 3 ω00 þ 1
21
ω40 − 8

ffiffi
5

p
35

ω20 þ
ffiffiffiffi
70

p
21

ω44

B−
2 2 1 2 1 ω00 −

ffiffi
5

p
5
ω20

2 1 2 3 −
ffiffiffiffi
30

p
35

ω20 þ
ffiffi
6

p
21
ω40 − 2

ffiffiffiffiffiffi
105

p
21

ω44

2 3 2 3 ω00 þ 1
21
ω40 − 8

ffiffi
5

p
35

ω20 −
ffiffiffiffi
70

p
21

ω44

Eþ 1 0 1 0 ω00

1 0 1 2 −
ffiffiffiffi
10

p
10

ω20

1 2 1 2 ω00 −
ffiffi
5

p
10
ω20

E− 2 1 2 1 ω00 þ
ffiffi
5

p
10
ω20

2 1 2 3
ffiffiffiffi
30

p
70

ω20 − 4
ffiffi
6

p
21

ω40

2 3 2 3 ω00 þ 4
ffiffi
5

p
35

ω20 − 4
21
ω40
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����ðS2×2−I2×2Þ
 
ω00þ 6

7
ω40þ 2

ffiffi
5

p
7
ω20 0

0 ω00− 4
7
ω40þ

ffiffi
5

p
7
ω20

!

− iðS2×2þI2×2Þ
����¼0 ð26Þ

In addition, phase shifts in Bþ
1 , B

þ
2 , and Eþ are similar to

Eq. (26) expect that the matrix elements Mðs0Þ
Jl00;J0l0 in the

equation are replaced by the corresponding ones according
to Table II and Table III. Next, taking A−

2 representation
with negative parity as an example, the formula is written as
Eq. (27).

����ðS2×2 − I2×2Þ
�
ω00 þ 2

ffiffi
5

p
5
ω20 0

0 ω00 −
ffiffi
5

p
5
ω20

�

− iðS2×2 þ I2×2Þ
���� ¼ 0 ð27Þ

The formula in E− representation is similar to Eq. (27)

expect that the matrix elementsMðs0Þ
Jl00;J0l0 in the equation are

replaced by the corresponding ones according to Table II
and Table III.
In the above discussion, we have not taken into account

the possibility for the identical nature of the two scattering
particles, and thus the singlet-triplet transition within the
same parity is allowed. However, for the two identical
particles, the singlet-triplet transition is forbidden, since the
singlet state has an antisymmetric spin wave function
which then requires a symmetric spatial one that neces-
sarily has positive parity while the triplet state has the
opposite parity. Below, we list Lüscher’s formulas for s ¼
s0 ¼ 0 and s ¼ s0 ¼ 1 cases respectively:����X

l00
ðSJl000;l0 − δll00 ÞMð0Þ

Jl00;J0l0 − iδJJ0 ðSJl0;l0 þ 1Þ
���� ¼ 0: ð28Þ

����X
l00
ðSJl001;l1 − δll00 ÞMð1Þ

Jl00;J0l0 − iδJJ0 ðSJl1;l1 þ 1Þ
���� ¼ 0: ð29Þ

From these explicit expressions, we find they are quite
similar to those in the case of meson-meson scattering. In
particular, Lüscher’s formula for s ¼ s0 ¼ 0 is the same as
that in the meson-meson scattering case. Then, we only
discuss the case for s ¼ s0 ¼ 1. In this case, we denote the
phase shift as δJ (we have ignored the index l due to J ¼ l
in this case) in the definite representation. According to the
nonzero matrix elements listed in Table II, one can obtain
phase shift δJ in the definite representation.
If we focus on the phase shift δ2, one can consider Aþ

1 ,
Bþ
1 , B

þ
2 , and Eþ representations. The phase shift formulas

in these representations are similar to each other expect that

matrix elements Mð1Þ
Jl;J0l0 ðΓÞ are different. We list the

explicit form of these matrix elements in Table II. For
instance, we take Aþ

1 representation as an example, where
the phase shift formula is

cot δ2 ¼ ω00 −
4

7
ω40 þ

ffiffiffi
5

p

7
ω20: ð30Þ

Then, if one wants to obtain δ1, one should consider A−
2 and

E− representations. Here, we take A−
2 representation as an

example, the phase shift δ1 is contained in the flowing
equation:

cot δ1 ¼ ω00 −
ffiffiffi
5

p

5
ω20: ð31Þ

III. SOME GENERALIZATIONS OF PHASE SHIFT
FORMULAS FOR BARYON-BARYON

SCATTERING IN ELONGATED BOXES

A. Phase shift formulas for baryon-baryon
scattering in MF

In this subsection, we extend the phase shift formula that
has been obtained in the previous subsection for baryon-
baryon scattering to moving frames (MF) in an elongated

TABLE II. For the parity ð−1ÞJ with angular momentum up to

J ¼ 2 and l ¼ 2, the matrix elements Mð1Þ
Jl;J0l0 ðΓÞ presented in

each irreducible representations sector of D4h symmetry group.
The total spin s ¼ s0 ¼ 1.

Γ J l J0 l0 Mð1Þ
Jl;J0l0 ðΓÞ

Aþ
1

2 2 2 2 ω00 − 4
7
ω40 þ

ffiffi
5

p
7
ω20

A−
2 1 1 1 1 ω00 −

ffiffi
5

p
5
ω20

Bþ
1

2 2 2 2 ω00 − 2
21
ω40 −

ffiffi
5

p
7
ω20 − 2

ffiffiffiffi
70

p
21

ω44

Bþ
2

2 2 2 2 ω00 − 2
21
ω40 −

ffiffi
5

p
7
ω20 þ 2

ffiffiffiffi
70

p
21

ω44

E− 1 1 1 1 ω00 þ
ffiffi
5

p
10
ω20

Eþ 2 2 2 2 ω00 þ 8
21
ω40 þ

ffiffi
5

p
14
ω20

TABLE III. For the parity ð−1ÞJ with angular momentum up to

J ¼ 2 and l ¼ 2, the matrix elementsMð0Þ
Jl;J0l0 ðΓÞ are presented in

each irreducible representations sector of D4h symmetry group.
The total spin s ¼ s0 ¼ 0.

Γ J l J0 l0 Mð0Þ
Jl;J0l0 ðΓÞ

Aþ
1

2 2 2 2 ω00 þ 6
7
ω40 þ 2

ffiffi
5

p
7
ω20

A−
2 1 1 1 1 ω00 þ 2

ffiffi
5

p
5
ω20

Bþ
1

2 2 2 2 ω00 þ 1
7
ω40 − 2

ffiffi
5

p
7
ω20 þ

ffiffiffiffi
70

p
7
ω44

Bþ
2

2 2 2 2 ω00 þ 1
7
ω40 − 2

ffiffi
5

p
7
ω20 −

ffiffiffiffi
70

p
7
ω44

E− 1 1 1 1 ω00 −
ffiffi
5

p
5
ω20

Eþ 2 2 2 2 ω00 þ
ffiffi
5

p
7
ω20 − 4

7
ω40
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box. We will follow the notations in Ref. [38] below. We
denote the four momenta of the two particles with periodic
boundary conditions in the lab frame by

k ¼ ðE1;kÞ; P − k ¼ ðE2;P − kÞ; ð32Þ
where E1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

1

p
and E2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP − kÞ2 þm2

2

p
are

energy values of the two particles respectively, m1 and m2

are the mass values of the two baryons respectively. The
total three momentum P ≠ 0 of the two-particle system is
quantized by the condition P ¼ ð2π=LÞd with d ∈ Z3. The
COM frame is then moving relative to the lab frame with a
velocity

v ¼ P=ðE1 þ E2Þ: ð33Þ
Then, we denote the momenta of the two particles with k�
and ð−k�Þ for the two scattering particles. Thus, k� is
related to k by conventional Lorentz boost:

k�∥ ¼ γðk∥ − vE1Þ; k�⊥ ¼ k⊥; ð34Þ
where the symbol⊥ and ∥ designate the components of the
corresponding vector perpendicular and parallel to v,
respectively. For simplicity, the above relation is also
denoted by the shorthand notation: k� ¼ γ⃗k. A similar
transformation relation holds for the other particles.
Following similar steps listed in Sec. II, we can readily

obtain the Lüscher’s formula in this case. Lüscher’s formula
takes exactly the same form as Eq. (13) except that all the
labels forMcðsÞ

JMl;J0M0l0 are replaced with the modified matrix

elements MdðsÞ
JMl;J0M0l0 . The explicit form for the matrix

element is written as

MdðsÞ
JMl;J0M0l0 ðκ2; ηÞ ¼

X
mm0ν

hJMjlm; sνihJ0M0jl0m0; sνi

×Md
lm;l0m0 ðκ2; ηÞ ð35Þ

with κ ¼ kL=ð2πÞ. The explicit form of the reduction
matrix element in moving frames is given by [38,41]

Md
lm;l0m0 ðκ2; ηÞ ¼

Xlþl0

t¼jl−l0j

Xt
t0¼−t

ð−1Þlilþl0

γπ3=2ηκtþ1

× Zd
tt0 ðκ2; ηÞhl0t0jl00ihlmtt0jl0m0i

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þð2tþ 1Þ

ð2l0 þ 1Þ

s
; ð36Þ

where γ is the Lorentz factor of the boost, and the modified
zeta function Zd

tt0 ðκ2; ηÞ is defined via

Zd
tt0 ðκ2; ηÞ ¼

X
~nd∈Pd

Ytt0 ð ~ndÞ
~n2
d − κ2

: ð37Þ

In the above formulas, Pd is the following set,

Pd ¼
�
~nd ∈ R3j ~nd ¼ γ

�
nþ 1

2
αd

�
;n ∈ Z3

�
; ð38Þ

where d ¼ ðL=2πÞP, α ¼ 1þ w�2
1k−w

�2
2k

E�2 , and w�2
ik ¼

m2
i þ k�2 with i ¼ 1, 2 being the square of the energy

for the two scattering particles. We will also use E� to
denote the total energy in the center of mass frame and
introduce the short-hand function for the zeta function,

ωd
lmðκ2; ηÞ ¼ Zd

lmðκ2; ηÞ
γπ3=2ηκlþ1

: ð39Þ

In addition, an extra attention should also be paid to the
difference in symmetries. In order to discuss phase shift
formula in MF, we should introduce the space group G,
which is a semidirect product of lattice translation group T
and the cubic group O. The representations are charac-
terized by the little group Γ and the corresponding total
momentum P. For example, for the case with P ¼ 2π

L e3, the
corresponding little group is C4v [42]. Then, following
similar steps as in the COM frame, one can readily obtain
the explicit formulas for the little group C4v. Before giving
the explicit form of phase shift, we should calculate

nonvanished matrix elements Mdð1Þ
Jl;J0l0 ðΓÞ listed in

Table IV and Table V for the C4v group. Then, following
similar steps as in the Sec. II, one can also readily obtain the
phase shift formulas in the moving frame. Here, we take
phase shift formula in Case a (s ¼ s0 ¼ 1, l ¼ J � 1) as an
example. For instance, in the A1 representation, the phase
shift formula is given by Eq. (40) if we ignore the mixing
with l ¼ 2.

���������
cotδ01−ωd

00

ffiffi
3

p
i

3
ωd
10 −

ffiffiffiffi
10

p
5
ωd
20

−
ffiffi
3

p
i

3
ωd
10 cotδ10−ωd

00

ffiffi
6

p
i

3
ωd
10

−
ffiffiffiffi
10

p
5
ωd
20 −

ffiffi
6

p
i

3
ωd
10 cotδ21− ðωd

00þ
ffiffi
5

p
5
ωd
20Þ

���������
¼ 0

ð40Þ

We note that there is mixing between odd and even J due to
the lack of the parity in the boosted two-particle state.

B. Phase shift formulas for baryon-baryon scattering in
COM frame with twisted boundary condition

In this subsection, we impose the twisted boundary
condition on the two-particle system in the COM frame.
The quantized momentum is k ¼ 2π

L ðnþ θ
2πÞ with n the

three-dimensional vector and θ the twist angle. By adjust-
ing the twist angle, one can gain more momenta for two-
particle energy levels. Lüscher’s formula takes exactly the
same form as shown in Eq. (13) except that all the labels of

McðsÞ
JMl;J0M0l0 are replaced by MϕðsÞ

JMl;J0M0l0. The explicit form

of MϕðsÞ
JMl;J0M0l0 is given by
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MϕðsÞ
JMl;J0M0l0 ðq2; ηÞ ¼

X
mm0ν

hJMjlm; sνihJ0M0jl0m0; sνi

×Mϕ
lm;l0m0 ðq2; ηÞ; ð41Þ

where

Mϕ
lm;l0m0 ðq2; ηÞ ¼

Xlþl0

t¼jl−l0j

Xt
t0¼−t

ð−1Þlilþl0

π3=2ηqtþ1

× Zϕ
tt0 ðq2; ηÞhl0t0jl00ihlmtt0jl0m0i

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þð2tþ 1Þ

ð2l0 þ 1Þ

s
; ð42Þ

with

Zϕ
tt0 ðq2; ηÞ ¼

X
r∈Γϕ

Ytt0 ð ~nÞ
~n2 − q2

: ð43Þ

Here, Γϕ ¼ f ~n ∈ R3j ~n ¼ nþ ð2πÞ−1ϕ;n ∈ Z3g, and R3

is the set of real 3-tuples. The short-hand function for the
zeta function is

ωϕ
lmðq2; ηÞ ¼

Zϕ
lmðq2; ηÞ

π3=2ηqlþ1
: ð44Þ

For the case with ϕ ¼ ð0; 0;ϕÞ, the corresponding little
group is written as C4v. Taking the phase shift formula in
the A1 representation in Case a (s ¼ s0 ¼ 1, l ¼ J � 1) in
Sec. II as an example, the phase shift formula is same as
Eq. (40) except that all the labels of ωd

lm are replaced by
ωϕ
lm. In particular, for ϕ ¼ ð0; 0; πÞ, the corresponding little

group is D4h. The phase shift formula is same as Eq. (20)
except that all the labels of ωlm are replaced by ωϕ

lm.

IV. PHASE SHIFT FORMULAS FOR
BARYON-BARYON SCATTERING IN COM

FRAME IN CUBIC BOX

In this section, we briefly discuss phase shift formulas for
baryon-baryon scattering inCOMframe in a cubic box. First,

TABLE IV. For the parity ð−1ÞJ�1 with angular momentum up

to J ¼ 2 and l ¼ 3, the matrix elementsMdð1Þ
Jl;J0l0 ðΓÞ are presented

in each irreducible representations sector of C4v symmetry group.
The total spin s ¼ s0 ¼ 1.

Γ J l J0 l0 Mdð1Þ
Jl;J0l0 ðΓÞ

A1 0 1 0 1 ωd
00

0 1 1 0
ffiffi
3

p
i

3
ωd
10

0 1 1 2
ffiffiffiffiffiffi
150

p
i

15
ωd
10

0 1 2 1 −
ffiffiffiffi
10

p
5
ωd
20

0 1 2 3 −
ffiffiffiffi
15

p
5
ωd
20

1 0 1 0 ωd
00

1 0 1 2
ffiffiffiffi
10

p
5
ωd
20

1 0 2 1
ffiffi
6

p
i

3
ωd
10

1 0 2 3
ffiffiffiffi
21

p
i

7
ωd
30

1 2 1 2 ωd
00 þ

ffiffi
5

p
5
ωd
20

1 2 2 1
ffiffi
3

p
i

15
ωd
10 þ 9

ffiffi
7

p
i

35
ωd
30

1 2 2 3 3
ffiffi
2

p
i

7
ωd
10 þ 2

ffiffiffiffi
42

p
i

35
ωd
30

2 1 2 1 ωd
00 þ

ffiffi
5

p
5
ωd
20

2 1 2 3
ffiffiffiffi
30

p
35

ωd
20 þ 2

ffiffi
6

p
7
ωd
40

2 3 2 3 ωd
00 þ 8

ffiffi
5

p
35

ωd
20 þ 2

7
ωd
40

B1 2 1 2 1 ωd
00 −

ffiffi
5

p
5
ωd
20

2 1 2 3 −
ffiffiffiffi
30

p
35

ωd
20 þ

ffiffi
6

p
21
ωd
40 þ 2

ffiffiffiffiffiffi
105

p
21

ωd
44

2 3 2 3 ωd
00 þ 1

21
ωd
40 −

8
ffiffi
5

p
35

ωd
20 þ

ffiffiffiffi
70

p
21

ωd
44

B2 2 1 2 1 ωd
00 −

ffiffi
5

p
5
ωd
20

2 1 2 3 −
ffiffiffiffi
30

p
35

ωd
20 þ

ffiffi
6

p
21
ωd
40 −

2
ffiffiffiffiffiffi
105

p
21

ωd
44

2 3 2 3 ωd
00 þ 1

21
ωd
40 −

8
ffiffi
5

p
35

ωd
20 −

ffiffiffiffi
70

p
21

ωd
44

E 1 0 1 0 ωd
00

1 0 1 2 −
ffiffiffiffi
10

p
10

ωd
20

1 0 2 1
ffiffi
2

p
i

2
ωd
10

1 0 2 3 −
ffiffi
7

p
i

7
ωd
30

1 2 1 2 ωd
00 −

ffiffi
5

p
10
ωd
20

1 2 2 1 i
10
ωd
10 −

3
ffiffiffiffi
21

p
i

35
ωd
30

1 2 2 3 3
ffiffi
6

p
i

10
ωd
10 −

2
ffiffiffiffi
14

p
i

35
ωd
30

2 1 2 1 ωd
00 þ

ffiffi
5

p
10
ωd
20

2 1 2 3
ffiffiffiffi
30

p
70

ωd
20 −

4
ffiffi
6

p
21

ωd
40

2 3 2 3 ωd
00 þ 4

ffiffi
5

p
35

ωd
20 − 4

21
ωd
40

TABLE V. For the parity ð−1ÞJ with angular momentum up to

J ¼ 2 and l ¼ 2, the matrix elementsMdð1Þ
Jl;J0l0 ðΓÞ are presented in

each irreducible representations sector of C4v symmetry group.
The total spin s ¼ s0 ¼ 1.

Γ J l J0 l0 Mdð1Þ
Jl;J0l0 ðΓÞ

A1 1 1 1 1 ωd
00 −

ffiffi
5

p
5
ωd
20

1 1 2 2
ffiffiffiffi
15

p
i

5
ωd
10 þ 3

ffiffiffiffi
35

p
i

35
ωd
30

2 2 2 2 ωd
00 −

4
7
ωd
40 þ

ffiffi
5

p
7
ωd
20

B1 2 2 2 2 ωd
00 − 2

21
ωd
40 −

ffiffi
5

p
7
ωd
20 −

2
ffiffiffiffi
70

p
21

ωd
44

B2 2 2 2 2 ωd
00 − 2

21
ωd
40 −

ffiffi
5

p
7
ωd
20 þ 2

ffiffiffiffi
70

p
21

ωd
44

E 1 1 1 1 ωd
00 þ

ffiffi
5

p
10
ωd
20

1 1 2 2 3
ffiffi
5

p
i

10
ωd
10 þ

ffiffiffiffiffiffi
105

p
i

35
ωd
30

2 2 2 2 ωd
00 þ 8

21
ωd
44 þ

ffiffi
5

p
14
ωd
20
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we can perform the consistency checks and validation on the
elongated results by comparing the two cases. In addition,
this can serve as a basis for exploring the relationship
between the two cases, providing valuable insights into
how the results transform from one to the other.
Lüscher’s formula takes the form given by Eq. (13). To

write out a more explicit formula, we should consider the
definite cubic symmetries. For the case of integer total
momentum J, we need to consider the group of Oh, which
contains 48 elements those can be divided into 10 conjugate
classes: A�

1 , A
�
2 , E

�, T�
1 and T�

2 . For instance, for J ¼ 0, 1,
2, Λ ¼ 2, the decomposition into irreducible representation
is given by 0� ¼ A�

1 , 1
� ¼ T�

1 , 2
� ¼ T�

2 ⊕ E� respec-
tively [57]. Then, we take Lüscher’s formula in Case a
(s ¼ s0 ¼ 1, l ¼ J � 1) as an example. Before writing out
the explicit phase formula in this case, we list matrix

elementsMcðsÞ
Jl;J0l0 ðΓÞ in Table VI. According to the nonzero

matrix elements, one can obtain phase shift formula in the
definite symmetry. If we focus in A−

1 representation, the
phase shift formula is written as Eq. (45).

cot δ01 ¼ ωc
00: ð45Þ

If we consider D-wave resonance, we can give the phase
shift formulas in E−, i.e.,

����ðS2×2− I2×2Þ
 

ωc
00

ffiffi
6

p
6
ωc
40þ

ffiffiffiffiffiffi
105

p
21

ωc
44ffiffi

6
p
6
ωc
40þ

ffiffiffiffiffiffi
105

p
21

ωc
44 ωc

00þ 1
6
ωc
40þ

ffiffiffiffi
70

p
42

ωc
44

!

− iðS2×2þ I2×2Þ
����¼ 0 ð46Þ

Then, if we ignore the mixing with l ¼ 3 the phase shift
formulas in T−

2 representations is Eq. (47).

cot δ21 ¼ ωc
00: ð47Þ

Finally, for the Tþ
1 representation with Oh group, the phase

shift formula is similar to Eq. (46) expect that the matrix

elements Mcð1Þ
Jl;J0l0 ðΓÞ in the equation are replaced by the

corresponding ones according to Table VI.
Then, let us discuss the relation of two-particle scattering

Lüscher’s formulas between the cubic case and the elon-
gated case. In Table VII, we listed the symmetry relations
between Oh and D4h [57]. By using the relations in
Table VII, we can readily obtain the following relation-
ships. For ðJ ¼ J0 ¼ 0Þ, the A−

1 has one-to-one correspon-
dence:

Mcð1Þ
01;01ðA−

1 Þ ¼ Mð1Þ
01;01ðA−

1 Þ: ð48Þ

Then, for ðJ ¼ J0 ¼ 2Þ, the E− splits into A−
1 and B−

1 , i.e.,

Mcð1Þ
21;21ðE−Þ ¼ 1

2
Mð1Þ

21;21ðA−
1 Þ þ

1

2
Mð1Þ

21;21ðB−
1 Þ: ð49Þ

Next, for ðJ ¼ J0 ¼ 1Þ, the Tþ
1 is divided into Aþ

2 and Eþ so
that

8>><
>>:

Mcð1Þ
10;10ðTþ

1 Þ ¼ 1
3
Mð1Þ

10;10ðAþ
2 Þ þ 2

3
Mð1Þ

10;10ðEþÞ
Mcð1Þ

10;12ðTþ
1 Þ ¼ 1

3
Mð1Þ

10;12ðAþ
2 Þ þ 2

3
Mð1Þ

10;12ðEþÞ
Mcð1Þ

12;12ðTþ
1 Þ ¼ 1

3
Mð1Þ

12;12ðAþ
2 Þ þ 2

3
Mð1Þ

12;12ðEþÞ
: ð50Þ

Then, for ðJ ¼ J0 ¼ 2Þ, the T−
2 splits into B−

2 and E−, and
we have

Mcð1Þ
21;21ðT−

2 Þ ¼
1

3
Mð1Þ

21;21ðB−
2 Þ þ

2

3
Mð1Þ

21;21ðE−Þ: ð51Þ

Finally, we discuss the relations of phase shift formulas
between the cubic boxes and the elongated boxes. Here, we
take T−

2 representation in cubic boxes as an example. From
the elongated box to the cubic symmetry, the matrix

elements Mð1Þ
21;21ðB−

2 Þ and Mð1Þ
21;21ðE−Þ will individually

approach Mcð1Þ
21;21ðT−

2 Þ in the limit η ¼ 1. From Eq. (51),
one can see how to follow this limit by the subduction rule
in this particular channel. The relation translates directly
into one for the phase shift as follows:

TABLE VI. For the parity ð−1ÞJ�1 with the angular momentum

up to J ¼ 2 and l ¼ 3, the matrix elements Mcð1Þ
Jl;J0l0 ðΓÞ are

presented in each irreducible representations sector of Oh
symmetry group.

Γ J l J0 l0 Mcð1Þ
Jl;J0l0 ðΓÞ

A−
1 0 1 0 1 ωc

00

E− 2 1 2 1 ωc
00

2 1 2 3
ffiffi
6

p
6
ωc
40 þ

ffiffiffiffiffiffi
105

p
21

ωc
44

2 3 2 3 ωc
00 þ 1

6
ωc
40 þ

ffiffiffiffi
70

p
42

ωc
44

Tþ
1

1 0 1 0 ωc
00

1 0 1 2 0
1 2 1 2 ωc

00

T−
2 2 1 2 1 ωc

00

2 1 2 3 −
ffiffi
6

p
9
ωc
40 −

2
ffiffiffiffiffiffi
105

p
63

ωc
44

2 3 2 3 ωc
00 − 1

9
ωc
40 −

ffiffiffiffi
70

p
63

ωc
44

TABLE VII. Subduction rules in the descent in symmetry in the group from cubic box(Oh) to the elongated box(D4h).

Oh Aþ
1 Aþ

2 Eþ Tþ
1 Tþ

2 A−
1 A−

2 E− T−
1 T−

2

D4h Aþ
1 Bþ

1 Aþ
1 ⊕ Bþ

1 Aþ
2 ⊕ Eþ Bþ

2 ⊕ Eþ A−
1 B−

1 A−
1 ⊕ B−

1 A−
2 ⊕ E− B−

2 ⊕ E−
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cot δ21ðT−
2 Þ ¼

1

3
cot δ21ðB−

2 Þ þ
2

3
cot δ21ðE−Þ: ð52Þ

V. LOW MOMENTUM EXPANSION OF
SCATTERING PHASE SHIFT

It is known that the scattering phases behave as δJ ¼
nJπ þ aJk2Jþ1 þOðk2Jþ3Þ with small relative momentum
k. Therefore, it is reasonable to assume that the phase shift
is dominated by the lowest angular momentum scattering
channel, and the higher angular momentum channels are
relatively small in the process of low energy elastic
scattering [37,66]. Taking phase shift formula Eq. (20)
in the elongated box for A−

1 representation in Case a as an
example, we find that Eq. (20) can be simplified to

cot δ01 −Mð1Þ
01;01 ¼

Mð1Þ2
01;21

cot δ21 −Mð1Þ
21;21

; ð53Þ

where Mð1Þ
01;01,M

ð1Þ2
01;21, and Mð1Þ

21;21 are listed in Table I; If
the D-wave scattering phase shift vanishes, namely δ21 ¼ 0
as we expected, it is easy to check

cot δ01 ¼ Mð1Þ
01;01 ¼ ω00: ð54Þ

In general, Eq. (53) offers the desired relation between the
energy eigenvalues and the scattering phases for the cases
in the elongated box in the A−

1 representation in Case a. In
Eq. (53), it is easy to verify that contributions those appear
in the right-hand side of the equations are smaller by a

factor of q2 compared with Mð1Þ
01;01 on the left-hand side.

The right-hand side of the equations are negligible as long
as the relative momentum q is small enough. Thus, the S-
wave scattering length will be determined by the zero
momentum limit of Eq. (54). Therefore, in the low-energy
limit, it is a good approximation to treat the D-wave
scattering phase as a small perturbation, and it is also
possible to work out the corrections because of higher
scattering phases to the S-wave scattering phase:

nπ − δ01 ¼ ϕðqÞ þ σðqÞ tan δ21; ð55Þ

where the angle ϕðqÞ is defined as tanϕðqÞ ¼ −1=Mð1Þ
01;01.

The sensitivity functions σðqÞ represents the sensitivity of
D-wave scattering phases. For the elongated box, the
sensitivity function is found to be

σðqÞ ¼ Mð1Þ2
01;21=ð1þMð1Þ2

01;01Þ; ð56Þ

The functions σðqÞ can be calculated using the matrix
elements given in Table I. The generalized zeta function for
z-elongated boxes is given by

Zlmðq2; ηÞ ¼
X
n

Ylmð ~nÞ
~n2 − q2

; ð57Þ

where Ylmð ~nÞ ¼ ~nlYlmðθ;ϕÞ. Here, the modified index is
~n ¼ ðnx; ny; nz=ηÞ. It goes back to the case of cubic box
with η ¼ 1. For the analytic continuation [37], the explicit
form of zeta function in elongated boxes is found to be

Zlmðq2; ηÞ ¼ eq
2
X
n

�
Ylmð ~nÞ
~n2 − q2

	
e− ~n2

− πηδl0δm0 þ
πη

2
δl0δm0

Z
1

0

dtt−3=2ðetq2 − 1Þ

þ πη

Z
1

0

dtt−3=2
�X
n≠0

Ylm

�
−i

π

t
n̂

�
etq

2

e−
π2

t n̂
2

	

ð58Þ

where n̂ ¼ ðnx; ny; nzηÞ.
In this study, we calculate the sensitivity function σðqÞ

with η ¼ 1.2, η ¼ 1.4. We find that it mostly varies in the
range 0–100. In Figs. 1 and 2, the sensitivity functions are
plotted versus q2 for D4h symmetry with η ¼ 1.2, and
η ¼ 1.4, respectively. It is seen that the sensitivity function
σðqÞ remains finite for all q2 > 0. For some particular
values of q2, however, the sensitivity functions become
quite large in magnitude. This is because of the almost
coincidence of singularities of the numerator in matrix

0 1 2 3 4
0

30

60

90

120

150

0 1 2 3 4
0

1

2

3

FIG. 1. The function σðqÞ is plotted versus q2 for D4h symmetry with η ¼ 1.2. It can be calculated using the matrix elements given in
Tab. I. The right panel in the plot are simply the same function as in the left panel with the scale of the vertical axis being magnified, in
order to show the detailed variation of the functions.
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elements Mð1Þ2
01;21 and denominator in matrix elements

Mð1Þ2
01;01 which happens for some choices of η. For all other

values of q2 away from these values, the functional values
of σðqÞ remain moderate. The Eq. (54) is considered to be a
good approximation to extract the S-wave scattering
phase shift.
However, it is very difficult to extract the phase shift

from the energy spectrum in the A−
1 representation if the D-

wave scattering phase shift, i.e., δ21 is not small. This is
because there are two unknown functions δ01 and δ21 but
we have only Eq. (53). In principle, we still can extract the
S-wave scattering phase shift δ01 from Eq. (53) through
dividing the D-wave phase shift by lattice simulations at
various energy values. Then, due to scattering phases with
higher angular momentum the corrections can be estimated
from other representations for the group of D4h. For
example, from Table I, it is obviously seen that, for lattices
with D4h symmetry, by inspecting energy eigenstate with
E−, B−

1 , and B
−
2 symmetries on the lattice, one can obtain a

rough estimate for the D-wave scattering phase δ21 which
dominates this symmetry sector. It seems to be difficult, but
naturally, it is still possible to compute the energy spectrum
and extract the phase shift functions.

VI. DISCUSSIONS AND CONCLUSIONS

In this paper, we have derived baryon-baryon scattering
phase shift from finite volume spectra in elongated boxes.
We show the cases where the baryon-baryon states are in
COM frame with periodic boundary condition and twisted
boundary condition, or moving frame with periodic boun-
dary condition along the elongated direction. As a con-
sistency check and validation on the elongated results, we
have also derived the results in the cubic box by using the
same approach. There are two differences between these
two cases. One is the symmetry of the two-particle system
and the other is the matrix M. We take the two-baryon
scattering in COM frame as an example. In the cubic case,
the symmetry group is Oh, but in the elongated case, the
symmetry group becomes D4h. In addition, the case with

factor η ¼ 1 in matrixM in the elongated box is equivalent
to the cubic case. Our interest in elongated boxes stems
from the fact that they allow us to change the geometry of
the box, and consequently the kinematics, with minimal
amount of computer resources. In addition, elongated
boxes have a different symmetry group compared with
the cubic case. This has to be taken into account when
designing interpolators and connecting the infinite volume
phase shifts with the two-body energy values.
Finally, let us discuss some possible applications of

phase shift formulas derived in this paper. Some typical
examples for scattering with two spin-1=2 particles are
listed here, and all examples are highly relevant in the study
of the composition of dense nuclear matter which forms the
neutron stars. The first class of typical examples includes
the Λ − Λ, N − Ξ, Σ − Σ scattering, where the existence
of H dibaryon state has been discussed as the remaining of
bound state in flavor singlet channel. Another class of
typical example includes Λ − N and Σ − N scattering
which is useful to study properties of hyperonic matters
inside the neutron stars. Ξ − Ξ, N − N, NΣ, and NΛ
scattering follow. These examples have been studied by
using HAL QCD method in Refs. [67–70]. In principle,
these issues can also be studied with Lüscher’s formulas
in detail by using lattice QCD simulations in elon-
gated boxes.
To summarize, in this paper we have generalized two-

particle elastic scattering phase shift formulas to the case of
particles with spin 1=2 in the COM frame and MF in the
elongated box, and COM frame in cubic box, respectively.
By using a quantum mechanical model, we established a
relation between the energy of the two-particle system and
phase shift. It is verified that the phase shift formulas in
elongated box in the limit η ¼ 1 and cubic box are
consistent. Although we focus on the scattering between
two particles with the spin of both being 1=2, there are not
essential difficulties in generalizing phase shift formulas to
cases with arbitrary spin in any number of channels. We
expect that these relations will be helpful for the study
of baryon-baryon elastic scattering in lattice QCD
simulations.
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FIG. 2. The function σðqÞ is plotted versus q2 for D4h symmetry with η ¼ 1.4. It can be calculated using the matrix elements given in
Table I. The right panel in the plot are simply the same function as in the left panel with the scale of the vertical axis being magnified, in
order to show the detailed variation of the functions.
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