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We obtain the general expression of the gluon propagator at finite temperature (T) and in a magnetic
field (B), for the case that the four transverse tensor structures appear in the gluon self-energy. By using this
expression and a specific form of the one-loop gluon self-energy in the lowest Landau level approximation,
we analyze the gluon spectrum in the strong magnetic field limit. As a result, we find that there exist two
collective excitations of which the energies are of the order of p ∼ gT with g being the coupling constant.
One of the two excitations enjoys properties quite different from those of the collective excitations at B ¼ 0

which have been discussed by using the hard thermal loop approximation. We also discuss the static and
dynamical screening effects, which are expected to be important for computation of transport coefficients in
strong magnetic fields.
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I. INTRODUCTION

The extreme state of matter created by the relativistic
heavy-ion collisions provides us with an opportunity to
investigate the dynamics governed by quantum chromo-
dynamics (QCD) at high temperature (T). Motivated by
the experiments, a number of theoretical studies have
addressed the properties of the extreme QCD matter called
the quark-gluon plasma (QGP). Recent studies, both in
theory and experiment, also suggest opportunities of study-
ing novel properties of the QGP in the strong magnetic
field (B) which is thought to be induced in the heavy-ion
collisions [1–5] (see Refs. [6,7] for recent reviews on the
estimates of the strengths). The outcomes of these studies
suggest not only the emergence of the nondissipative
transport phenomena [8,9] (see also Refs. [6,7,10,11] for
recent reviews), but also the drastic changes in the conven-
tional transport phenomena such as the shear viscosity [12],
the heavy-quark diffusion dynamics [13], the jet energy
loss [14], and the electrical conductivity [15–22]. The
quark spectrum, which is one of the fundamental building
blocks of QGP, was also suggested to show a drastic change
[23]. Not only these intrinsic properties of the QGP, but

also the macroscopic time evolution of the QGP in the
heavy ion collision, was investigated on the basis of the
anomalous hydrodynamics [24–26] and the magnetohy-
drodynamics [27–30].
In this paper, we discuss the gluon spectrum in the strong

magnetic field. In the case without the magnetic field, the
preceding studies have clearly shown that investigating the
properties of the gluon, a fundamental degree of freedom in
the QGP, is important for understanding many aspects of
the QGP from basic excitations to more complex phenom-
ena. One important example is the computation of transport
coefficients: In the 2-to-2 scattering process that appears in
the leading-order calculation of the transport coefficients at
B ¼ 0 [31–34], the exchanged gluon has a small energy/
momentum compared with the temperature. Therefore, the
Debye and dynamical screening properties of this soft
gluon are the necessary ingredient. The whole task is
carried out by the computation of the gluon self-energy and
the resummation procedure called the hard thermal loop
(HTL) resummation [35–40].
We investigate the general expression of the gluon

propagator at finite temperature and in a magnetic field,
assuming the four transverse tensor components in the
gluon self-energy that have been known to appear in
the perturbative calculation [35–41]. Then, we analyze
the gluon spectrum in the momentum region of the order of
gT, with g being the QCD coupling constant, by using a
specific gluon self-energy at the one-loop order in the
lowest Landau level (LLL) approximation. We find a novel
collective excitation in this momentum region and closely
look into the dispersion relation and the strength to uncover
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its basic properties. We also investigate the Debye and
dynamical screening effects to provide the gluon propaga-
tor which will be important for, e.g., the computation of the
transport coefficients in the future studies.
We note that, when the magnetic field is so strong that

the LLL approximation is reliable, it has been known that
one of the two physical modes of the gluon is screened by
the interaction effect with the quarks in the LLL [42].
Moreover, the screening mass has no temperature depend-
ence since this mass is interpreted as the Schwinger mass
originated from the dimensional reduction in the LLL [43].
However, the other mode, which is not screened by the
quarks in the LLL, has not been studied in detail. Our
analysis sheds light on this point.
This paper is organized as follows: In the next section,

we obtain the general form of the gluon propagator at finite
T and B in the covariant gauge by assuming the tensor
structure of the gluon self-energy suggested by the leading-
order calculation [35–41]. We also discuss the physical
meaning of the excitations obtained from this propagator
with the use of the explicit forms of the polarization
vectors. In Sec. III, we use the specific expression of the
self-energy at the one-loop order in the strong magnetic
field, and investigate the spectrum of the gluon excitation in
a few energy scales. We also discuss the static and the
dynamical screening effect. Section IV is devoted to the
summary of this paper. We evaluate the gluon propagator in
the Coulomb gauge in Appendix A, and summarize the
properties of the projection tensors used in order to evaluate
the gluon propagator in Appendix B.

II. GENERAL FORM OF GLUON PROPAGATOR

In this section, we first show the general form of the
gluon propagator with the general gluon momentum and
the tensor structures of the gluon self-energy suggested by
the leading-order calculation [35–41]. We then discuss the
specific momentum configurations to clarify the physical
picture.

A. General momentum

We consider the retarded gluon propagator DR
μνðpÞ of

which the color indices are suppressed for the notational
simplicity. This propagator is related to the retarded gluon
self-energy (ΠR) as

DR
μνðpÞ ¼ ½ðD0ðpÞÞ−1 þ ΠRðpÞ�−1μν ; ð2:1Þ

whereD0 is the bare propagator. Here, the inverse matrix in
the Minkowski space is defined as DμνD−1

να ¼ gμα. We adopt
the covariant gauge to get a simpler tensor structure than
in the other gauges. For some purposes such as the
computation of transport coefficients, the ghost-free gauges
are more convenient. Therefore, we give the propagator in
the Coulomb gauge in Appendix A.

The bare propagator in the covariant gauge reads

D0
μνðpÞ ¼ −

P0
μνðpÞ
p2

þ α
pμpν

ðp2Þ2 ; ð2:2Þ

where α is the gauge-fixing parameter and P0
μνðpÞ≡

−ðgμν − pμpν=p2Þ is the projection tensor into the trans-
verse component in the Lorentz-symmetric system. We
note that the gluon energy p0 appearing in the above
expression contains an infinitesimal imaginary part
(p0 þ iϵ) for the retarded function. The inverse matrix is

½D0�−1μν ðpÞ ¼ −p2P0
μνðpÞ þ

1

α
pμpν: ð2:3Þ

Now, we look at the self-energy terms. Let us consider
what kind of tensor structures generally appear at finite T
and B. One can set the direction of the magnetic field along
the z-axis without losing generality. Then, the independent
tensors one can use to construct Πμν

R ðpÞ are
pμpν; nμnν; bμbν; ðpμnν þ nμpνÞ; ðpμbν þ bμpνÞ;
ðbμnν þ nμbνÞ; gμν; ð2:4Þ

where nμ ≡ ð1; 0Þ and bμ ≡ ð0; 0; 0;−1Þ break the Lorentz
and rotational symmetries, respectively. The latter vector
indicates the preferred direction in the presence of the
magnetic field. Instead of the last four tensors, it is
convenient to use the four projection tensors,

Pμν
T ðpÞ ¼ −gμν þp0

p2
ðpμnν þ nμpνÞ− 1

p2
ðpμpν þp2nμnνÞ;

ð2:5Þ

Pμν
L ðpÞ¼−

p0

p2
ðpμnνþnμpνÞþ 1

p2

�ðp0Þ2
p2

pμpνþp2nμnν
�
;

ð2:6Þ

Pμν
∥ ðpÞ ¼ −

p0p3

p2
∥

ðbμnν þ nμbνÞ

þ 1

p2
∥
½ðp0Þ2bμbν þ ðp3Þ2nμnν� ð2:7Þ

¼ −
�
gμν∥ −

pμ
∥p

ν
∥

p2
∥

�
; ð2:8Þ

Pμν
⊥ ðpÞ ¼ 1

p2⊥
½−p2⊥gμν þ p0ðpμnν þ nμpνÞ

− p3ðpμbν þ bμpνÞ þ p0p3ðbμnν þ nμbνÞ
− pμpν þ ðp2⊥ − ðp0Þ2Þnμnν − p2bμbν� ð2:9Þ

¼ −
�
gμν⊥ −

pμ
⊥pν⊥
p2⊥

�
: ð2:10Þ
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We have defined g∥μν ¼ ð1; 0; 0;−1Þ, g⊥μν ¼ ð0;−1;−1; 0Þ,
pμ
∥ ¼ gμν∥ pν, p

μ
⊥ ¼ gμν⊥ pν, p2

∥ ¼ ðp0Þ2 − ðp3Þ2, and p2⊥ ¼
ðp1Þ2 þ ðp2Þ2. All four of the above projection tensors are
transverse to the momentum as pμP

μν
i ðpÞ ¼ 0. We note that

the former two tensors (PT , PL) are known to appear at
the finite T and B ¼ 0 case [35–40], while the latter two
(P∥, P⊥) appear at the T ¼ 0 and finite B case [41], by the
perturbative calculations.
Then, the tensor structure of the self-energy can be

written as [44]

Πμν
R ðpÞ ¼

X
i¼T;L;∥;⊥

ΠiðpÞPμν
i ðpÞ þ Πp

pμpν

p2

þ Πnnμnν þ Πbbμbν: ð2:11Þ

We note that one cannot make other transverse tensors that
are independent of the above four projection tensors, by
using pμpν, nμnν, and bμbν. This is the most general form
of the gluon self-energy at finite T and B. In the current
paper, we only consider the terms that are proportional to
the four transverse projection tensors, because only these
four tensors appear in the leading-order perturbative
calculation.
Now that the form of the self-energy is specified, one can

obtain the corresponding gluon propagator by evaluating
the inverse matrix appearing on the right-hand side of
Eq. (2.1). By using the multiplicative properties of the four
projection tensors summarized in Appendix B, we find the
general form of the gluon propagator as

DR
μνðpÞ ¼ −

1

Δ

�
ðp2 − Π∥ − ΠLÞPT

μνðpÞ

þ ðp2 − Π∥ − ΠTÞPL
μνðpÞ þ Π∥P

∥
μνðpÞ

þD⊥ðpÞP⊥
μνðpÞ

�
þ α

pμpν

ðp2Þ2 ; ð2:12Þ

where

Δ≡ ðp2 − ΠTÞðp2 − ΠLÞ

− Π∥

�
p2 − ΠTa

p2

p2
∥
− ΠLð1 − aÞ ðp

0Þ2
p2
∥

�
; ð2:13Þ

D⊥ðpÞ≡ 1

p2 − ΠT − Π⊥

�
Π∥ðΠL − ΠTÞð1 − aÞ ðp

0Þ2
p2
∥

þ Π⊥ðp2 − ΠL − Π∥Þ
�
; ð2:14Þ

and a≡ ðp3Þ2=p2. We are not aware of the literature that
has the general form of the gluon propagator at finite T
and B, with the four tensor components in its self-energy.
We note that the gauge-fixing term is not affected by the

self-energy at all. Since this term does not reflect any
physical property, we will not explicitly write this
term below.
For later convenience, we introduce the three indepen-

dent vectors as in Ref. [41]:

vð0Þμ ≡ −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2p2
∥p

2⊥
q ðp2⊥p0; p2

∥p1; p2
∥p2;p2⊥p3Þ; ð2:15aÞ

vð1Þμ ≡ 1ffiffiffiffiffiffi
p2⊥

p ð0; p2;−p1; 0Þ; ð2:15bÞ

vð2Þμ ≡ −
1ffiffiffiffiffi
p2
∥

q ðp3; 0; 0; p0Þ; ð2:15cÞ

where p0 ¼ p0 and pi ¼ −pi are understood. It is easy to
show the orthogonality vμðiÞvðjÞμ ¼ 0 for i ≠ j, the normali-

zation, vμðiÞvðiÞμ ¼ −1, and the transversality pμv
μ
ðiÞ ¼ 0.

In terms of these vectors, one can rewrite the projection
tensors as Pμν

⊥ ¼ vμð1Þv
ν
ð1Þ, P

μν
∥ ¼ vμð2Þv

ν
ð2Þ, and Pμν

0 − Pμν
⊥−

Pμν
∥ ¼ vμð0Þv

ν
ð0Þ. One also finds Pμν

L ¼ vμvν where

vμ ≡ 1

jpj
ffiffiffiffiffi
p2

p ½p0pμ − p2nμ�

¼ 1

jpj
ffiffiffiffiffi
p2
∥

q
�
−p0jp⊥jvμð0Þ þ p3

ffiffiffiffiffi
p2

q
vμð2Þ

�
; ð2:16Þ

and then Pμν
T ¼ P

i¼0;1;2v
μ
ðiÞv

ν
ðiÞ − vμvν. vμ is a superposi-

tion of vμð0Þ and v
μ
ð2Þ, and does not have the v

μ
ð1Þ component.

Especially, we have vμ ∝ vμð0Þ when p⊥B, and vμ ∝ vμð2Þ
when p∥B.
Physically, these vectors are the polarization vectors of

the real-gluon field Aμ. Properties of the induced color-
electric (E) and -magnetic (B) fields1 are also discussed
in Appendix D of Ref. [41]. We summarize the results in
Fig. 1. In the all three modes vμð0Þ, v

μ
ð1Þ, and v

μ
ð2Þ, the induced

E and B are orthogonal to each other, E · B ¼ 0. In the vμð0Þ
mode, the electric field lies in the plane spanned by p and
B, and the magnetic field extends in the out-of-plane
direction. Notably, E is always orthogonal to the external
B. In the vμð1Þ mode, B lies in the p − B plane, and E extends

in the out-of-plane direction. In the vμð2Þ mode, E lies in the

p − B plane and B extends in the out-of-plane direction. We
note that only vμð2Þ induces E that is not orthogonal to the

1In contrast to the case of the photon field [41], the field
strength in QCD has the nonlinear terms in Aμ as well as the linear
terms. These terms are expected to be negligible when the
amplitude of Aμ is small, or the coupling constant g is small.
We focus on such cases and do not consider the nonlinear terms.
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external B. This is the reason why the quarks at the LLL
generate only the component Π∥ in the gluon self-energy,
which corresponds to vμð2Þ: The quarks at the LLL can move

only in the direction of B, and thus are affected by the gluon
excitation only when E has the component along B. In all
three of the above modes, the magnetic fields B are always
orthogonal to p. On the other hand, only in the vμð1Þ mode,

the electric field E is always orthogonal to p. In the vμð0Þ and

vμð2Þ modes, one finds p · E⃗ð0Þ ∝ p2p2⊥ and p · E⃗ð2Þ ∝ p2p3,

so that they are orthogonal only when p∥B and p⊥B,
respectively.2 The physical meaning of vμ can be discussed
in the same way as in Ref. [41]. vμ induces E that is parallel
to p, while does not induce any B.

B. Special momenta

To get a feeling on the physical meaning of Eq. (2.12),
let us consider the two special momentum configura-
tions below.

1. p∥B case

When p is parallel to the magnetic field, Eq. (2.13)
reduces to Δ ¼ ðp2 − ΠTÞðp2 − ΠL − Π∥Þ. Therefore,
Eq. (2.12) becomes

DR
μνðpÞ ¼ −

�
vð0Þμ vð0Þν

p2 − ΠT
þ vð1Þμ vð1Þν

p2 − ΠT − Π⊥
þ vð2Þμ vð2Þν

p2 − ΠL − Π∥

�
;

ð2:17Þ

where we have used vμvν¼ vð2Þμ vð2Þν and PT
μν ¼ vð0Þμ vð0Þν þ

vð1Þμ vð1Þν . The correspondences between the polarization

vectors and the directions of E and B are drawn in

Fig. 2. We see that vð2Þμ coincides with the polarization

vector vμ longitudinal to the momentum p, while vð0Þμ and

vð1Þμ are responsible for the two transverse polarizations.
The fact that ΠT and Π⊥ (ΠL and Π∥) are simply added in

the denominator of the vð1Þμ (vð2Þμ ) term in the expression
above can be understood from this fact.
In this configuration, the two transverse excitations

specified by vð0Þμ and vð1Þμ are expected to be degenerated
due to the rotational symmetry around the B axis. It
implies the limiting behavior Π⊥ ¼ 0 at p⊥ ¼ 0.

2. p⊥B case

When p is perpendicular to B, Eq. (2.13) reduces to Δ ¼
ðp2 − ΠLÞðp2 − ΠT − Π∥Þ. Therefore, Eq. (2.12) becomes

DR
μνðpÞ ¼ −

�
vð0Þμ vð0Þν

p2 − ΠL
þ vð1Þμ vð1Þν

p2 − ΠT − Π⊥
þ vð2Þμ vð2Þν

p2 − ΠT − Π∥

�
;

ð2:18Þ

where we have used vμvν ¼ vð0Þμ vð0Þν and PT
μν ¼ vð1Þμ vð1Þν þ

vð2Þμ vð2Þν . The directions of the color-electromagnetic fields
are summarized in Fig. 3. From this figure, it is clear that

the excitation specified by vð0Þμ coincides with the longi-

tudinal polarization, while those specified by vð1Þμ and vð2Þμ

correspond to the two transverse excitations. Along with
these correspondences, one can understand the fact in

Eq. (2.18) that ΠL appears only in the vð0Þμ channel, while

ΠT appears in the vð1Þμ and vð2Þμ channels together with Π∥
and Π⊥, respectively.

III. ONE-LOOP APPROXIMATION

In this section, we consider a specific self-energy which
is given by the one-loop diagrams drawn in Figs. 4 and 5.

FIG. 1. The directions of E and B generated by the four
polarization vectors.

FIG. 2. The directions of E and B generated by the four
polarization vectors, in the case of p∥B.

2In Ref. [41], one finds that the electric field in the vμð2Þ mode is
orthogonal to p when p∥B as well as p⊥B at T ¼ 0. This is
because, when p∥B, the on-shell condition becomes p2 ¼ p2

∥ ¼
0 according to the boost invariance along the external B.
However, at finite temperature, p2

∥ ≠ 0 even when p∥B due to
the absence of the Lorentz symmetry. Indeed, as we will see in the
next subsections, E and p are parallel when p∥B.
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From now on, we consider the strong magnetic field case,ffiffiffiffiffiffi
eB

p
≫ T, where e is the electromagnetic coupling con-

stant, so that the LLL approximation is valid. In this
approximation, the quark-loop contribution is proportional
to the tensor Pμν

∥ [42]. On the other hand, the gluon and
ghost loops are not directly affected by the magnetic field,
so that their tensor structures are the same as those at
B ¼ 0: They have only the components for Pμν

T and Pμν
L . In

the LLL, the fluctuation transverse to the magnetic field is
absent, so that one can set Π⊥ ¼ 0 in Eq. (2.12). We also
consider the massless quarks for simplicity.3 In this case,
we have Π∥ðpÞ ¼ M2 ≡ g2

P
fjBfj=ð2πÞ2 [42], where f is

the index for the quark flavor, and Bf ≡ eqfB with qf
being the electric charge of the quark carrying the flavor f.
Because of

ffiffiffiffiffiffi
eB

p
≫ T, one finds Π∥ ≫ ΠT;L ∼ g2T2.

These inequalities naturally introduce a hierarchy of
the energy scales: gT ≪ M ∼ g

ffiffiffiffiffiffi
eB

p
≪ T ≪

ffiffiffiffiffiffi
eB

p
. We will

discuss the gluon spectrum in each scale, p ∼ gT, g
ffiffiffiffiffiffi
eB

p
,

and p ≫ g
ffiffiffiffiffiffi
eB

p
. We will show a novel excitation in the first

energy region. While the results in the last two cases are
already known, we will also briefly discuss these cases in
order to present a complete and self-contained discussion in
the whole energy region.
Note that the coupling constants in gT andM come from

the gluon/ghost and quark loops, respectively, so that
natural scales for the evaluation of the running QCD
coupling constant may be different: A natural scale of
the quark dynamics could be either of the inverse of the
cyclotron radius ∼

ffiffiffiffiffiffi
eB

p
appearing in the transverse dynam-

ics or T appearing in the longitudinal dynamics, while that
of the gluon/ghost dynamics is not subject to the size of the

magnetic field and therefore T is the natural scale. To
decide the appropriate energy scale in the running coupling
in the quark dynamics, one needs to perform the higher-
order calculation and try to minimize its contribution by
choosing the energy scale. Nevertheless, in this paper, in
each region specified above, we will only have the coupling
constant either from gT or M, which, therefore, can be
evaluated with one scale.

A. p ≫ M region

When p is so large that all of the self-energy corrections
are negligible, the propagator reduces to the one in the free
limit (2.2). Equation (2.2) is rewritten as

D0
μνðpÞ ¼ −

vμð0Þv
ν
ð0Þ þ vμð1Þv

ν
ð1Þ þ vμð2Þv

ν
ð2Þ

p2
: ð3:1Þ

As mentioned before, each vμðiÞ is the polarization vector of
the real-gluon field Aμ [41], and its dispersion relation is
given by the pole position of the corresponding term inDμν.
In the current case, the dispersion relations of the three

modes (i ¼ 0, 1, 2) are all degenerated with p2 ¼ 0. The
mode for i ¼ 0 was shown to be unphysical [41] when the
dispersion relation is lightlike p2 ¼ 0. Thus, the number of
the physical modes in this case is two, as it should be
because a real gluon is allowed to have only the two
transverse modes in the Lorentz-symmetric case.

B. p ∼M region

When p ∼M, we have p2 ∼ Π∥ ∼ ðg ffiffiffiffiffiffi
eB

p Þ2 ≫ ΠT;L∼
ðgTÞ2. Then, Eq. (2.13) is approximated as Δ≃
p2ðp2 − Π∥Þ, while D⊥ðpÞ≃ 0. The resultant gluon
propagator reads

DR
μνðpÞ≃ −

vμð0Þv
ν
ð0Þ þ vμð1Þv

ν
ð1Þ

p2
−

vμð2Þv
ν
ð2Þ

p2 −M2
; ð3:2Þ

FIG. 3. The directions of E and B generated by the four
polarization vectors, in the case of p⊥B.

FIG. 4. The one-loop diagram for quark contribution to the
gluon self-energy. The solid (curly) line represents a quark
(gluon) propagator. The quark is confined in the LLL.

, ,

FIG. 5. The one-loop diagram for gluon and ghost contributions
to the gluon self-energy. The dotted line represents the ghost
propagator.

3In the LLL quark-loop contribution to the polarization tensor,
the leading mass/temperature correction to the exact result ∼g2eB
from the massless Schwinger model is suppressed by ðm=TÞ2 for
a small quark mass m ≪ T (see, e.g., Ref. [13] and references
therein). Therefore, the parametric dependence of the correction
term is ∼g2eBm2=T2, and the temperature dependence is T−2

instead of T2, unlike in the usual four-dimensional case.
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where we have used Pμν
T þ Pμν

L ¼ Pμν
0 . This expression

agrees with the known result [14]. We see that the two
modes, which correspond to vμð0Þ and vμð1Þ, are not affected
by the interactions and have the unscreened dispersion
relation p2 ¼ 0, while the other mode vμð2Þ is screened and

has the modified dispersion relation p2 ¼ M2.

C. p ∼ gT region (HTL scale)

In this subsection, we focus on the soft-energy region,
p ∼ gT. In this case, we can use the HTL approximation
[45,46] for ΠT and ΠL:

ΠTðpÞ ¼
3

2
ω2
p½y2 þ ð1 − y2ÞQðyÞ�; ð3:3Þ

ΠlðpÞ ¼ 3ω2
p½−1þQðyÞ�; ð3:4Þ

where y≡ p0=jpj and

QðyÞ≡ y
2

�
ln

���� 1þ y
1 − y

���� − iπθð1 − y2Þ
�
: ð3:5Þ

We have definedΠl ≡ p2ΠLðpÞ=p2 for future convenience.
Notice that the quark-loop contribution is not included
in the above HTL results. Consequently, the plasma
frequency, which is now only from the gluon/ghost-loop
contribution, is given by ωp ≡ gT

ffiffiffiffiffiffi
Nc

p
=3 (with Nc being

the number of colors), which differs from the one at B ¼ 0
by overall factors.
Since we are looking at the scale p ∼ gT, the orders

of the self-energies are ΠT;L ∼ ðgTÞ2 and Π∥ ∼ ðg ffiffiffiffiffiffi
eB

p Þ2.
Thus, Eqs. (2.13) and (2.14) are approximated as
Δ≃ −Π∥p2Δmix=p2

∥ and

D⊥ðpÞ≃ 1

p2 − ΠT
Π∥ðΠL − ΠTÞð1 − aÞ ðp

0Þ2
p2
∥

; ð3:6Þ

where

Δmix ≡ p2
∥ − ΠTa − Πly2ð1 − aÞ: ð3:7Þ

By using these expressions, Eq. (2.12) results in

DR
μνðpÞ≃ 1

Δ
½Π∥P0

μνðpÞ − Π∥P
∥
μνðpÞ −D⊥ðpÞP⊥

μνðpÞ�

¼ −
p2
∥

p2

vð0Þμ vð0Þν

Δmix
−

vð1Þμ vð1Þν

p2 − ΠT
: ð3:8Þ

In the above, the dependence on Π∥ goes away because
of the cancellation between the numerator and the denom-

inator. We note that the mode with vð2Þμ does not appear here
because this mode is, as we have seen in the previous
subsection, screened by the screening mass M, and thus it

has much larger energy than the one we are consider-
ing (∼gT).
The first term of Eq. (3.8) reduces to the purely trans-

verse (longitudinal) component when p∥B (p⊥B):

Δmix ¼ p2 − ΠT ðp∥BÞ; ð3:9aÞ

Δmix ¼ y2½p2 − Πl� ðp⊥BÞ: ð3:9bÞ

They agree with the two denominators appearing in the
HTL propagator [45,46] in the absence of the magnetic
field, which can be obtained by setting Π∥ ¼ Π⊥ ¼ 0 in
Eq. (2.12):

DR
μνðpÞ ¼ −

PT
μνðpÞ

p2 − ΠT
−
p2

p2

PL
μνðpÞ

p2 − Πl
: ð3:10Þ

For general values of a, Δmix is a linear combination of ΠT
and Πl. In other words, the transverse and the longitudinal
components are “mixed,” which does not happen in the
B ¼ 0 case.
On the other hand, the denominator of the second term

in Eq. (3.8) is the same as that of the transverse term of
Eq. (3.10), so this term does not have novel properties.

1. Collective excitations

In the time-like region p2 > 0, ΠT and Πl do not have
imaginary parts. Therefore, Eq. (3.8) can have poles on the
real axis in the p0 plane. If they exist, they correspond to
collective excitations of which the energies are given by the
pole positions.
Let us begin with the two special cases, p∥B and p⊥B,

which correspond to a ¼ 1 and a ¼ 0, respectively. In
these cases, Δmix reduces to the well-known HTL results at
B ¼ 0 up to the absence of the quark-loop contribution in
the present case.
In the former case at a ¼ 1, the root of Eq. (3.9a) is

plotted4 in Fig. 6 as a function of jpj. This also gives the
pole of the second term in Eq. (3.8), because the dispersion
relations of the two transverse modes should be degen-
erated according to the rotational symmetry with respect to
the direction of the magnetic field. Its asymptotic forms can
be analytically obtained as [45,46]

ðp0Þ2 ≃ ω2
p þ

6

5
p2 ðjpj ≪ gTÞ; ð3:11aÞ

ðp0Þ2 ≃ p2 þ 3

2
ω2
p ðjpj ≫ gTÞ; ð3:11bÞ

4Note that we plotted only the pole with the positive energy.
Another pole with the same magnitude but with the opposite sign
exists in the negative energy region, as can be seen from the
symmetry of ΠT under the transformation p0 → −p0.
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where we have used QðyÞ≃ 1þ 1=ð3y2Þ þ 1=ð5y4Þ for
y ≫ 1, and QðyÞ≃ lnð2=ϵÞ=2 for y≃ 1þ ϵ with ϵ ≪ 1.
In the latter case at a ¼ 0, Δmix has only the longitudinal

component. The root of Eq. (3.9) is plotted in Fig. 6 as a
function of jpj. This collective excitation is known as the
plasmon. Its asymptotic forms are obtained as [45,46]

ðp0Þ2 ≃ ω2
p þ

3

5
p2 ðjpj ≪ gTÞ; ð3:12aÞ

p0 ≃ jpj
�
1þ 2 exp

�
−2 −

2p2

3ω2
p

��
ðjpj ≫ gTÞ:

ð3:12bÞ
We note that the dispersion curve quickly approaches the
light cone at the large jpj due to the exponential factor.
This contrasts to the asymptotic behavior of the transverse
component shown in Eq. (3.11).
Now, we move to general values of a. In Fig. 6, the

solutions of Δmix ¼ 0 are plotted5 for a ¼ 0.3 and 0.6 as
functions of jpj. The pole positions appear in between those
of the transverse channel, p2 − ΠT ¼ 0, and of the longi-
tudinal channel, p2 − Πl ¼ 0, at B ¼ 0. One can see, as a
increases from zero, the pole position departs from that in
the longitudinal channel, and approaches that in the trans-
verse channel. This dispersion relation at the fractional
value of a is different from both of the transverse and the
longitudinal channels at B ¼ 0, and thus is a novel
collective excitation appearing only in the presence of
the strong magnetic field. We can obtain the asymptotic
forms of the pole position as

ðp0Þ2 ≃ ω2
p þ

3ðaþ 1Þ
5

p2 ðjpj ≪ gTÞ; ð3:13aÞ

p0 ≃ jpj
�
1þ 2 exp

�
−2 −

2p2

3ω2
p
þ a
1 − a

��
ðjpj ≫ gTÞ:

ð3:13bÞ

At the large jpj, the dispersion curve approaches the light
cone exponentially, just like that of the plasmon at B ¼ 0.
We note that, when a is very close to unity, the latter
asymptotic expression becomes invalid as noticed from the
blowup of the exponential, and one should use Eq. (3.11b)
instead.
Next, we discuss the residue of the novel collective

excitation. By expanding the first term in Eq. (3.8) around
the pole [which we write as p0 ¼ ωðjpjÞ] as

1

Δmix
≃ ZðjpjÞ

2ωðjpjÞ
1

p0 − ωðjpjÞ ; ð3:14Þ

we introduce the residue

ZðjpjÞ ¼ 2ωðjpjÞ
�
dΔmix

dp0

����
p0¼ωðjpjÞ

�
−1
: ð3:15Þ

As in the discussion for the pole positions, we start with
the two special cases. In Fig. 7, we show the residue in
the p∥B case where the excitation reduces to the transverse
one at B ¼ 0. We see that the residue does not change
much in the all momentum range. Especially, in both limits
jpj → 0 and jpj → ∞, it is known that the residue
approaches unity [45,46]. On the other hand, the residue
in the p⊥B case, plotted in the same figure, corresponds to
the plasmon excitation at B ¼ 0. In this case, it is also
known that, whereas the residue approaches unity as
jpj → 0, it decreases exponentially at the large jpj
[45,46]. Therefore, contrary to the transverse excitations,
the residue shows a rapid change as a function of jpj.
We shall move to general values of a. In Fig. 7, we show

the residues as functions of jpj for a ¼ 0.3 and 0.6. An
analytical expression of the residue at the small jpj is
obtained as

Z≃ 1 −
3 − 2a

5

�jpj
ωp

�
2

: ð3:16Þ

We find that, for the general a, the residue goes to unity as
jpj → 0. The asymptotic form at the large jpj can also be
obtained as

Z≃ 8p2

3ð1 − aÞω2
p
exp

�
−2 −

2p2

3ω2
p
þ a
1 − a

�
: ð3:17Þ

The exponential suppression at the large jpj suggests
that the excitation does not have physical significance

 1

 1.5

 2

 2.5

 0  0.5  1  1.5  2  2.5

p0 /ω
p

p/ωp

FIG. 6. The pole position obtained from Δmix ¼ 0 with a ¼ 0.3
(red, dotted line) and a ¼ 0.6 (magenta, chain line), as a function
of the momentum. The poles in the transverse (blue, solid line)
and the longitudinal (green, solid line) components at B ¼ 0
[Eq. (3.10)], which correspond to a ¼ 1 and a ¼ 0 in Δmix ¼ 0,
respectively, are also plotted. The light cone (black, dotted line) is
also plotted. The unit of the energy and of the momentum is ωp.

5Here we do not consider the pole at p2 ¼ 0, which originates
from the prefactor of the first term in Eq. (3.8), because such a
pole with the polarization vector vð0Þμ is unphysical [41].
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when jpj ≫ gT, where the interaction effect can be safely
neglected. These analytic expressions confirm the behav-
iors both in the small and large jpj regions in our numerical
results.
At the large jpj, we see that the behaviors at finite a are

more similar to that of the plasmon rather than of the
transverse excitation at B ¼ 0, suggesting that the new
excitation is a collective excitation like theplasmonatB ¼ 0.

2. Debye screening

The limiting behavior of the first term in Eq. (3.8) at
p0 ¼ 0 describes the screening property of static color-
electric field. We start with the p∥B case. At p0 ¼ 0, we
have ΠT ¼ 0, so p2

∥=½p2Δmix� ¼ −1=p2. It indicates the
well-known fact that there is no static screening effect
in the transverse channel. By contrast, for the p⊥B case,
we have p2

∥=½p2Δmix� ¼ −1=½p2 þ 3ω2
p� from Πl ¼ −3ω2

p.
This expression indicates the screening effect in the
longitudinal channel, of which the Debye mass is given
by

ffiffiffi
3

p
ωp [45,46].

Now, let us move to the case of general a. The first term
in Eq. (3.8) becomes

p2
∥

p2Δmix
¼ −

1

p2
; ð3:18Þ

at p0 ¼ 0. This expression suggests that there is no static
screening effect except for the p⊥B case (a ¼ 0). It is
surprising that the static screening disappears once a gets
an infinitesimal deviation from zero.

3. Dynamical screening

Although the static screening is absent, there can be a
dynamical screening effect in the first term of Eq. (3.8).

We focus on the behavior at the small p0. Let us start with
the p∥B case. By using ΠT ≃ −3iπyω2

p=4 for p0 ≪ jpj,
which comes from the Landau damping, we get
p2
∥=½p2Δmix�≃ −1=½p2 − 3iπp0ω2

p=ð4jpjÞ�. Its absolute
value becomes

���� p2
∥

p2Δmix

����
2

≃ 1

jp2j2 þ ½3πp0ω2
p=ð4jpjÞ�2

: ð3:19Þ

This expression shows the presence of the screening effect
at finite p0, which is called the dynamical screening. This
effect is quite important in the calculation of the transport
coefficients [31–34] and the quark damping rate [47–51] at
B ¼ 0. There is a dynamical screening effect also in the
longitudinal channel, but the static screening effect domi-
nates when p0 ≪ jpj, so we do not discuss the p⊥B case.
For general values of a, the first term of Eq. (3.8)

becomes

p2
∥

p2Δmix
≃ −

1

p2 þ ΠT
; ð3:20Þ

for p0 ≪ jpj. Interestingly, this expression shows no
dependence on a and is the same as that in the p∥B case,
where the expression reduces to that in the transverse
channel at B ¼ 0. Therefore, it is clear for the general a that
there is the same dynamical screening effect as that of the
transverse mode.

D. Brief summary of whole momentum ranges

Here, we briefly summarize our results for the gluon
spectrum obtained in this section. We show the dispersion
relations of the excitations in Fig. 8 which correspond to the
polarization vectors vμðiÞ (i ¼ 0, 1, 2), respectively.

The excitation with vμð0Þ has a pole at p0 ¼ ωp ∼ gT at

jpj ¼ 0, and the pole position increases as jpj increases,
and finally approaches the light cone when jpj ≫ gT.
However, at the same time, the residue decreases exponen-
tially at jpj ≫ gT, so this excitation is physically important
only when jpj≲ gT. We note that this picture does not hold
when a is very close to unity. In this case, Πl does not
appear in Δmix as seen in Eq. (3.9a), and the pole position
and the residue of this excitation become identical to those
of the excitation with the polarization vector vμð1Þ, of which
the properties are discussed below.
Another excitation with vμð1Þ also has a pole at p0 ¼

ωp ∼ gT at jpj ¼ 0. The pole position increases as the
momentum increases, but does not approach the light cone
in contrast to the excitation we have just discussed. Its
residue approaches unity at the large jpj, so it is still a
physical object also when jpj ≫ gT. Actually, the excita-
tion with vμð1Þ exists even at the larger momentum

region, jpj≳M.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2  2.5  3

Z

p/ωp

FIG. 7. The residues Z at a ¼ 0.3 (red, dotted line) and a ¼ 0.6
(magenta, chain line), as a function of the momentum. The
residues at a ¼ 1 (blue, solid line) and a ¼ 0 (green, solid line),
which correspond to the transverse and the longitudinal channels
at B ¼ 0, respectively, are also plotted for comparison. The unit
of the momentum is ωp.
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The other excitation with vμð2Þ has the much larger mass

compared with the other two: At zero momentum, the pole
is at p0 ¼ M ≫ ωp, and the pole position becomes ðp0Þ2 ¼
p2 þM2 at the finite momentum. This excitation also exists
at the momentum region jpj ≫ M.
The two excitations with the polarization vectors vμð1Þ and

vμð2Þ have finite residues at jpj≳M where the interaction

effect is negligible. The residue of the excitation with vμð0Þ
decreases exponentially with the increasing momentum,
which indicates a clear contrast to the former two. This
result suggests that the latter excitation is a purely collective
excitation like the plasmon at B ¼ 0.
We also briefly comment on the screening properties. As

we have seen, the behavior of the residue for vμð0Þ is similar

to that in the longitudinal mode at B ¼ 0. However, the
screening properties of this component are the same as in
the transverse mode at B ¼ 0: Namely, the Debye screen-
ing is absent, while the dynamical screening effect persists.
This is an intriguing fusion between the longitudinal and
transverse modes caused by the magnetic field.
As a final remark of this section, we comment on the

gauge dependence of our result. The gluon propagator itself
is a gauge-dependent quantity. Actually, the general
expression in the covariant gauge, Eq. (2.12), is apparently
different from the corresponding expression (A7) in the
Coulomb gauge. Nevertheless, the physical quantities that
can be calculated from the gluon propagator should be
gauge invariant, such as the pole position of the gluon
collective excitation [52,53]. Especially in our one-loop
analysis, Π∥ is independent of the gauge fixing since only
the quarks are involved inside the loop, and ΠT=L is also
gauge independent because it is evaluated with the HTL
approximation. It proves that the properties of the collective

excitations in this section, such as the dispersion relation
and the strength, are gauge independent.

IV. SUMMARY

We obtained the gluon propagator at finite temperature
and in a magnetic field, in which both of the Lorentz and
rotational symmetries are broken, for the case that the gluon
self-energy has the four independent transverse tensor
components.
Then, by using the specific form of the one-loop gluon

self-energy in the LLL approximation, which is valid in the
strong magnetic field, we clarified the picture of the gluon
excitations in the whole energy ranges, p ≫ M, p ∼M,
and p ∼ gT. Especially in the p ∼ gT case, we found that
there appear two collective excitations, and that the proper-
ties of one of them are significantly modified compared
with those at B ¼ 0. We note that the gluon self-interaction
is essentially important for the collective excitations at
p ∼ gT, so that these collective excitations do not appear in
the relativistic quantum electrodynamics plasma because
there are no counterparts for the diagrams in Fig. 5.
We also discussed the Debye and dynamical screening

effects, and found that the Debye screening is absent in
contrast to the B ¼ 0 case, while the dynamical screening
persists. The expression of this dynamical screening will be
useful when one computes the transport coefficients in the
strong magnetic field, where the soft gluons appear as the
exchanged particles.
We note that our calculation is based on the assumption

of the strong magnetic field, T ≪
ffiffiffiffiffiffi
eB

p
. When this

assumption is not realized, we cannot rely on the LLL
approximation so that Π∥ is no longer equal toM2, and Π⊥
becomes finite and its magnitude would be the same order
as the other components of Π. Also, the inequality ΠT,
ΠL ≪ Π∥ will not be realized anymore. The investigation
in such a case is left to future work.
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APPENDIX A: GLUON PROPAGATOR IN
COULOMB GAUGE

The bare propagator and its inverse in the Coulomb
gauge are, respectively, given by

D0
μνðpÞ ¼ −

PT
μνðpÞ
p2

−
nμnν
p2

þ α
pμpν

ðp2Þ2 ; ðA1Þ

½D0�−1μν ðpÞ ¼ −p2P0
μνðpÞ þ

1

α
gμigνjpipj: ðA2Þ

 0

 2

 4

 6

 0  2  4  6

v(0)
v(1)

v(2)

p0 /ω
p

p/ωp

FIG. 8. The dispersion relations of the three excitations. The
excitation with the polarization vectors vμð0Þ, v

μ
ð1Þ, and vμð2Þ are

represented by the chain line colored in magenta, the solid
line colored in blue, and the dotted line colored in red,
respectively. The light cone (black, dotted line) is also plotted.
We setM=ωp ¼ 3.0 and a ¼ 0.6. The unit for the energy and the
momentum is ωp.
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As for the tensor structure of the self-energy, we assume the
form in Eq. (2.11).
We consider the behavior in the limit α → 0. By

evaluating the terms of order α−1 and α0 in the definition
of the inverse matrix, Dμν

R ½ðD0Þ−1 þ Π�να ¼ gμα, we get

0 ¼ piDμi
R ; ðA3Þ

gμα ¼ Dμ
gigαjp

ipj þDμν
R

�
−p2P0

να þ
X

i¼T;L;∥;⊥
ΠiðpÞPi

να

�
;

ðA4Þ

where we have decomposed Dμν
R as Dμν

R þ αDμν
g þOðα2Þ.

Generally, Dμν
R has the tensor structure

Dμν
R ¼

X
i¼T;L;∥;⊥

DiP
μν
i þDp

pμpν

p2
þDnnμnν þDbbμbν;

ðA5Þ
according to the argument in Sec. II A. Dμν

g also has the
same tensor structure, and the coefficients in this order are
referred to as Dg

i . Equation (A3) gives a constraint on these
coefficients, resulting in

Dμν
R ¼

X
i¼T;⊥

DiP
μν
i þDnnμnν þDBμν: ðA6Þ

We have defined Bμν ≡ Pμν
L − y2pμpν=p2 − ðp0Þ2bμbν=

ðp3Þ2 þ p2
∥P

μν
∥ =ðp3Þ2 such that piBμi ¼ 0.

By solving Eq. (A4), the gluon propagator is found to be

Dμν
R ¼ −

1

Δ

��
p2 − ΠL − a

p2

p2
∥
Π∥

�
Pμν
T − a

p2

p2
∥
Π∥Bμν

þ p2

p2
nμnν

�
p2 − ΠT −

ðp0Þ2
p2
∥

Π∥

�
þDc⊥P

μν
⊥
�
;

ðA7Þ

where Δ is the same as that in the covariant gauge (2.13),
and

Dc⊥ ¼ −
�
p2 − ΠL − a

p2

p2
∥
Π∥

�
þ Δ
p2 − ΠT − Π⊥

: ðA8Þ

The coefficients of Dμν
g satisfy

Dg
L ¼ ðp3Þ2

p2
∥

Dg
∥ ¼ −

ðp3Þ2
ðp0Þ2 D

g
b; ðA9Þ

ðp0Þ2Dg
L þ p2Dg

p ¼ p2

p2
: ðA10Þ

This result can be confirmed by using the properties of
the four projection tensors and Bμν summarized in

Appendix B as well as the definitions of the projection
tensors (2.5)–(2.10).
Before ending this Appendix, we examine the form of

the resummed propagator near the mass shell, which will
be useful for the computation of the transport coefficients.
The on-shell condition is given by the denominator of
the propagator, so in the free limit it reads p2 ¼ 0. The
interaction effect modifies the dispersion relation.
However, the modification is of the order of Πi, and thus
p2 is still small. For this reason, the coefficients of nμnν

and Bμν in Eq. (A7) are negligible compared with the
other tensors:

Dμν
R ≃ −

p2 − ΠL

Δ
ðPμν

T − Pμν
⊥ Þ − Pμν

⊥
p2 − ΠT − Π⊥

: ðA11Þ

We have applied the same approximation to the coefficient
of the term being proportional to Pμν

T , and the denominator
can be also approximated for p2 ∼ 0 as

Δ≃ ðp2 − ΠTÞðp2 − ΠLÞ − Π∥

�
p2 − ΠT

a
1 − a

p2

p2
− ΠL

�

¼ ðp2Þ2 − p2

�
ΠT þ ΠL þ Π∥ − Π∥ΠT

a
1 − a

1

p2

�

þ ðΠT þ Π∥ÞΠL: ðA12Þ

Neglecting the term that is proportional to p2Π∥ΠT , we get
Δ≃ ðp2 − ΠLÞðp2 − ΠT − Π∥Þ. Plugging this expression
into Eq. (A11), the gluon propagator near the mass shell is
obtained as

Dμν
R ≃ −

Pμν
T − Pμν

⊥
p2 − ΠT − Π∥

−
Pμν
⊥

p2 − ΠT − Π⊥
: ðA13Þ

We note that the above two tensors are orthogonal,
ðPμν

T − Pμν
⊥ ÞP⊥

να ¼ 0.

APPENDIX B: PROPERTIES OF
PROJECTION TENSORS

All the projection tensors are normalized as

Pμα
i Pi

αν ¼ −Pμ
iν; ðB1Þ

where i ¼ T; L; ∥;⊥.
The following pairs of the projection tensors are

orthogonal:

Pμα
T PL

αν ¼ Pμα
∥ P⊥

αν ¼ Pμα
⊥ PL

αν ¼ 0: ðB2Þ

On the other hand, multiplications for the other pairs result
in nonvanishing structures as

Pμα
T P⊥

αν ¼ Pμα
⊥ PT

αν ¼ −Pμ
⊥ν; ðB3Þ
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Pμα
T P∥

αν ¼ −
p0

p2
∥p

2
½−p3pμ þ p0p3nμ − p2bμ�½p3nν − p0bν�:

ðB4Þ

We note that the right-hand side in Eq. (B4) is not
symmetric in μ and ν. However, when evaluating the
inverse matrix to get the gluon propagator, one needs only
a symmetrized combination,

Pμα
T P∥

αν þ Pμα
∥ PT

αν

¼ −
1

p2
∥
½2ðp0Þ2fanμnν þ bμbνg

− p0p3ð1þ y2Þðbμnν þ nμbνÞ
− p0aðnμpν þ pμnνÞ þ y2p3ðbμpν þ pμbνÞ�

¼ 1

p2
∥
½ap2Pμ

Lν þ ðp0Þ2ð1 − aÞðPμ
⊥ν − Pμ

TνÞ� − Pμ
∥ν:

ðB5Þ

By using a simple relation Pμα
L ¼ Pμα

0 − Pμα
T , the product

between PL and P∥ can be obtained as Pμα
L P∥

αν þ Pμα
∥ PL

αν ¼
−½Pμα

T P∥
αν þ Pμα

∥ PT
αν� − 2Pμ

∥ν, where the symmetrized tensor
between the brackets is given just above.
In the Coulomb gauge, there appears another tensor Bμν

defined below Eq. (A6). Its product with the projection
tensors is found to be

BμνP∥
να ¼ −

ðp0Þ2
ðp3Þ2 P

μ
∥α − Pμν

T P∥
να þ ðp0Þ2

ðp3Þ2 b
μP∥

3α; ðB6Þ

BμνPT
να ¼

p0

p3
nμPT

3α; ðB7Þ

BμνPL
να ¼

1

ðp3Þ2 ½−p
2
LðPμ

∥α þPμν
∥ PT

ναÞ þ ðp0Þ2bμPL
3α�−Pμ

Lα;

ðB8Þ

BμνP⊥
να ¼ 0: ðB9Þ
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