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Effective couplings between light SU(2) vector and axial mesons and constituent quarks are calculated
in the presence of a background electromagnetic field by considering a one dressed gluon exchange
quark-quark interaction. The effective coupling constants, obtained from a large quark mass expansion,
are expressed in terms of the Lagrangian parameters of the initial model and of components of the quark
and nonperturbative gluon propagators. In spite of many possible couplings, only a few coupling constants
emerge. As a second step, constituent quark-vector and axial mesons effective coupling constants are
redefined to show explicit dependence on a weak background magnetic field. Ratios between the effective
coupling constants are found in the limit of large quark effective mass and numerical estimates are
presented.
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I. INTRODUCTION

Light vector mesons dynamics play an important role
in intermediary energies nuclear and hadron phenomena.
Although it could be expected that the mechanism for
confinement could provide an unambiguous route for this
program, it is not known. In this context the formulation of
effective models has been one of the most important routes
for the understanding of hadron and nuclear strong inter-
actions by considering the related relevant symmetries.
Chiral symmetry and its dynamical symmetry breaking
(DChSB) are some of the essential ideas from phenom-
enology and QCD that have made possible great advances
in the field. For example, approximated chiral symmetry
favors the interpretation of some axial mesons as chiral
partners for vector mesons. The A1ð1260Þ has been seen as
the chiral partner of the rho meson and the f1ð1285Þ [1]
meson is a candidate for the chiral partner for the ω.
However the strict relation of phenomenological models
describing their interactions to nucleons, and therefore to
constituent quarks, to the more fundamental QCD degrees
of freedom is not completely settled. There are several
different approaches for describing vector mesons dynam-
ics such as massive Yang Mills, hidden gauge approach,
and others [2–6] that are not necessarily equivalent.
However, a desirable incorporation of vector (and axial)
mesons to the usual chiral perturbation theory framework,
as an effective field theory, has found some difficulties
[7,8]. The vector mesons couplings to nucleons have shown
much fewer ambiguities since Sakurai’s work [2,9,10].
There has been great interest in these couplings to describe
finite baryonic densities hadron systems including at the
saturation density [11,12]. The difficulty in determining the

hadron coupling constants values from first principles QCD
has lead to different developments. At the purely quark
level, instantons have been shown to provide effective
quark interactions that should contribute for hadron struc-
ture. In Ref. [13] light vector (axial) mesons couplings to
constituent quarks were derived by departing from a one
loop quark polarization by making use of the auxiliary field
method to introduce vector and axial mesons fields. In the
present work the vector and axial mesons coupling to
quarks are addressed in the presence of a weak background
photon. Vector/axial mesons electrical charges couplings to
the photon are recovered as well as some of the couplings
associated to vector meson dominance.
Besides the interest in understanding the emergence of

baryons and mesons couplings to the electromagnetic field
in terms of the more fundamental quark and gluon degrees
of freedom, recently it has been recognized that magnetic
fields might generate several interesting effects in strongly
interacting systems such as magnetic catalysis, CP viola-
tion, chiral magnetic effect, and others [14–22]. Their
effects should be sizeable, in particular, in magnetars
and peripheral heavy ion collisions [23]. Magnetic field
effects might be larger for processes with enough energy to
involve light vector and axial mesons than in the very low
energy regime where pions are by far the most important
degrees of freedom as the Goldstone bosons of DChSB.
From the theoretical point of view it has been found that
finite magnetic fields induce modifications in the quark,
gluon, and hadron interactions [24–31]. In the present
work, effective couplings of constituent quarks to light
vector/axial mesons in the presence of a weak background
magnetic field are derived from one loop quark polarization
for dressed one gluon exchange quark-quark interaction.
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The light vector and axial mesons are introduced by means
of the usual auxiliary field method and they are identified
with vector and axial quark currents such as ψ̄γμσiψ , ψ̄γμψ ,
and ψ̄γ5γμσiψ , ψ̄γ5γμψ . Eventual corrections by other types
of Dirac structures are neglected. The specific vector and
axial mesons sector, without the coupling to constituent
quarks, that has been investigated by other groups in similar
and complementary approaches [4,32], is outside the scope
of the present work. This work is organized as follows. In
the next section the approach is described in a succinct way
since a more detailed explanation can be found in
Refs. [29,33,34]. The quark determinant is expanded for
large effective quark mass and weak external electromag-
netic field. Effective coupling constants for simultaneous
couplings of constituent quarks, vector/axial mesons, and
the photon are resolved and expressed in terms of the
parameters of the original model and of components of the
quark and gluon propagators. In the following section a
weak magnetic field is considered and the effective light
vector mesons couplings to constituent quarks are rewritten
to exhibit magnetic field dependent coupling constants.
Numerical estimates for the hadrons effective coupling
constants are presented as being highly dependent on the
choice of the gluon propagator and on the particular values
for the quark-gluon coupling constant. Some analytical
simple ratios between the effective coupling constants are
found to provide their approximated relative strengths in
the limit of very large quark mass. Finally, the dependences
of the rho meson electric form factor and its electromag-
netic radius on the weak magnetic field are presented. A
summary is presented in the final section.

II. QUARK POLARIZATION AND
VECTOR MESONS

The one dressed gluon exchange quark-quark interaction
is one of the leading terms of QCD effective action. By
considering the minimal coupling to a background electro-
magnetic field, its generating functional is given by [35,36]

Z ¼ N
Z

D½ψ̄ ;ψ � exp i
Z
x

�
ψ̄ði=D −mÞψ

−
g2

2

Z
y
jbμðxÞ ~Rμν

bcðx − yÞjcνðyÞ þ ψ̄J þ J�ψ
�
; ð1Þ

where
R
x stands for

R
d4x, i; j; k ¼ 0;…ðN2

f − 1Þ is used
for SU(2) flavor indices, and a; b::: ¼ 1;…ðN2

c − 1Þ
stands for color in the adjoint representation. The color
quark current is given by jμa ¼ ψ̄λaγ

μψ, and the sums in
color, flavor, and Dirac indices are implicit. Dμ ¼ ∂μδij −
ieQijAμ is the covariant quark derivative with the minimal
coupling to photons, with the diagonal matrix Q̂ ¼
diagð2=3;−1=3Þ. The gluon propagator, ~Rμν

abðx − yÞ, must
be a nonperturbative one, being an external input. This

makes it possible to incorporate to some extent the gluonic
non-Abelian character. Besides that, it is required that
this nonperturbative gluon kernel, eventually with a cor-
rected quark-gluon coupling, provides enough strength to
yield DChSB. This has been found in several approaches
[37–41]. In several Landau-type gauges this kernel can be
written in terms of transversal and longitudinal compo-
nents, RTðx − yÞ and RLðx − yÞ, as ~Rμν

abðx − yÞ≡ ~Rμν
ab ¼

δab½ðgμν − ∂μ∂ν
∂2 ÞRTðx − yÞ þ ∂μ∂ν

∂2 RLðx − yÞ�.
The method employed in the present work was

developed at length in Refs. [29,33,34], so it is shortly
described here. First, a Fierz transformation [36,42,43]
makes it possible to exploit the flavor structure of the

interaction above. It can be written as Ω ¼ F ðg2
2
jbμðxÞ

~Rμν
bcðx − yÞjcνðyÞÞ. The complete color singlet part of the

Fierz transformed interaction is written in terms of the
bilocal flavor-quark currents jqðx;yÞ¼ ψ̄ðxÞΓqψðyÞ, where
q ¼ s; p; si; ps; v; a; vs; as denotes respectively the fol-
lowing operators for flavor and Dirac indices: Γs ¼ I2:I4
(for the 2 × 2 flavor and 4 × 4 identities), Γp ¼ iγ5σi,
Γsi ¼ σ:I4, Γps ¼ iγ5I2, Γv ¼ γμσi, Γa ¼ γ5γ

μσi,
Γvs ¼ γμ, and Γas ¼ γ5γ

μ, σi being the flavor SU(2)
Pauli matrices. The complete set of resulting color singlet
nonlocal interactions is as follows:

Ω
αg2

≡ ½jSðx; yÞjSðy; xÞ þ jiPðx; yÞjiPðy; xÞ

þ jiSðx; yÞjiSðy; xÞ þ jPðx; yÞjPðy; xÞ�Rðx−yÞ

−
1

2
½jiμðx; yÞjiνðy; xÞ þ jiμAðx; yÞjiνAðy; xÞ

þ jμðx; yÞjνðy; xÞ þ jAμ ðx; yÞjAν ðy; xÞ�R̄μν
ðx−yÞ; ð2Þ

where α ¼ 4=9 for SU(2) flavor. The kernels above can be
written as

Rðx − yÞ≡ R ¼ 3RTðx − yÞ þ RLðx − yÞ;
R̄μνðx − yÞ≡ R̄μν ¼ gμνðRTðx − yÞ þ RLðx − yÞÞ

þ 2
∂μ∂ν

∂2
ðRTðx − yÞ − RLðx − yÞÞ: ð3Þ

The background field method (BFM) [44] is applied next by
splitting the quark field into quarks composing quark-
antiquark states including the chiral condensate, ψ2, and
the background constituent quark, ψ1. At the one loop level
it is enough to perform the shift of quark bilinears such as
ψ̄Γqψ → ðψ̄ΓqψÞ2 þ ðψ̄ΓqψÞ1. This splitting preserves chi-
ral symmetry and it is not associated to a simple mode
separation of low and high energies since this may be a
restrictive assumption. The effective interaction Ω is then
rewritten as Ω ¼ Ω1 þΩ2 þΩ12. When Ω2 is neglected it
yields the usual one loop BFM. However it is possible to
improve that by considering the auxiliary field method to
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introduce quark-antiquark light mesons and to incorporate
the DChSB with a large constituent quark effective mass in
the lines of the Nambu-Jona-Lasinio (NJL) model
[29,30,33,34]. The following set of bilocal auxiliary fields
(a.f.) is introduced by means of unitary functional integrals
multiplying the generating functional: Sðx; yÞ; Piðx; yÞ;

Siðx; yÞ; Pðx; yÞ; Vi
μðx; yÞ; Vμðx; yÞ; Āi

μðx; yÞ, and Āμðx; yÞ.
Each of these fields corresponds to a specific channel Γq of
the color singlet Fierz transformed interaction Ω above. The
following normalized Gaussian integrals multiply the gen-
erating functional:

1 ¼ N
Z

D½S�D½Pi�D½Si�D½P�e−i
2

R
x;y

Rα½ðS−gjSð2ÞÞ2þðPi−gjPi;ð2ÞÞ2�þ½ðSi−gjSi;ð2ÞÞ2þðP−gjPð2ÞÞ2�

×
Z

D½Vi
μ�
Z

D½Āi
μ�e−

i
4

R
x;y

R̄μνα½ðVi
μ−gj

i;ð2Þ
V;μ ÞðVi

ν−gj
i;ð2Þ
V;ν Þ�e−

i
4

R
x;y

R̄μνα½ðĀi
μ−gj

i;ð2Þ
μ

AÞðĀi
ν−gj

i;ð2Þ
ν

AÞ�

×
Z

D½Vμ�
Z

D½Āμ�e−
i
4

R
x;y

R̄μνα½ðVμ−gj
ð2Þ
V;μÞðVν−gj

ð2Þ
V;νÞ�e−

i
4

R
x;y

R̄μνα½ðĀμ−gj
ð2Þ
μ

AÞðĀν−gj
ð2Þ
ν

AÞ�
: ð4Þ

In these integrals there are shifts of each of the auxiliary
fields that provide interactions that cancel out completely
the interactionΩ2. All these shifts yield unity Jacobian. The
structureless meson field limit can be reached by expanding
the bilocal auxiliary fields in an infinite basis of local fields
and by keeping only the lowest energy states modes [35].
This yields the local limit interactions for punctual light
mesons. The scalar-pseudoscalar sector has been consid-
ered extensively within this approach in Refs. [30,33,35,36]
and it is neglected from here on, except for the fact that
scalar auxiliary fields generate the quark effective mass.
The specific vector/axial mesons couplings to the valence
quarks reduce to

ψ̄2ðxÞΞvðx; yÞψ2ðyÞ

≃ −ψ̄2ðxÞ
γμ

2
½FvσiðVi

μðxÞ þ γ5Āi
μðxÞÞ

þ FvsðVμðxÞ þ γ5ĀμðxÞÞ�δðx − yÞψ2ðyÞ; ð5Þ

where Fv, Fvs produce the correct canonical normalization
of the vector/axial mesons field, ϕq

0 ¼ Fqϕq for each of the
channels q, respectively for rho and A1 mesons and for ω
and the axial isosinglet f1 as chiral partners.
By performing a Gaussian integration of the valence

quark field, the resulting determinant can be written, by
means of the identity detA ¼ exp Tr lnðAÞ, as

Seff ¼ Tr ln f−iS−1c;qðx − yÞg; ð6Þ

S−1c;qðx − yÞ≡ S−10;cðx − yÞ þ Ξsðx − yÞ þ
X
q

aqΓqjqðx; yÞ

¼ S−1c ðx − yÞ þ
X
q

aqΓqjqðx; yÞ; ð7Þ

where Tr stands for traces of all discrete internal indices and
integration of spacetime coordinates and Ξsðx − yÞ stands
for the coupling of valence quark to the scalar-pseudoscalar

fields presented in [30,33]. Their only contribution emerges
for the quark effective mass due to the DChSB. The quark
kernel can be written as S−10;cðx − yÞ ¼ ði=D −mÞδðx − yÞþ
Ξvðx − yÞ, where m is so far the current quark mass. In
expression (7) the following quantity with all the constitu-
ent quark currents has been used:

P
qaqΓqjqðx; yÞ

αg2

¼ 2Rðx − yÞ½ψ̄ðyÞψðxÞ þ iγ5σiψ̄ðyÞiγ5σiψðxÞ
þ ψ̄ðyÞσiψðxÞ þ iγ5ψ̄ðyÞiγ5ψðxÞ�
− R̄μνðx − yÞγμσi½ψ̄ðyÞγνσiψðxÞ þ γ5ψ̄ðyÞγ5γνσiψðxÞ�
− R̄μνðx − yÞγμ½ψ̄ðyÞγνψðxÞ þ γ5ψ̄ðyÞγ5γνψðxÞ�: ð8Þ

The absence of a tensor current ψ̄σμνψ goes back to the
Fierz transformed quark-quark interaction above. Although
this tensor structure might also contribute to vector mesons
structure and interactions [45]. However the mechanism by
which it is generated, as well as the tensor couplings to
vector mesons and photons, is not the one addressed in the
present work. The auxilary fields are undetermined so far
and the saddle point equations for expression (6), with the
remaining Lagrangian terms from the introduction of the
auxiliary fields, yield usual gap equations. By denoting
each of the eight meson fields as ϕq for the channel q, the
gap equations are obtained from the corresponding saddle
point equations, ∂Seff∂ϕq

¼ 0. These equations for the NJL

model and for the model (1) have been analyzed in many
works in the vacuum or under a finite energy density, in
particular, in the presence of a finite external magnetic
field, Aμ ¼ B0ð0; 0; x; 0Þ. At zero magnetic field the scalar
auxiliary field is the only one that can be different from 0 in
the vacuum and indeed its nontrivial solution for a gluon
kernel with enough strength in the infrared regime has been
extensively investigated. The resulting scalar mean field
corresponds to the quark-antiquark condensate whose value
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is strongly dependent on the magnetic field. At zero
temperature, magnetic catalysis can increase considerably
quark effective mass. These contributions are incorporated
into the quark kernel (7) by defining the quark effective
mass. The redefined quark kernel can be written as

S−10;cðx − yÞ ¼ ði=D −M�Þδðx − yÞ þ Ξvðx − yÞ: ð9Þ

This kernel, and therefore the gap equations, are B0

dependent and the resulting values for the effective quark
mass M�ðB0Þ are considered in the numerical estimations
in Sec. III A. Below only the constituent quark and vector/
axial mesons are considered.

A. Expansion of the determinant

From expression (6) the quark kernel coupled to the
photon and vector mesons fields can be factorized. It gives
origin to a term of the type IV ¼ 1

2
TrðS̄−10;cS−10;cÞ. This term

contains all the terms exclusively with vector mesons and
photon fields including corrections to the photon effective
action. These terms lead to an effective action of the type of
the celebrated Euler Heisenberg effective action [46–48]. In
Ref. [4] the chiral vector mesons sector (ρ and A1), without
quarks and photon fields, was investigated. These two
sectors are not addressed in the present paper. Other limits
of this determinant were investigated for example in
[29,34] where respectively constituent quark effective
interactions were presented considering higher order terms
and magnetic field dependent corrections to the usual NJL
and vector-NJL interactions. In [13] a set of constituent
quark-vector/axial mesons couplings has been presented
and the emergence of gauge-type vector mesons couplings
to constituent quarks were found along the lines of the
Sakurai proposal [2]. Below only effective couplings of the
photon field to constituent quarks and vector/axial mesons
are addressed. For this, the mesons fields and the constitu-
ent quark component are treated as background fields.
The leading terms in the very long-wavelength local limit

for zero momentum transfer are the following:

IAV ¼ gqA

�
AμðxÞjμ3ðxÞ þ

1

3
AμðxÞjμðxÞ

�
; ð10Þ

where the effective coupling constant was resolved by
calculating the traces in color, Dirac and isospin indices,

gqA ¼ −i4Ncd1e × ðαg2ÞTr0ððS0ðkÞS0ðkÞ ¯̄RðkÞÞÞ; ð11Þ

where dn ¼ ð−1Þnþ1=ð2nÞ, Tr0 stands for momentum
integration, S−10 ðkÞ ¼ ðk −M�Þ by implicitly assuming
regularization procedure, and ¯̄RðkÞ ¼ R̄μνðkÞgμν. The dou-
ble parenthesis denotes the integration for the zero
momentum limit of the corresponding form factor. These
photon-constituent quark couplings can be associated to

vector meson dominances for the neutral mesons ρ0 and ω.
The factor 1=3 is the usual one in quark models; see for
example [49].
By considering the canonical definition of all the

vector and axial mesons, four types of photon-vector/axial
meson-constituent quark emerge. The leading terms for
each of them, in the long-wavelength local limit with zero
momentum transfer and by omitting the spacetime depend-
ence of the mesons and photon fields and quark currents,
are given by

IFF ¼ 2g1iϵij3ðFμνG
μν
i jjp þ FμνF

μν
i jjsÞ; ð12Þ

IFFm¼g1½FμνF
μν
3 jsþFμνF μνj3sþFμνG

μν
3 jpþFμνGμνj3p

þ1

3
ðFμνGμνjpþFμνF μνjsþFμνG

μν
i jipþFμνF

μν
i jisÞ�;
ð13Þ

IVA ¼ 2g2iϵij3ðAρV
ρ
i j

j
s þ AρĀ

ρ
i j

j
pÞ; ð14Þ

IVAm ¼ g2

�
AρĀ3

ρjp þ AμĀμj3p þ AνV3
νjs þ AνVνj3s

þ 1

3
ðAνVνjS þ AμĀμjp þ AρV

ρ
i j

i
S þ AμĀi

μjipÞ
�
;

ð15Þ

IVF ¼ g3iϵij3ðFρδV
ρ
i j

δ
j;V þ FρδĀ

ρ
i j

δ
j;AÞ; ð16Þ

IAF ¼ g3iϵij3ðF i
ρδA

ρjδj;V þ Gi
ρδA

ρjδj;AÞÞ; ð17Þ

where the following effective coupling constants have been
defined as a zero momentum limit of their corresponding
form factors,

g1¼−i6M�Ncd1eðαg2ÞTr0ðð ~S0ðkÞ ~S0ðkÞ ~S0ðkÞRðkÞÞÞ; ð18Þ

g2 ¼ −i6M�Ncd1eðαg2ÞTr0ðð ~S0ðkÞ ~S0ðkÞRðkÞÞÞ; ð19Þ

g3 ¼ M�g1; ð20Þ

where it was defined ~S0 ¼ 1
k2−M�2. The couplings IFF, IVA,

IVF, and IAF are the leading photon couplings to vector and
axial and corresponding constituent quark currents by their
resulting electrical charges. The effective couplings IFFm
and IVAm describe different channels of mixing interactions
(or vector meson dominances) induced or mediated by
constituent quark currents. In a first analysis, in the large
effective mass limit, the effective couplings in IVA and IVAm
(with g2) might be seen as the leading ones. However, it is
shown in the next section that this might not happen
depending on the electromagnetic field configuration. For a
weak magnetic field it becomes of the same order as the
leading dipolar couplings IFF and IFFm (with g1). These
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photon couplings break chiral and isospin symmetry as
expected.
The Feynman diagrams for these effective couplings are

shown in Fig. 1. Diagram (1a) can be seen as a vector
meson dominance process from expression (10); diagrams
(1b)–(1e) correspond to the effective interactions of
expressions (12)–(17). They are rather related to the zero
momentum limit of vector meson photoproduction; how-
ever they can also be seen as vector meson dominances or
mixings mediated or induced by a corresponding constitu-
ent quark current.

III. WEAK MAGNETIC FIELD DEPENDENT
EFFECTIVE COUPLINGS

By considering a weak magnetic field along the ẑ
direction, with Aμ ¼ ð0; 0; B0x; 0Þ, it can be effectively
incorporated in the meson-quark coupling constants. For
that, some of the expressions above must be recalculated.
From expression (10) the free quark vector current receives
the following asymmetric term from the coupling to the
magnetic field:

IAV ¼ igBqA

�
jy3 þ

1

3
jy
�
; ð21Þ

where the following leading contribution to the effective
parameter was defined,

gBqA ¼ −i4Ncd1ðeB0Þαg2Tr0
��

−
∂
∂kx

~S2ðkÞ ¯̄RðkÞ
��

; ð22Þ

being however trivially 0 due to rotational invariance for
this zero momentum exchange limit.

For the leading photon vector or axial meson and
constituent quark effective interactions (12)–(17) the
following B0-dependent anysoptropic vector meson-con-
stituent quark couplings emerge,

IFF → 2gB1 iϵij3½Gxy
i jjp þ F xy

i jjs�; ð23Þ

IFFm → gB1

�
F xy

3 js þ F xyj3s þ Gxy
3 jp þ Gμνj3p

þ 1

3
ðGxyjp þ F xyjs þ Gxy

i jip þ F xy
i jisÞ

�
; ð24Þ

IVA → 2gB2 iϵij3½Āy
i j

j
p þ Vy

i j
j
S�; ð25Þ

IVAm → gB2

�
Ā3
yjp þ Āyj3p þ V3

yjs þ Vyj3s

þ 1

3
ðVyjS þ Āyjp þ Vy

i j
i
S þ Āi

yjipÞ
�
; ð26Þ

IVF → gB1

3 iϵij3½Vx
i j

y
j;V þ Āx

i j
y
j;A�; ð27Þ

IAF → gB2

3 iϵij3½F i
yδj

δ
j;V þ Gi

yδj
δ
j;AÞ�; ð28Þ

FIG. 1. In these diagrams, the wavy line with a full dot is a
(dressed) nonperturbative gluon propagator, a solid line repre-
sents a constituent quark, the single wavy line stands for a photon,
the wavy line with a triangle in the vertex corresponds to the
photon strength tensor Fμν, the dashed-dotted line represents a
vector or axial meson Vα

μ, and the dashed-dotted line with a
triangle in the vertex stands for the Abelian strength tensor F α

μν of
a vector or axial meson α.

TABLE I. In the first column the values considered for the
quark effective mass are displayed; in the second column the
values for the magnetic field in terms of the quark effective
mass and of the pion mass ðeB0

M�2 ;
eB0

m2
π
Þ are displayed. The gluon

propagator is indicated in the next column: DI and DII are the
gluon propagators respectively from Refs. [37,38] and Ref. [40].
In the fourth column the gauge-type vector/axial meson couplings
to quark currents are presented from Ref. [13]. In the fifth and
sixth columns, results from the expressions (19) and (31) are the
second one divided by factor ðeB0Þ=M�2.

M� ðeB0

M�2 ;
eB0

m2
π
Þ DiðkÞ gr1 g2 gB1

3 =ðeB0

M�2Þ
(GeV) � � � � � � � � � � � � (GeV−1) � � �
0.33 (0, 0) DI 9.3 5.6 1.7
0.38 (0.2, 1.5) DI 8.2 4.7 1.8
0.45 (0.5, 5.2) DI 6.8 3.6 1.8
0.33 (0, 0) DII 1.1 0.3 0.19
0.38 (0.2, 1.5) DII 0.9 0.3 0.19
0.45 (0.5, 5.2) DII 0.8 0.2 0.19
0.22 (0, 0) DI 12.7 8.6 1.4
0.25 (0.2, 0.6) DI 11.6 7.7 1.6
0.28 (0.5, 2) DI 10.7 6.8 1.6
0.22 (0, 0) DII 1.5 0.6 0.19
0.25 (0.2, 0.6) DII 1.3 0.5 0.19
0.28 (0.5, 2) DII 1.2 0.4 0.19
0.07 (0, 0) DI 20.3 14.7 0.5
0.085 (0.2, .08) DI 19.4 14.0 0.6
0.10 (0.5, 0.3) DI 18.5 13.3 0.7
0.07 (0, 0) DII 2.4 0.9 0.06
0.085 (0.2, .08) DII 2.3 0.9 0.08
0.10 (0.5, 0.3) DII 2.1 0.9 0.1
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where the following effective coupling constants have been
defined in the long-wavelength limit for zero momentum
transfer:

gB1 ¼ −i6M�Ncd1ðeB0Þðαg2ÞTr0ðð ~S0ðkÞ ~S0ðkÞ ~S0ðkÞRðkÞÞÞ;
ð29Þ

gB2 ¼−i6M�Ncd1ðeB0Þðαg2ÞTr0
��

− ~S0ðkÞRðkÞ
∂
∂kx

~S0ðkÞ
��

;

ð30Þ
gB1

3 ¼ i6M�2Ncd1ðeB0Þðαg2ÞTr0ðð ~S0ðkÞ ~S0ðkÞ ~S0ðkÞRðkÞÞÞ;
ð31Þ

gB2

3 ¼ i6M�2Ncd1ðeB0Þðαg2Þ

× Tr0
��

− ~S0ðkÞ ~S0ðkÞRðkÞ
∂
∂kx

~S0ðkÞ
��

: ð32Þ

The coupling constants gB2 and gB2

3 are 0 in the zero
momentum transfer limit due to rotational invariance.
The couplings with gB1

3 , gB2

3 are momentum independent
and dependent anysotropic corrections to the gauge-
type coupling. These corrections arise in the plane
orthogonal to the magnetic field, and this can be more
conveniently written for a magnetic field given by
Aμ ¼ ð0;−y; x; 0ÞB0=2. This magnetic field makes explicit
the equivalence between the orthogonal components x and
y. These effective coupling constants do not have all the
same dimensions; however some approximated or exact
ratios in the limit of very large quark effective mass can be
obtained such as

gB1
gB1

3

∼
1

M� ;
gB2

3

gB2
¼ 1

M� : ð33Þ

The second of these ratios has a gauge invariant form. The
largest strengths of the corrections to the vector meson-
constituent quarks effective couplings due to a weak
magnetic field appear in the channels IFF, IVA, and IVF,
being the first and the third dipolar photon couplings.
It is interesting to compare these magnetic field depen-

dent couplings constants with the corresponding gauge-
type coupling constants of vector and axial mesons to
constituent quarks in the vacuum as presented in Ref. [13].
Consider expressions (14) and (15) of [13] written in terms
of the canonically defined vector fields given by

Lv−q ¼ gr1ðVμ
i ðxÞjV;iμ ðxÞ þ Āμ

i ðxÞjA;iμ ðxÞÞ
þ gv1ðVμðxÞjμðxÞ þ ĀμðxÞjμAðxÞÞ; ð34Þ

where the dimensionless coupling constants were found
to be

gr1 ¼ gv1 ¼ 4id1Ncðαg2ÞTr0ððS̄0ðkÞS0ðkÞ ¯̄RðkÞÞÞ: ð35Þ

A simple comparison with expression (11) yields a relation
with the electromagnetic coupling, 2gqA ¼ egr1. An
approximated estimate of the relative strength of the weak
B0-induced anisotropic correction to charged vector mes-
ons gauge-type coupling can be written as

gB1

3

gr1
∼
3

4

eB0

M�2 : ð36Þ

A. Numerical estimations and form factors

In the table below numerical values for the effective
coupling constants gB1

3 and g2, expressions (31) and (19),
are shown respectively in the fifth and sixth columns and
compared to the resulting values of the gauge-type coupling
gr1 from Ref. [13]—in the fourth column of the table. The
quark effective mass dependence on the weak magnetic
field was taken into account and different values are shown
in the first column of the table: values at zero magnetic
field, M�ðB0 ¼ 0Þ ¼ 0.33, 0.22, and 0.07 GeV, and the
corresponding values for a given magnetic field in the
second column, ðeB0Þ=M�2 and also ðeB0Þ=m2

π , where m2
π

is the squared pion mass in the vacuum (140 MeV). For
eB0 ≃ 5m2

π ≃ 1018 G being therefore expected to be size-
able in magnetars and eventually in heavy ion collisions
[23]. For not so small parameters eB0=M�2 ≥ 0.5 other
types of couplings might be expected to appear and the
strength of the effective couplings shown in the table might
receive further corrections. Two very different nonpertur-
bative gluon propagators were chosen to make clear the
ambiguity of the numerical estimates when calculating
the momentum integrals of the expressions above. These
integrations were carried out after a Wick rotation to
Euclidean momentum space. The first of the gluon propa-
gators, DIðkÞ, is a transversal component one from Tandy-
Maris [37,38] and the second one, DIIðkÞ, is an effective
longitudinal one by Cornwall [40] that also produces
dynamical chiral symmetry breaking. They are indicated
in the third column of the table. The following convention
was adopted: g2 ~RμνðkÞ≡Dμν

i ðkÞ where i ¼ I; II. The
values of anysotropic correction to the gauge-type coupling
constant gB1

3 were divided by ðeB0Þ=M�2 in such a way to
depend on the magnetic field only by means of the quark
effective mass. Therefore the values in the table must be
multiplied by ðeB0Þ=M�2 to yield their contributions to the
couplings. For the sake of comparison, the corresponding
values for the gauge-type coupling constant of vector
mesons to constituent quarks are included in the fourth
column extracted from Ref. [13]. In spite of the different
values due to the different gluon propagators and quark-
gluon coupling constants they have basically the same order
of magnitude of the usual vector and omega mesons to
nucleons [50]. All the results show the direct dependence on
the gluon propagator and on the strength of the quark-gluon
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coupling g2. It should be noted that the complete expression
for the momentum dependent effective couplings such as
g1 and g3 for IFF, IFFm, and IAF must be considered as
multiplied by the external vector meson momentum Q.
The complete momentum dependent expression for gqA

in (10) turns out to be the leading electric form factor for
the vector mesons,

gqAðQÞ ¼ Fρ
1ðQÞ ¼ 3Fω

1 ðQÞ: ð37Þ

A leading anisotropic correction due to the weak magnetic
field is obtained from IVF in (27) so that for the case of the
rho meson,

ΔBF
ρ
1ðQÞ ¼ 2

3
gB1

3 ðQÞ: ð38Þ

The expressions for the form factors gqA and gB1

3 ,
respectively from expressions (11) and (31), can be written
for nonzero momentum transfer as

gqAðQÞ ¼ 8eNcd1K0

Z
q
S0ðqÞS0ðqþQÞRð−qÞ; ð39Þ

gB1

3 ðQÞ
ðeB0=M�2Þ ¼ 6Ncd1K0M�4

Z
q

~S0ðqÞ ~S20ðqþQÞRð−qÞ:

ð40Þ

In Figs. 2 and 3 these form factors respectively for the
propagator DIðkÞ [37,38] and DIIðkÞ [40] are compared to
the vector-meson-nucleon form factor calculated in
Ref. [51] by considering the Faddeev equation. This last
form factor was interpolated by the following quadrupole

shape [51]: Fρ
1ðQ2Þ ¼ Fρ

1
ð0Þ

ð1þ Q2

Λ2
1;ρ

Þ3
, where Λ1;ρ ¼ 1.12 GeV,

where Fρ
1ð0Þ ¼ gρNN is in the range 4.82–6.4 in different

works. To allow the comparison of the strict momentum
dependence of the form factors the value of FV

1 ð0Þ ¼ 5

was multiplied by a numerical factor to coincide with the
numerical zero momentum form factors obtained in this
work. Therefore in Fig. 2 Fρ

1ð0Þ ¼ 2.8 and in Fig. 3
Fρ
1ð0Þ ¼ 0.21.
The rho meson quadratic charge radius with an aniso-

tropic correction due to the weak magnetic field is also
calculated. It can be written as

hr2ρiðB0Þ ¼ −6
dFE

1;ρðQ2Þ
dQ2

����
Q¼0

¼ −6
d

dQ2

�
gqAðQÞ þ 2

3
gB1

3 ðQÞ
�����

Q¼0

≡ hr2ρðM�Þi þ eB0

M�2Δhr2ρðM�Þi: ð41Þ

Numerical estimates are presented in Figs. 3 and 4 as
functions of eB0=M�2 respectively for the gluon propagators
of Refs. [37,38,40] for M�ðB0 ¼ 0Þ ¼ 330 MeV. In these
figures the symbol × indicates the leading correction

FIG. 2. The form factors gqAðQÞ and gB1

3 ðQÞ from expressions
(39) and (40) are shown for the gluon propagator DIðkÞ of
Refs. [37,38]. The thin solid line stands for gqAðQÞ with M� ¼
330 MeV (for B0 ¼ 0) and the dashed line for M� ¼ 380 MeV,
i.e., it corresponds to an effective mass at eB0 ¼ 0.2M�2. The thick
solid line represents the anisotropic correction gB1

3 ðQÞ for M� ¼
330 MeV whereas the dotted line stands for M� ¼ 380 MeV for
eB0 ¼ 0.2M�2. To add the anisotropic correction to the form factor
gqA it still must be multiplied by ðeB0Þ=M�2. The quadrupole fit of
the rho meson-nucleon electric form factor from Ref. [51] is shown
in the dotted-dashed line for FV

1 ð0Þ ¼ 2.8.

FIG. 3. The form factors gqAðQÞ and gB1

3 ðQÞ from expressions
(39) and (40) are shown for the gluon propagator DIIðkÞ of
Ref. [40]. The thin solid line gqAðQÞ stands for M� ¼ 330 MeV
(for B0 ¼ 0) and the dashed line for M� ¼ 380 MeV for
eB0 ¼ 0.2M�2. The thick solid line represents the anisotropic
correction gB1

3 ðQÞ for M� ¼ 330 MeV whereas the dotted line
stands forM� ¼ 380 MeV, i.e., it corresponds to an effective mass
at eB0 ¼ 0.2M�2. To add the anisotropic correction to the form
factor gqA it must be multiplied by ðeB0Þ=M�2. The quadrupole fit
of the rho meson-nucleon electric form factor from Ref. [51] is
shown in the dotted-dashed line for FV

1 ð0Þ ¼ 0.21.
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hr2ρðM�Þi ¼ −6 d
dQ2 gqAðQÞ and the symbol � represents the

total values of hr2ρiðB0Þ shown in expression (41). The large
variation of hr2ρiðB0Þ is exclusively due to the variation of the
magnetic field quark effective mass. The anisotropic con-
tribution Δhr2ρðM�Þi is already multiplied by ðeB0Þ=M�2 as
indicated in expression (41). The discrepancies between the
values obtained with the two different gluon propagators are
of the same order of magnitude as those presented in the
table. The experimental values are in the range of 0.28 →
0.56 fm2 from Refs. [52,53].

IV. FINAL REMARKS

In this work the leading simultaneous photon effective
couplings to light quark-antiquark vector/ axial mesons and
to constituent quarks were derived by departing from the
model given by (1) with QCD degrees of freedom. With
these couplings, that can also be associated to the zero
momentum limit of vector/axial mesons photoproduction
form factors, it was possible to define weak magnetic field
dependent constituent quarks couplings to vector/axial
mesons as corrections to gauge-type mesons couplings
to constituent quarks found in [13]. The leading terms in
expression (10) for the photon-constituent quarks coupling
correspond to vector meson dominance with a relative
factor 1=3 for the omega vector meson. Concerning
specifically the vector mesons-constituent quark simulta-
neous couplings to the photon, all the possible structures
and channels that do not depend on tensor quark currents,
but only on the currents considered, emerged in expressions
(12)–(17). Some of the terms present a simple electrical
charge coupling of the charged vector and axial mesons and

corresponding quark currents to the photon, and others
exhibit the structure of vector meson dominance due to
the interaction with a constituent quark current. All the
effective coupling constants were expressed in terms of the
parameters of the original Lagrangian (1) and components
of quark and nonperturbative gluon propagators. The
resulting effective couplings correspond to different chan-
nels and they break chiral and isospin symmetries as
expected. The effective coupling constants are proportional
to some power of the quark effective mass and therefore
they disappear in the chiral limit with the restoration of
chiral symmetry. Numerical estimates were presented
and they exhibit the uncertainty in the knowledge of the
gluon propagator and in the quark gluon (running) coupling
constant at a particular energy scale. This can be noted
in Table I and the discrepancies due to the used gluon
propagator are also noted in Figs. 2–5. Although an
external magnetic field has also been found to contribute
to the gluon propagator and gluon coupling to quarks
[24–28,54], these corrections were not considered in the
present work. Besides the numerical estimates, approxi-
mated and exact ratios between the effective couplings
were also calculated in the limit of large quark effective
mass. These ratios yield the relative order of magnitude.
Two form factors were also presented up to Q ¼ 1 GeV:
the rho electric form factor FV

1 ∝ gqA and an anisotropic

correction due to the weak magnetic field ΔFV
a ∝ gB1

3 . The
anisotropic contribution goes to 0 considerably faster than
the form factor itself as seen in Figs. 2 and 3. Finally the
corresponding rho electromagnetic radius with an aniso-
tropic correction was also presented in Figs. 4 and 5 for

FIG. 5. The rho squared electromagnetic radius (rqm) with the
gluon propagator DIIðkÞ from Ref. [40] for M�ðB0 ¼ 0Þ ¼
330 MeV is shown as a function of the magnetic field in terms
of the effective mass ðeB0Þ=M�2. The symbol × indicates the
leading correction hr2ρðM�Þi ¼ −6 d

dQ2 gqAðQÞ in expression (41)

and the symbols � represent the total values of hr2ρiðB0Þ with the
anisotropic correction ðeB0Þ=M�2.

FIG. 4. The rho squared electromagnetic radius (rqm) with the
gluon propagator DIðkÞ from Refs. [37,38] for M�ðB0 ¼ 0Þ ¼
330 MeV is shown as a function of the magnetic field in terms
of the effective mass ðeB0Þ=M�2. The symbol × indicates the
leading correction hr2ρðM�Þi ¼ −6 d

dQ2 gqAðQÞ in expression (41)
and the symbols � represent the total values of hr2ρiðB0Þ with the
anisotropic correction ðeB0Þ=M�2.
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both gluon propagators. The B0-dependent correction gB1

3

appears in the plane orthogonal to the weak magnetic field
(k̂). The most relevant contribution for the variation of both,
the leading contribution for hr2ρi and the anisotropic
correction, is due to the variation of the B0 dependence
of the quark effective mass. The anisotropic correction due
to the coupling gB1

3 in Figs. 4 and 5 is considerably smaller
but not negligible for eB0=M�2 ≥ 0.3. Higher order terms
of the expansion in powers of the electromagnetic field
were shown to provide a complete resummation for the
complete account of Landau orbits [55], being equivalent to
other methods for larger values of the magnetic field
[15,56]. Although the effective coupling constants are
not gauge invariant due to the explicit dependence on
the gluon propagator, it might be that the full gauge
invariant set of effective hadron couplings can only be

recovered by considering the complete set of physical
mechanisms for QCD, not only quark polarization per-
formed in the present work. It is interesting to note that the
effect of the auxiliary fields on quark-quark effective
interactions is of higher order, such as for example
quark-vector and axial mesons interactions due to pion
exchange. These corrections can be obtained by expanding
the quark determinant considered above up to the second
order in the a.f., which can be integrated out latter in a
saddle point approximation. These terms are of higher
order in Sn0 , i.e., n ≥ 2, and consequently numerically
smaller in the large quark mass limit.
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