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In the present work, we study a numerical approach to one dimensional finite volume three-body
interaction, the method is demonstrated by considering a toy model of three spinless particles interacting
with pair-wise §-function potentials. The numerical results are compared with the exact solutions of three
spinless bosons interaction when the strength of short-range interactions are set equal for all pairs.

DOI: 10.1103/PhysRevD.97.014504

I. INTRODUCTION

Three-particle interaction plays an important role in many
aspects of hadron/nuclear, atomic, and condensed matter
physics. The understanding of three-body dynamics is an
essential and key element of many physical processes, such
as, the decay of n — 37 [1-8]. Three-body dynamics in free
space has been well studied in the past, many approaches
were developed, for instance: relativistic Bethe-Salpeter
equations approach [9-11], Faddeev equations method
[12—-17], and Khuri-Treiman equation approach [18-28].
However, due to the complication of three-body dynamics in
general, the finite volume three-body formalism is still in its
early developing phase. Recent advances in lattice compu-
tation have made the study of hadron scattering possible
[29-40]. Unfortunately, because of lacking reliable formal-
ism of three-body interaction in finite volume, the current
studies of hadron scattering in lattice QCD are only confined
in two-body elastic or inelastic regions. The two-body
scattering amplitudes are extracted from the results of lattice
QCD calculations by using Liischer’s formula [41] or its
extensions to moving frames and inelastic channels [42-54].
A reliable and sensible finite volume three-body formalism
is urgently needed in lattice QCD community when the
energy levels go above the three-body threshold.

In addition to its application in nuclear/hadron physics,
the study of three or more particles either in free space or
interacting with periodic potentials also has wide variety of
applications and interests in condensed matter physics. For
example, the rapid development of semiconductor tech-
nology has allowed to manufacture quantum dots (QDs)
nanometer sized islands. These new nanostructure materials
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have triggered a great interest from both experimental and
theoretical points of view [55]. Especially, electrons inside
these nano-structures can be controlled experimentally, so it
may potentially be applied to the development of materials in
quantum computing [56] and spintronics [57]. Moreover, the
QDs are considered ideal nano-laboratories to study the
physical properties of few-particle systems in reduced dimen-
sional space. In this regard, two-electron systems [58—68]
become the simplest arrangement of few-particle systems,
which may be served as a starting point to evaluate the
correlation effects on the energy band structure of more
complicated systems. Some of the simplest and exactly
solvable models of one quantum dot with two interacting
electrons were studied in the past, e.g., [69], in which the
hybridization effects with the states on the leads are also
considered. These early studies show that the effect of the
electron-electron interaction, in contrast to the case of non-
interacting electrons, indeed changes the electron density of
states at the Fermi level, and result in nontrivial corrections to
the conductivity and negative magnetoresistance in disor-
dered conductors [70]. Another class of systems to which the
three and more electron interaction applies and is of special
interest in condensed matter physics, is a many body
localization phenomena. In these phenomena, the many-body
eigenstates of the Hamiltonian are localized, and Anderson
localization type of behavior can only be described by the
interacting few-particle dynamics (see, e.g., [71,72]).

Many attempts on finite volume three-body interactions
were made in recent years [73-88] from different
approaches. For instance, quantum field theory based
diagrammatic approaches or Faddeev equations based
method [73-80,85-88], and the approach by considering
the asymptotic form of wave function in configuration
space [83,84]. Unfortunately, the majority of these develop-
ments are still mathematically unfriendly to common users
and are not easily tested in practice because of the
complication of three-body dynamics. Only a few limited
cases of three-body problems can be solved analytically in
low dimension, such as McGuire’s model in finite volume
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[83]. However, diffraction effects in McGuire’s model are
all cancelled out [89], thus no new momenta are created
over scattering process, though momenta are allowed to be
rearranged among three particles. As the consequence,
asymptotic form of wave function contains only plane
waves, the spherical waves are completely absent due to the
cancellation of diffraction effect [84]. The absence of
spherical waves simplifies the algebra of finite volume
three-body dynamics dramatically, making it possible to
finally have the quantization conditions expressed in a
simple way analytically [83]. In general cases, the analytic
solutions of three-body dynamics are usually not available,
even for cases that may seems like simple, such as the pair-
wise S-function potentials with unequal strength among
pairs [90]. Although, as suggested in [84], given the
asymptotic form of wave function, it may be possible to
obtain three-body quantization conditions in an analytic
form that involves only on-shell scattering amplitudes.
Obtaining the analytic asymptotic form of three-body wave
function or parametrization of on-shell three-body scatter-
ing amplitudes never is an easy task even for “simple
cases,” such as unequal strength J-function pair-wise
interactions. Therefore, in present work, we aim to obtain
a numerical approach to the finite volume three-body
problems. Although the explicit and analytic form of
quantization conditions are sacrificed and abandoned this
way, finite volume three-body problems can be solved
numerically and quite reliably without any approximation.
Most importantly, the approach is applicable to general
cases even when three-body forces are included. To
demonstrate the approach, in this work, we consider a
simple toy model of three spinless particles interacting with
pair-wise o-function potentials. The exact solutions in finite
volume are available at the limit of equal strength o-
function potentials [83], which can be used to test our
numerical approach. As will be made clear later on, three-
body dynamics is completely determined by Faddeev
equations, and wave functions in both free space and finite
box can be constructed from the solutions of Faddeev
equations. The role of the matching condition of free space
and finite volume wave functions is to impose the extra
constraints on allowed energy spectra in a finite box and
eventually leads to discrete values of energy spectra as the
consequence of periodic lattice structure. In this work,
instead of aiming to obtain analytic expressions of three-
body quantization conditions which may be derived from
the matching condition, we propose to search allowed
energy spectra numerically by using matching condition
directly. Since three-body dynamics is solely determined by
Faddeev equations, and is independent of lattice structure
of finite box, the Faddeev equations can thus be solved
separately by numerical approach, and solutions may be
tabulated and stored regardless of the scattering of particles
in free space or finite volume. Then, the solutions of Faddeev
equations may be used as input into matching condition of

finite volume problem to search for allowed discrete energy
spectra in a finite box. The strategy of numerical approach is
illustrated and tested by a toy model with particles interact-
ing by pair-wise S-function potentials. The toy model is
solved numerically and the results are compared with the
exact solutions at the limit of equal strength J-function
potentials among all pairs. At last, we would also like to
point out that though our discussion and presentation for
finite volume three-body problem was focused on pair-wise
short-range interactions, the approach can be applied to
three-body problems in general when the three-body force is
also included. The strategy of solving finite volume three-
body problem in general cases remains the same. A brief
discussion of three-body problem including three-body force
is presented in Appendix B. For completeness, a short review
of Faddeev’s approach for pair-wise short-range interaction
is also provided in Appendix A.

The paper is organized as follows. In Sec. II, we summarize
the formalism of three-particle interaction in finite volume.
The numerical approach and results are presented in
Sec. III. The summary and discussion are given in Sec. IV.

II. THREE-BODY INTERACTION FOR SHORT
RANGE INTERACTION

A. Three-body interaction in free space

In this work, for the purpose of demonstration of
numerical approach, we consider a nonrelativistic toy
model of three-body interaction in one spatial dimension,
and assume that all particles are spinless and have equal
mass. These assumptions are not essential for physics that
we are interested in but only to simplify the algebra and
presentation. The interactions among particles are assumed
pairwise and are described by S-function potentials with
strength, V5, between a-th and f-th particles. The three-
particle wave function satisfies Schrédinger equation,

3

1 d?
- —+ Vo V520 Va0 -F
{ Zm;dx%+ 126(r12) + V238(r3) + V316(r31)

X‘P(xlvx25x3;plvp2»p3):0. (1)

The three-body problem with pairwise interactions in
free space can be handled by the well-known Faddeev’s
approach [12,13]. In this way, the scattering with either
free-three-particle or two-body bound state plus third
particle in both initial and final states is treated in the
same framework. The details of complete derivations of
Faddeev’s approach for both the scattering of free-three-
particle and scattering on a bound state are listed in
Appendix A for the completeness of presentation. A brief
discussion of three-body problems with three-body forces
is also provided in Appendix B. Hence, only some key
results and equations are presented in this section. As
proposed in [12,13], the three-body wave function
has the form of W =Y + > °_, ¥, if initial state is
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free-three-particle, and ¥ = Z;Zl ¥, for scattering of
third particle on a two-body bound state. The relative wave
functions, e™ "KW ) = w(,)(rap. 1,2 qij qx)- are determined
by

— i) .

=W () (Tap: T3 Qijs 4

o dk . .
+ / “n en/az—%kz\ruy\ezkry
o0 2T

. / 3
X ltaﬂ( o’ — Zk2> Q(y)(k§ 4qij> k)

W) (Taps T3 Qi Gr)

atp#y. (2)
where 7,45(k) = —5 kfx;”", is the two-body scattering ampli-

associated to the incoming wave. If initial state is free-
three-particle state, it is given by

tude in pair (af), and 6> = mE —

v (Fag 13 i 1)

7 / 3
/ 277: \/G —3? Ir“/f‘elkr/ll /}( o2 — Zk2>

X/ dr/ye_ikr/”//()(O”’yafIij,C]k)- (3)

If the initial state is incident of ith particle on a bound state
of pair (jk), it is thus given by

(0) ® dg 2\/52_%q2
}/)(k qu Qk) =1 a_ 3 9>

—w2m0? —2q* - (k+ %)% +

YO (rape 1 @i 4i) = 6,402 (rap)e™®lr. (4
where ¢6,)(V a/}) = \/_T‘Z/!A —\r,,/,\ refers to the two_body

bound state wave function in pair (jk), and ¢ =

\ oo +2 (mvfk)2 In either case, the g(,) amplitudes satisfy

Faddeev type integral equations. In a matrix form, the
integral equations for g,) amplitudes are given by

d 2 Jz—éqz
<0>(k)+z/ dq =

2162 — — (k+ )

<o -3 )G<q>, Q

where G and G') stand for column vectors (g(3). 91). 912))"

and ( ggg;, gg?g, ggg;)r respectively. The matrix /C is given by

Eq. (A24),

G(k) =

0 ity;(q) it31(q)
K(q) = | it12(q) 0 it31(q) |,
itn(q) its(q) 0

and ggf; ’s are defined by incoming waves, for an incoming

wave of free-three-particle, we have

. 3 « —igr,
J”’”( 62—1612)/ drie™" 4y 6)(0, 13 ;5. qx.)

. 3 © —igr,
+”ya( o’ _Zq2>/ d’”/ﬁe oy () (0, r;;;qiijk)]' (6)

For scattering of ith particle by a bound state in pair (jk),

0 —i ir
ggy))(k;q,j,qk) —5a$i/d’”a¢€,)(”a)e (k+-5)r,
.

+5/3‘,'/drﬂ(j)ﬁj)(rﬁ)e—l(kJrT)rﬂ. (7)

Faddeev type equations, Eq. (5), have no analytic
solutions due to diffraction effects in general, except the
special case when the strengths of J-function potential
among all pairs are identical: Vi, = V3 = V31 =V, see
[83]. Nevertheless, Eq. (5) can be solved numerically rather
straightforwardly in general cases, and the numerical
solutions of g(,) amplitudes can thus be used as input to
construct the free space three-body wave function by
Eq. (2). As will be presented next, similarly the finite

volume three-body wave function is also constructed by
using the solutions of g(,) amplitudes, see Eq. (11).

B. Three-body scattering in finite volume

When particles are confined in a one dimensional
periodic box of the size L, as shown in [83], the relative
finite volume wave function must satisfy the periodic
boundary condition,

1

— e—igpna/;Le—i%—Pn/;,Lw(L) (

2
—”d

l//(L) (r(lﬂ + na/iLv ry +

Taps Tys Qijs i)

(na/}v n[iy’ d) EZ. (8)
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The finite volume three-body wave function, y'"), can be
constructed from the three-body free space wave function,

v, by

W<L>(raﬁ7 r}/; qij? Qk)

P 2P
— E ezgna/;L e’TnﬂyL

Nap N, €L
1
xzp(raﬂ+naﬁL,rk+§naﬁL+nﬂyL;qij,qk>. (9)
The infinite sum may be carried out by using relation

E el(§+§)nail‘el 62_%k2‘rui+na/il“

Nas€Z
2 3,2 e'v e
_ eh/a —3k2 |7 +
: 32 Pk
e—t(\/az—zk L _ 1
e—i\ /o> —3k* Tup
e—i(\/ﬂz—%kz—g—é)L -1 ’

+ (10)

Using the Poisson summation formula, Zn,, ezel( sHkng, L —
/s

N e20(3+k—2n), and free space three-body wave
function in Eq. (2), the finite volume three-body wave
function hence yields

L
wgy;(raﬂv rys qij» Qk)

g ngal ppu—"
_ E PAVL —3k \r(,/j\eikry
L nez

NPt gikr, eIV W gikr,
+
eI WVPIWHEDL _ i/ 5L g

. / 3
S lta/f( o’ — Zk2> g(y)<k; qij» qk)’

atp#y. (11)

+

The quantization conditions that yield the discrete
energy spectra for three-body interaction in a finite box
may be obtained by matching condition [83],

3
L
> [V/Ey))("aﬂ’ Ty ij di) = W) (Faps 7 i i)
r=1

{ w(0)(Tap- 743 4ij» qr)» if free-particle initial state,
N 0, if incident on a bound state,
(12)

j)) inEq. (11),
and free space wave function, () in Eq. (2), are
determined by the solutions of Faddeev equations in
Eq. (5). In other words, the three-body dynamics is
completely described by Faddeev equations, and the role
of quantization conditions or matching conditions in
Eq. (12) is to impose constraints on allowed energy
spectra to meet the requirement of a periodic lattice
structure in a finite box. Therefore, given the solution of
Faddeev equations of g-amplitude, the task is to scan all
the possible combinations of (g;;, g;) to find the solution
of energy spectra that fulfill the matching condition in
Eq. (12) for an arbitrary pair of (r,. r,). Bearing this in
mind, instead of finding the basis of asymptotic form of
wave function in both free space and finite volume [41]
and deriving an analytic expression of secular equation
from matching conditions [83,84], our strategy is to solve
Faddeev equations first, and use the solutions of 90"
amplitudes as input of matching condition, Eq. (12), to
search all possible allowed energy spectra of three-body
interaction numerically. Although it seems like the
analytic forms of secular equation are lost this way,
the numerical approach presented in this work is rather
straightforward, and the formalism itself is rather simple
and user friendly. The only trade-off is that Faddeev
equations have to be solved first numerically, and there-
fore it is more computationally involved. Fortunately,
solving Faddeev equations and searching allowed energy
spectra in matching conditions are two independent
processes, they can be carried out separately. Therefore
in practice, it may be plausible to solve Faddeev equa-
tions first for multiple initial momenta and energies, then
proceed with the second step of energy spectra searching
by using matching condition in Eq. (12). In addition, the
procedure and strategy of solving finite volume three-
body problems is not limited to only pair-wise inter-
actions, but also could be applied to general cases with
three-body forces, see discussion in Appendix B. The
idea is demonstrated and compared to exact solutions in
next section.

where both finite volume wave function, y/E

III. NUMERICAL TEST AND EXACT SOLUTIONS
AT THE LIMIT OF V12 = V23 = V31 = V()

A. Scattering of three-boson in general

Let us consider a totally symmetric free-three-particle
incoming wave,

3
W%r)“ Z (eiq,'jrlz + e_iqijrlz)eiQAVS. (13)
k=1

At the limit of V{, = V,3 = V3; = V), it may describe the
scattering of three spinless bosons. Hence, we obtain
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2%2[”/};/(%2) + it,q(q12)]

(k—qy — i€)(k — g, + ie)

.26]23[”/)’7(—(12 ) + ity (= 6123)]

T = gy i) (k= gy~ ie)
2q31[itg, (=q31) + ity (—q31)]

P k= gy —ie) (k=g + ie)

+4r6(k — q3)[its,(—q23) + itya(—q23)]-

(14)

0
QE],)) (ks qij» qi) = =21

Normally, it is more stable numerically to separate the o-
function type singular terms by redefining ¢’s amplitudes,

(ks qijsar) = i) (ks g1, i) + 4xd(k — q3)
X [itg, (=q23) + it,q(=q23)]s (15)

where similar to equations of g,)’s, integral equations for
J(y)’s are given by,

2 62_%q2

— (k+%)*+ie

xK(M&—%f)GM% (16)

where G and G

~ a © dq
Gk = GO (k / “4
(k) (k) +i 213

9 stand for column vectors (§<3), 91)-90) )7
and (g E ; E ,g( g) respectively, and

NG
gﬁyg (k; qij» qx)
2q12itg, (q12)[1 + ity (—q23) + itep(—q23)]

T kg ek, +i0)
o 2q12ityq(q12)[1 + itap(—q23) + its,(—q23)]
(k— g, — ie)(k — q, + ie)
Yy 2q03litg, (—q23) + itye(—q23)]
(k= g, —ie)(k — g3 — i)
4 2i 26131[1'%(—(].31) + itya(‘%l)] . (17)
(k— g3 —ie)(k — q + ie)

In terms of §(,) amplitudes, the totally symmetric free
space and finite volume wave functions are determined
respectively by,

Wiy (Fapa 173 i dx)
=it (q12)[1 + ity (=3) + ity (—qn3) 2ol ey
+ 2il‘aﬂ(_q23)e_iq23|raﬂ|eiqlry + 2il‘aﬂ(_q3l)e_lq3] ‘rnﬂleiquy

+/ dk \/a‘——k |ra/}|elkr/ll, /}( 02 _3k2>

ooZﬂ 4

X9 (kigij.qi),  a#P#y. (18)
Separating the d-function type singular terms from ¢’s by
Eq. (15) has no effect on nontrivial solutions of three-body
problem in finite volume, thus for nontrivial solutions,
finite volume wave function has a similar form to Eq. (11),

sym(L) .
l//(y) (raﬂvry?Qij’qk)
1 k=—2L42zy p—
— E el\/a —;Tk-|ra/;|eikr7
L nezZ
eIV T = 1o pikr, eIV rap pikr,
+

PN I PV T
X itaﬂ< kz) 90 (k3 qij. qi)

a#p#y. (19)

|
AW

As discussed in the previous section, when the strength
of potentials are not identical, Faddeev equations have no
analytic solutions, and have to be solved numerically. Then
solutions of g, amplitudes by solving Eq. (16) equations
can be used as input to construct both free space and finite
volume wave function according to Eqs. (18) and (19).
Finally, the discrete spectra of three-body interaction in
finite volume may be searched for numerically by using
matching condition, Eq. (12).

B. Exact solutions for equal strength §-function
pOtentialS: V12 = V23 = V31 = VO
In the case of equal strength of S-function potentials,
Vip =Vy =V3 =V, the three-body interaction in
finite volume is exactly solvable [83]. For totally symmetric
incoming wave, see Eq. (13), the exact solutions of g-
amplitude are

9(1,2.3) (k; qij qx)
= 876(k — q3)it(—q23)

(1 n v )  (2mV)6k
+ \/"2_%]‘2 (1+!2r:;\1/3)(1_’2’:1122)(1_12n;§?> (20)
(k= g3 —ie)(k — g, —ie)(k — q; + ie)’
where 1(q) = — Zqﬁﬁvo refers to two-body scattering
amplitude.
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The totally symmetric wave function is expressed in
terms of a single independent coefficient, see [83],

w1y, r3;Qij7Qk>
= (AS)’m(rlz’ r3)ei1112f12 _|_A3Ym(_rl2’ r3)e—fq12"12)eifhr3

+ (Asym(r31 , r2)ei1123r12 +A5ym(_r231 rl)e—ilhsrlz)eimrs

+ (Asym(I”B, rl)eiqslrlz +Asym(_r3] , rz)e—i%lrlz)ei(h&’

(21)

2

where ry3 = —7—’—7‘3 and r3; = —%—r3, and

AV (11, 13) = 14 0(r12)2it(q12)[1 + 2it(—q23)]
+ 0(=r23)2it(=q23) + O(=r31)2it(~q3;)
= 0(r12)0(ry3)4iT, + 0(r15)0(—r3)4iT,,

(22)
and
(imvo) (m _ m)
iT1 _ : 5‘123 211?1 - 2q12 —
unVvo Ve A)
(1 T 2‘115) (1 21123) (1 2431)
(imVO) (imVo _ imVO)
2 2 2
iT2 q31 423 912 (23)

- imV, imV, imVy\
(1 + 2‘]120> (1 - 211230) (1 _Tzlo)

We remark that the term 1;/%3“ in Eq. (34) presented in [83]
was a typo, see Eq. (21) for the correct version above. The
totally symmetric finite volume wave function has the same
structure as the free space wave function given in Eq. (21),

the coefficient in finite volume is given by

eiGP+a)L
AL (rpy, r3) = 4T, {9(”2) + }

1— ei(%P-&-qz)L
eiGP+as)L

1— ei(§P+q3)L]
e—iGP+ai)L ]

1 — e-iGP+ai)L

« {9(—r31) +
—4iT, |:9(r12) +
(24)

¢iGP+a3)L
x [9“23) +w}

As discussed in [83], the quantization conditions are
obtained by considering the matching condition between
free space wave function and finite volume wave function.
For the case of equal strength &-function potentials,
quantization conditions are given in simple forms,

cot (g + %)L + cot (¢(—q31) — P(—q23)) = 0,

cor(3 + 21 )L+ cot(=4-a) = dlarz)) =0

cot <§ + %)L + cot (p(—q23) + #(q12)) = 0, (25)

where two-body phase shift is

-1 2,
cot™ (= 75)-

given by

C. Strategy of searching allowed energy spectra

The discrete energy spectra in finite volume are deter-
mined by the matching condition of wave functions in free
space and finite volume, such as Eq. (12). Therefore, in
principle, the task of obtaining three-body energy spectra
in finite volume is to search all possible combination of
(gij»qk), so that the matching condition, Eq. (12), is
satisfied for an arbitrary (r,,73).

Normally, in order to explicitly remove (r;,, r3) depend-
ence in matching condition, the quantization conditions
may be further derived by expanding the wave functions in
terms of certain orthogonal basis, see [84]. For example, the
choice of basis may be made based on the asymptotic
behavior of three-body wave functions [84], such as Bessel
functions, {J,(cr),N,(or)}, and e“? in (ry,,r;) plane,
where (r,6) are the radius and polar angle of coordinate,
(r12, r3), respectively. Therefore, according to asymptotic
behaviors of three-body wave function, the wave functions
in free space and finite volume normally have the forms,
see [84],

w(ri2, 133 qij» ) = Zeim{cl,J’(sz, q)J y(or)

7T
+68,.0d;(qij> )Ny (o1)], (26)
W(L)(rl% r3:4ijs qx) = Zew[c(f}(%j’ qi)J y(or)
77
+6,.0d;(q;j> g )Ny (o1)]. (27)

Hence, the matching condition, y = y(L), leads to the
quantization conditions that are given by a determinant
condition in terms of expansion coefficients alone,

det [CJ,J’(Qijv qx) — C‘(]I:/)/(Qij’ Qk)} =0. (28)

With the exception of a few special cases, such as, equal
strength §-function potentials, the quantization conditions
usually do not possess a simple analytic expression and
appear to be messy and complicated. Moreover, the
expansion must be truncated in practice to solve a deter-
minant condition, thus, the convergence of expansion
somehow more or less depends on the choice of expansion
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basis of wave functions. Therefore, instead of making efforts
to obtain quantization conditions and solve the determinant
condition, such as in Eq. (28), we propose to solve the
matching condition directly. Though, the explicit expression
of quantization conditions is sacrificed, the procedure and
strategy of obtaining discrete energy spectra is clearer and
more straightforward. First, the Faddeev equations that
define the dynamics of three-body interaction, such as in
Eq. (5), are solved numerically. Next, the solutions of
Faddeev equations are used as input to construct both free
space and finite volume wave functions, see Egs. (2) and
(11). At last, the discrete energy spectra determined by
periodic lattice structures are obtained by searching for the
matching condition, y = y(L), directly.

In this subsection, using scattering of three-boson at
the limit of equal strength J-function potentials as a
numerical test, we solve Faddeev equations presented in
subsection III A, and use the solution of g-amplitude as input
to construct wave functions and further seek the discrete
spectra that satisfy the matching condition in Eq. (12). The
numerical results are compared with the exact solutions.
The comparison of the numerical solutions of g-amplitudes,
free space wave function and finite volume wave function
with exact solutions are presented in Fig. 1-3 respectively.
The matching condition, y = y(), is solved numerically by
the root finding method, more specifically, a function,
M(q12,q3), is introduced,

M(Qm%)

:l ZN: |z//(r12,r3;q12,q3)—l//(L)(rlz,r3;q12,q3)|
N |l//(”12,r3;(]127613)|

’

(rip.r3)=1

(29)

where sum of (ry,, r3) are carried out by choosing some
discrete values. For example, in present work, (r,,73)
space is discretized in terms of polar coordinate, (r,6).
About 30 points of r values in range r € [1,5] and 100
points of 6 € [0, 2z] are taken in the sum. N refers to the
total number of discrete points of (r,,73) in the sum.
For nontrivial solutions of three-body energy spectra
(none of particle momentum coincides with 2L—”n, n e 2),
the possible discrete values of pair (¢;,, g3) are searched
for by performing a root finding of condition,
M(qi2,q3) =0. The results are compared with the
solutions given by quantization condition in Eq. (25),
and presented in Fig. 4. We remark that the solutions of
quantization condition for g;; = 0 are excluded in Fig. 4.
It is not difficult to see that the wave functions vanish
due to the symmetry of three-body for g;; =0 at the
limit of V;, = V3 = V3; = V. Thus, the solutions for
qi; =0 are considered trivial and are not included
in Fig. 4.

10

-15

FIG. 1. The comparison of numerical solutions of integral
Eq. (16), §(1.2.3), with exact solutions given in Eq. (20). Solid
black and solid green curves represent real and imaginary parts
of numerical solutions, and dotted red and blue are real and
imaginary parts of exact solutions respectively. The parameters of
the toy model are chosen as mVy = 2.0, g¢;» = 1.0+ 0.4 and
q; =2.5+0.2i, where an imaginary part is given to both
(412, g3) to smooth out the curves near the pole positions only
for a better visualization purposes.

0/2n

| | | |
0 0.2 0.4 0.6 0.8 1
0/2m

FIG. 2. The comparison of numerical solution of free space
wave function, yw*¥™, constructed by using the solution of
Faddeev equations and Eq. (18) with exact solution given in
Egs. (21)—(22). The real and imaginary parts of free space wave
function are presented in upper and lower panels respectively.
Solid black and dotted red curves in the upper panel represent real
part of numerical solution and exact solution respectively, and
solid green and dotted blue curves in the lower panel represent the
imaginary part of numerical solution and exact solution respec-
tively. The parameters are chosen as mV, = 2.0, g, = 1.0, and
g3 = 2.5. The wave function as function of (r, #) is plotted with a
fixed r = 5.5.
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Re[wsym(L)(r’e)]

0/2n

I (r,0)]

| | | |
0 0.2 0.4 0.6 0.8 1
0/2n

FIG. 3. The comparison of numerical solutions of center of
mass (P = 0) finite volume wave function, y/sym("), constructed
by using the solution of Faddeev equations and Eq. (19) with
exact solutions given by Eq. (24). The real and imaginary parts of
finite volume wave function are presented in the upper and lower
panels respectively. The color coding, line styles and parameters
are the same as Fig. 2. The finite volume wave function as
function of (r,0) is plotted with a fixed r = 5.5.

2 v v NEERRAN T
O (0925.5.460)

1.8 L L A L838,4.540) _|
+ LN TR(739,3.636) |

r NN =003 3:586) e
| = (1796, 2.687)

o(P=l

0.8

0.6~

04—

0.2 | | | | |

FIG. 4. The center of mass (P = 0) three-body energy spectra,

c=+vVmE =,/ q%z + %q%, as function of lattice size, L. The solid

black bars and colored boxes represent solutions of the secular
equation, Eq. (25), and matching condition by solving
M(q12,q3) = 0 respectively. The red, green and blue dashed
curves represent the noninteracting energy  spectra:
2z \/(%)2 + 3 (ny + ny)? with (ny,n,) € Z. The colored lines
are labeled by pairs of integers, (n;, n,), which are associated to
momenta of noninteracting  particles by  relations:
D123 = 2%”1’2’3. As examples of both discrete energy and
momenta in a finite box, the three-body energy levels for L =

20 are also labeled by pairs of discrete values of (g5, ¢3) next to
their corresponding energy level.

IV. DISCUSSION AND CONCLUSION

As mentioned in previous sections, the dynamics of
three-body interaction are completely determined by
Faddeev equations regardless of the three-particle interact-
ing in free space or finite box. When the periodic boundary
condition is considered, the allowed energy spectra are
constrained by the matching condition between free space
three-body wave function and finite volume wave function,
eventually becoming discrete. Therefore, seeking discrete
three-body energy spectra in a finite box can be carried out
by two independent procedures. The first requires solving
dynamical Faddeev equations and using the solutions of
Faddeev equations to construct wave functions. As for the
second, instead of seeking an analytic expression of
quantization conditions for finite volume three-body inter-
action that may be derived from matching condition of
three-body wave functions, we propose to search for
discrete energy spectra by using the matching condition
directly.

In this work, we demonstrated this approach by consid-
ering the scattering of three spinless bosons interacting
with o-function potentials. In this case, the exact analytic
solutions exist at the limit of equal strength of d-function
potential among all pairs. The finite volume three-body
interaction in this toy model is then solved numerically,
and the discrete energy spectra are searched for by using the
matching condition of wave functions. Finally, all the
numerical results are compared with exact solutions pre-
sented in Sec. III. We want to stress that although a specific
toy model with only pairwise interaction is solved in this
work, this approach is in fact not limited to only pair-wise
interaction. The strategy and procedure is applicable to
more general cases when three-body forces are involved,
due to the fact that the three-body dynamics and constraints
on allowed energy spectra by periodic lattice structure are
two independent procedures and can be carried out sepa-
rately. Lastly, we would like to remark that as demonstrated
in this work, though the configurational space wave
function approach seems work perfectly well in low
dimensional space, the extension of the wave function
approach into real world in three spatial dimensions still
needs to be examined and studied with care. Especially, the
connection of wave function approach in configuration
space to the approaches developed by other groups
[73-80,85-88] is still unclear and deserves a closer look.
These issues will be addressed in our future works.

ACKNOWLEDGMENTS

We acknowledge support from the Department of
Physics and Engineering, California State University,
Bakersfield, CA. We also thank Tyler Morris for carefully
reading through this manuscript.

014504-8



NUMERICAL APPROACH FOR FINITE VOLUME THREE- ...

PHYS. REV. D 97, 014504 (2018)

APPENDIX A: THREE-BODY INTERACTION
AND FADDEEV EQUATIONS

In this section, we consider the scattering of three
spinless particles of equal masses, interacting by o-function
potentials of strength, V5, between ath and fth particles.
The three-particle wave function satisfies Schrodinger
equation,

1 d?
{— m Zd z + V120(ria) + Va36(ra3) + V316(r31) — E

X W(xy, X2, %35 Py, P2, p3) = 0, (A1)

where m, p; (i = 1,2,3)and E = >} 12’ refer to the mass
of particle, the particle’s initial momenta and three-body
total energy respectively. As shown in [83], the center of
mass, relative positions and corresponding conjugate

momenta among particles are defined by R =255

ij Xi;Xf_xIaP P +p2+p3’ ql]
2” L and q; = w (i # j # k) respectively. Because
of translational 1nvar1ance the center of mass motion
is described by a plane wave. The total three particles
wave function is given by, W(xi,x,x3;p1, P2, P3) =
PRy (rop. 1y qijs qi), where w(rop, r,5q;5.q;) describes
relative motions of three particles.

rij=x;—x;and rp =

1. Scattering of three free particles

With an incoming wave of three free particles state,
‘P(O), three- body wave function has the form [12,13],

0+ -

, where W, satisfies equation,

1 << d?
{_2mzdx +Va/35( aﬂ> E|¥)

== (l/ié(r(zﬂ) [lP(O) + ‘P(a) + lp(/})]’ 14 Fa# ﬁ

(A2)

As shown in [83], the Lippmann-Schwinger equation for
relative wave function, W(y)» can be obtained as

()

x / 4yt 357 )y o) (g 73 i 1)
-0

+ W) (P 10 ijs di) + W (p) (Fas 3 i 40
aFpFy,

Wi (Taps T3 Qi Gi)
/ dk \/o- -2 |r,,/;\ezkr,lt
271'

(A3)

Vaﬂ
where taﬂ (k> 2k+sz

amplitude between ath and pth particles for a s-function

refers to the two-body scattering

potential interaction, and 6> = mE — %2 = q%j + %qﬁ.

Instead of solving Faddeev T-matrix equations, see [83],
numerically, it is more convenient to introduce amplitudes,
9> by

(y)(kZ qij» qx)

g
0 . r
:/ dre_lkr|:l//(a) (rv_z;qij7qk>
r
T W r’—E;Qij,CIk .

The relative wave function, V(s thus can be written as

(A4)

Yy )(raﬁHry;Qiijk)
o —7 T IKT. 3
e
X |:/ drje_’kr/l// (0’ ryv qU7 qk) +g (k ql]’qk):| .
(AS)

Using Eqgs. (A4) and (AS5), the integral equations for
g(y)—amplitude are obtained,

9) (k; qij qx)

/2 3.2
0 _ [~dg 2. /o -39
_g())(k;Qiijk)+l/ o

(v —w2m(c? =3¢%) — (k+ 1)+ ie

) 3
% |:ltﬂy< o? —Zq2>g(a)(q;61ijaCIk)

, 3
+ z%( o’ - fo)g(/s)(q; qij» Qk):| . (A6)
where T b
gy, 1s given by,

0
9 (ks 437> )

2 /62—%612

./@dq
=1 _—
—0 27 (6? —%qz) —(k+9)?+ie
. 3 & —igr,
X [”ﬁy( 02—1612)/ drye™ "ll/(o)(o, o3 qij- k)

. 3
+ltm<\/02—‘—‘q2>/ drge” ’q’ﬂl// ) (0, 745G45.qr) |-

(A7)
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The g(,-amplitude is related to standard Faddeev
T- amphtude by

3 3
T(}’)(k9 q;’jv qk) = 2\/02 _Zkzta/i (\/62 _ Zk2)

x [/ dr,e=®ry )(0, 7, ;7. qx)

0000 (%)
the full three-body scattering amplitude is given by
3
T(ka/)” r24dij» Qk Z T kﬁ’ qij» ‘Ik) (Ag)
6=1

where k, = —kq5 — and kg = kop —
2. Scattering on a two-body bound state

For the case of scattering on a bound state, e.g., ith
particle incident on a bound state of (jk) pair, three-body
wave function thus has the form of ¥ = Z;’: 1 \Pm, and the

Lippmann-Schwinger equation for relative wave function
reads,

;B
5y,i¢€/)(ra/})elqi r
n / dk i [l ikr,

oo 2T

, 3
X ityp (\/ o? — 1 k2> 90 (ki g0 qr).

(A10)

l//(y)(raﬂv Ty qijs Qk) =

where the bound state wave function in pair (jk) is given

by (,{)fy)(raﬁ) = \/—% “Ere) ,and g8 = \/o? +3 (mv’k)2

refers to the relative momentum between incident ith
particle and pair (jk) bound state. The integral equations
for g(,)-amplitude for scattering on a bound state also has
the same form of Eq. (A6), where for the case of scattering

(0)

on a bound state in (jk) pair, 9, is given by

9533("; 9ij qk) = 50,1'/dra¢fa)(ra>e_i(k+7i)ra

+ 85, / drﬂ¢fﬁ>(rﬂ)e—f<k+7">fﬂ. (A11)

3. Exact solutions for equal strength of §-function
potentials: V12 = V23 = V31 = VO

Only for the special case with equal strength of
o-potential among all pairs, Vi, =V, = V3 =V,,

three-body interactions are in fact exactly solv-
able [83,91,92]. The exact solutions can be used for testing
and verifying the numerical approach, and also for com-
pleteness, the exact solutions of Faddeev equations,
Eq. (A6), for scattering of three free particles with incom-
ing wave e912"2¢93"3 and for scattering on a bound state of
pair (12) respectively are presented in following.

a. Scattering of three free particles with incoming
wave e'412"12¢149373

. . . . 0
For incoming wave e'?12712¢'43"3, gE >)

, is given by

O (ks girs q0) = i ——2011C03)
9i3)( $4ij» qi) l(k_q3—ie)(k—92—i€)
2q31it(—q31)

+i : :
(k—q3 —ie)(k — g, + ie)
O kg an) = i 203111(=431)
90y ks Gijs i) = i (k= g5 —ie)(k — g, + i€)
. 2q,it(q12)
_ . (A3
(k= gz —ie)(k = q1 + ie) A
O (k- .. = — 240it(q12)
9(2)( $4ij> qx) l(k_q2—i€)(k—q1 + ie)
n 2q3it(—q23)
i . ;
(k= q3 —ie)(k — q; — ie)
+ it(=q23)275(k — q3). (Al4)

where 7(q) = The exact solutions of g-amplitude

2q+sz
are

93)(k; gij» qr) = it(—q23)276(k — q3)

(=2mVo) (k+75)

imVq
( \/62--> +5 ) (1= ) (1-59)

+ 2!112 2423 2431
(k— g3 —ie)(k— g, —ie)(k— g + i€)’
(A15)
( un‘/o ) ( anV())(k—m—qT}—mleO)
W—lk? D) (1-29)(1-529)
k; i _ 412 423 431 S
90054 90) = G i (k= gs - 1)k — g1 + 10
(A16)
92y (k:qij» qr) = it(—q23)276(k— g3)
LIHV() ( ZInVU)(k+q]2 q3+m1V0)
. (1+ N ) L5 (T (15
(k—q3—ie)(k—q,—ie)(k—q, +ie)
(A17)
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b. Scattering on a bound state of pair (12)

For incoming wave ¢f3)(r12)e"q§’3, the gg(y)g is given by

0
93 (k: 4ij q1) = 0,

mV, mV,
(0) 2 (To)z V -

912K qijo ai) = L

(A18)

The exact solutions of g-amplitude are

mV() mVO
9 ) k qij qk 75
inVy 3{[3 lmVO
g3 thO
ot e
(k—qs —ie)(k—qs - le)(k— q + ie)’
(A19)
mVO mV()
9a, 2) k LIlqu 75
IIYIVO 3:/3 ””VO . imV
X ( - ‘kz) ) (k=%
(k—q3—ie)(k—q, —ie)(k—q, +ie)

(A20)

4. Numerical test for scattering of three free particles
with an incoming wave e'712"12¢'43"3

In general, Faddeev equations, Eq. (A6), have to be
solved numerically. The numerical approach is rather
straightforward for the case of scattering on a bound state,

the expression of g [see Eq. (A18)] does not contain

o-function type smgularmes Thus, Eq. (A6) is standard
Fredholm-type integral equation, and can be solved easily
by the matrix inversion method. Special care has to be
given to the case of the scattering of three free particles. In

[see Eqgs. (A12)—(A14)] does indeed contain

o-function type singularities. The singularities in Eq. (A6)
can be removed by redefining g(,)’s. For example, given

this case, g
that ggi contains singular term ity3(—q»3)278(k — ¢3), by a
shifting in g(3),

= 9i3)(k: qij» qi) + itr3(=q23)270(k — q3),
(A21)

9(3) (k; dij» qx)

the new integral equations for g,)’s are free of é-function

type singularities, and are also Fredholm-type equations. In
addition, extra care must be taken when it comes to the

branch cut of square root terms, and pole contributions in
Faddeev equations. The pole contributions are handled by
using standard ie prescription, see Eq. (A6) for instance. As
for branch cut contribution, we adopt the same convention

as used in [83], for the square root terms, qgﬁ, we assign a

small imaginary part to g, — ¢, + i0", the imaginary
part for g,3 = g3 —i0" and g3, — g3; — 0T are thus
determined by relations, ¢,; = —%qlz —I—%q3 and ¢3; =
—1¢12 — 2 g5 respectively. In addition, our convention for
complex square root is given by +/q> +i0" = :I:\/?.
Therefore, /(g2 +107)* = q12, \/(q23 —i07)* = —gn3
and /(g3 —i0")* = —g3;.

As demonstrations of some numerical tests, the g,)’s
equations are solved numerically for an incoming wave of
el and compared with the exact solutions pre-
sented in Sec. A3a. As mentioned previously, the &-
function type singularities must be removed by shifting

9i)'Ss

9k qijs ax) = 90y (k: qijs qr)
962) (K qij» q) = 93.2) (k3 qij» qi) + ita3(—=q23)2m8(k — q3).
(A22)

We thus obtain integral equations for g,)’s,

2(0) . [~dq 2\/62_%‘]2

GV (k) + i — 53 3
o 2m0” —5q° = (k+1)* +ie
3 N

X’C(VO' —ZCI)G(CI),

where G and G\ stand for column vectors ( 969+ 9017+ 92)"

and (Qg;,@g?i,@g;f respectively. The dependence on

G(k) =

(A23)

initial momenta (g, g;) are dropped in the equation above.
The matrix C is given by

0 ilzg,(Q) it31(‘1>
it1»(q) 0 it31(q) |,
itin(q) itx(q) 0

K(q) = (A24)

and

s o) — 2q3ity3(—¢23)
9(3)( ,qu,qk) l(k—q3—i€><k—q2—i€)
2g31it31(—q31)
(k= q3 —ie)(k — q, + ie)
_ 2q1it31(q12)ity3(—q23)
(k= qp — ie)(k—qy +ie)’

+ i

(A25)
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(k)

A
&3

(k)

A
L)

(k)

A
)

FIG. 5. The comparison of numerical solutions of integral
Eq. (A23) with exact solutions given in Eqs. (A15)—(A17): the
solutions of g2y are presented in upper, middle, and lower
panels respectively. Solid black and solid green curves represent
real and imaginary parts of numerical solutions, and dotted red and
blue are real and imaginary parts of exact solutions respectively.
The parameters of the toy model are chosen as mVy = 2.0, ¢, =
1.0 4+ 0.4i and g3 = 2.5 + 0.2i, where an imaginary part is given
to both (g,, ¢3) to smooth out the curves near the pole position
only for better visualization purposes.

2g31it31(—q31)
k— gz —ie)(k—q, + ie)
2q12it15(q12)

A0 .
o) (ks a5 1) = T

-1 . —, A26
k=qr-ie)k—g+7e) P20
N _ _.2q12it12(q12) [1 + ity3(—g3)]
9(2)( ’ql]’qk) l (k_qz_le)(k—q1+l€)
1 2q03it3(—q23) (A27)

(k= g5 — i€)(k — g, — ie)

Faddeev equations for g, ’s, given by Eq. (A23), are
solved numerically by the matrix inversion method, and the
comparison of numerical solutions with exact solutions in
Egs. (A15)—(A17) is presented in Fig. 5.

APPENDIX B: FADDEEV EQUATIONS
INCLUDING THREE-BODY FORCE

In previous sections, our discussion of three-body
problem was restricted on the interactions of three particles
with only pair-wise -function potentials. In this section,
we would like to extend our discussion of three-body
interaction by including a spherical symmetric three-body

force potential, U(r), where r = ,/rgﬁ + % r2, and give a

brief presentation above how the three-body force may be
handled in the Faddeev equations approach. By including a
three-body force potential, U(r), Schrodinger equation
now has the form of

(B1)

Let us consider the scattering of three-particle with an
incoming wave of three free particles, (). Three-body
wave function may thus be expressed in the form of

3

W= o)+ )W)+ Yo, (B2)
y=1
where W, satisfies equation,
1 & &2
|:— % ;d—x% + Vaﬂ5(ra/j) - E:| ‘P(y)
= —Vapd(rap)[¥r0) + Yy + ¥p) + Y-
v #a#p, (B3)

and similarly the equation for ¥y is given by
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(B4)

The Lippmann-Schwinger equation for relative wave
function, w(,) and (), can be obtained respectively as

l//(y)(ra/iv Ty dqijs qk)

_ /w %ei\/o'z——%kzlraﬁ‘eikw lt(lﬁ( 02 - %k2>

o0 2TC
© ) —ikr, / / /
X/_ dra/idr}/e_l r’5(”ap’)[l//(0)(’”a/3’ Ty 4ijs k)

+ W (o) (T a3 Qijs @) + W () (Fras T3 G Q1)
+ v w) (T 753 4 1))

a#p#y. (BS)

and

W(U)(rlz, 3 gij, k)

:/ dri,driG ) (riy, 1331y, r556)mU(r)

(Se]

3
X {W(o)(’”ﬁz’ 35 Qs Qi) + ZW(;/)(”Q/}’ 5 i Qk):|’

y=1
atp#y. (B6)
The Green’s function, G(U), satisfies equation,
&2 3 >
{ 2 4 F%z + 17 % - mU(r)} G(U)(rlz, r3;Fy, s 0)
=6(r;p —1)p)8(r3 — r5). (B7)

Next, let us introduce the scattering amplitudes by

90 (ks qij qi) = / dre=™" [lﬂ(a) <r, — 534 qk>

r

+ W(ﬂ) (ra _2,%‘]‘, Qk>

+ v w)(0,75qij Qk)] :

T(}’)(ka qij> Qk) = —/ dra/jdrye‘ik’r

—o0

X mVaﬁ(S(raﬂ)W(raﬂ’ry;qij’ Qk)’ <B9)

o . .
dri,drye~ i g=iksrs

T(U)(k12’k3;ql‘j7Qk) = _/

—00

x mU(r)y(ry, r3; qij qx)- (B10)

The T',)- and g, -amplitudes are still related by Eq. (A8).

The total three-body scattering amplitude with the presence
of three-body force is thus given by

T(kip. k33 q,;. qx)
3
- Z Tk qijs qr) + Ty (kiz k33 qijoqi), (B11)
y=1
k k
where k, = —k,3 — 5 and kg = ko5 — 5.

The wave functions, y,) and g, are given in terms of
T-amplitude by

l//(y)(raﬂ’ rys4ijs Qk)

./oo dk ei\/az—%kz\rr,ﬂ\eikry
=1 _—

P——— k’ . ,
0027[ 5 Tz_%kz (y)( qij Qk)

‘//(U)(”lz, 35 4ij» qx)

_ /°° dky, %eik'zr'zeikﬂq(m (k12 k35 G455 qi)
e 2 2m az—kfz—%kg—i—ie

(B12)

(B13)

Equations (B9)-(B13) yield a sets of coupled equations
for g(,) and T () amplitudes respectively,

. — 0. ©dq T(v)(4-k:qij-9x)
) (ks ClipCIk) =90 (k’qij?qk) —/_oo 2ﬂ02—q2—%k2+ie

2 /62—%612

+./°°ch
i aq
—w2m(0*=3¢%) = (k+%)* +ie

_ 3
X [ztﬂ,( o’ —4q2> 9 (43915, 1)

, 3
+ ity (\/ o* —ZLIZ) 9 (4393 qk)] :

aFP#y,

(B14)

0

where g(y)) is defined in Eq. (A7), and

T(v)(ki2, k33 ;55 qx)

3
0 dq
= vy (k2. k35 i) qx) +;/_m57<aﬁ>(k12’k3§4)

q2>g<y>(q; ij» Gx)

1w

X il(l/}< 0'2 -

a#tf#y. (B15)
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The functions, v(y) and F ), are defined respectively by

U(U)(klz,ke.;%j,%):_/ drlZdr3|:W(O)(r12ar3;qij’Qk)+ZWE;V)!)(raﬂ7ry;Qijvq1c) mU(r)¢>(kU)(”127r32k12’k3), (B16)

oo —
and
Fap) k12, k33 q) = —/ d”lzd"3eiV62_%612‘”‘”‘eiqr’mU(r)¢?U)(”12,rs;klz,k3), (B17)
where
(in) . odk 23R ke » 3., °° —ikr, .
Wiy (Fap Ty ij ) = Il weTritgs| \J o7 = 4k » drye™ 1y (0,75 g5, 1), (BIB)
and
Bly) (o, r3ikin, ky) = emenzemions +/ driydrie ™2 ee B mU(7)Gy) (. 15 112, 133.0). (B19)

The wave function ¢y satisfies Schrodinger equation with the presence of three-body forces potential alone,

4z 3 d?
[02 +de2 + dar mU(’)} dw)(ri2.r3:.q5. qi) = 0. (B20)

The finite volume three-body wave function again can be constructed from three-body free space wave function, see
Eq. (9), therefore, when three-body force is considered, we obtain the finite volume three-body wave function,

k3 :7%+2T”n3
pk

3 k12 :*3*73+2f”" 12 .
‘//(L)(r127 r3 i), @) = Z ‘//EyL;(raﬁ’ ridis @) - é Z etkinr piksrs T;U)(Z;z, k33aZsz’ ‘Ik) ’ (B21)
r=1 (n12.n3)€Z O k2Tl T i€
where 1//25; is given by Eq. (11).
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