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We have studied the J=ψϕ mass distribution of the Bþ → J=ψϕKþ reaction from threshold to about
4250 MeV, and find that one needs the contribution of the Xð4140Þ with a narrow width, together with the
Xð4160Þ which accounts for most of the strength of the distribution in that region. The existence of a clear
cusp at the D�

sD̄�
s threshold indicates that the Xð4160Þ resonance is strongly tied to the D�

sD̄�
s channel,

which finds a natural interpretation in the molecular picture of this resonance.

DOI: 10.1103/PhysRevD.97.014017

The recent measurement of the Bþ → J=ψϕKþ reaction
at LHCb [1,2] and analysis of the data has brought some
surprises as the claim of several new states that couple to
J=ψϕ. Another surprise is that the Xð4140Þ deduced from
the analysis, with quantum numbers JPC ¼ 1þþ, however
has a width Γ ≈ 83� 24þ21

−14 MeV, substantially larger than
that claimed in the former experiments CDF [3,4], LHCb
[5], CMS [6], D0 [7,8], and the average 19þ8

−7 MeV of the
PDG [9].
In this work, we show that the low invariant J=ψϕ mass

region, manifestly improvable in the fit of Refs. [1,2],
requires the contributions of a narrow Xð4140Þ and a wide
Xð4160Þ resonance which couples to J=ψϕ but is mostly
made by aD�

sD̄�
s molecule. As a consequence of analyticity

and driven by the molecular nature of Xð4160Þ, the J=ψϕ
mass spectrum develops a strong cusp around the D�

sD̄�
s

threshold that the fit of Refs. [1,2] cannot reproduce
because this mechanism is not contemplated in the ampli-
tude that is fitted to the data.
The Xð4140Þ has been the subject of much theoretical

work and multiple suggestions have been given about its
possible structure [10,11]. Here we briefly discuss the
works where claims of a D�

sD̄�
s molecule have been made.

Effective Lagrangians accounting for pseudoscalar and
vector exchange are used in Ref. [12], together with triangle

diagrams to connect D�
sD̄�

s to J=ψϕ. A state that could be
associated with Xð4140Þ was obtained with JPC ¼ 0þþ or
2þþ. In Ref. [13], a different strategy is followed involving
the Weinberg compositeness condition [14,15] and getting
the couplings from the binding energy of D�

sD̄�
s . Once

again 0þþ or 2þþ are the preferred quantum numbers. In
Ref. [16], vector meson exchange, together with the Bethe
Salpeter equations are used and once more a 0þþ structure
is favored. The possibility that the Xð4140Þ is a D�

sD̄�
s

molecule is also discussed in Ref. [17], where η exchange is
used to connect heavy mesons which have no u, d quarks,
although the authors admit that other ingredients apart
from η exchange would be needed to bind that state.
QCD sum rules have also contributed to this discussion
and in Refs. [18–21], although with uncertainties of about
100MeV in the mass, the possibility that the Xð4140Þ
corresponds to a D�

sD̄�
s molecule with 0þþ is pointed out.

A study of this state using η, ϕ, and σ exchange is done in
Ref. [22], concluding that the Xð4140Þ could correspond
to a D�

sD̄�
s molecule with 0þþ although 0−þ or 2þþ were

not excluded.
A thorough study of X states emerging from the

interaction of vector pairs, light-light (with light ≡
ρ;ω;ϕ; K�), light-heavy (with heavy≡D�, D�

s and
J=ψ ), and heavy-heavy, was done in Ref. [23] and several
states were obtained that could be associated to known
states. In particular, as relevant for the present work, a state
0þð2þþÞ at 4169 MeV was obtained, coupling mostly to
D�

sD̄�
s , that qualifies as a D�

sD̄�
s molecule and was asso-

ciated to the Xð4160Þ, not the Xð4140Þ. It is interesting to
see that the same conclusions are reached by using QCD
sum rules in Ref. [24]. The dynamics used in Ref. [23] is

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 97, 014017 (2018)

2470-0010=2018=97(1)=014017(6) 014017-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.97.014017&domain=pdf&date_stamp=2018-01-25
https://doi.org/10.1103/PhysRevD.97.014017
https://doi.org/10.1103/PhysRevD.97.014017
https://doi.org/10.1103/PhysRevD.97.014017
https://doi.org/10.1103/PhysRevD.97.014017
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


based on the local hidden gauge approach [25–27],
exchanging vector mesons and including contact terms.
The channels included in the interaction are D�D̄�, D�

sD̄�
s ,

K�K̄�, ρρ, ωω, ϕϕ, J=ψJ=ψ ;ωJ=ψ , ϕJ=ψ , ωϕ. It was
shown there that the couplings of the state to the D�

sD̄�
s

was dominant (gD�
s D̄�

s
¼ 18927 − 5524i MeV), followed

by the one to ϕJ=ψ (gJ=ψϕ ¼ −2617 − 5151i MeV). The
coupling to D�D̄� is gD�D̄� ¼ 1225 − 490i, sizeable
enough, which guarantees that this resonance can be seen
in theD�D̄� channel. Actually, this is the channel where the
Xð4160Þ was observed in the eþe− → J=ψX, X → D�D̄�
reaction [28]. The width of the Xð4160Þ is given by
Γ ¼ 139þ119

−61 � 21 MeV, much wider than that of the
Xð4140Þ. The work of Ref. [23] gives Γ ¼ 132�
25 MeV. It should be noticed that with the coupling
gJ=ψϕ found, one obtains a partial decay width ΓJ=ψϕ ≈
22 MeV. Hence, much of the width comes from other
channels, in particular the light-light ones that have much
phase space for the decay.
It is interesting to note in retrospect that the theoretical

works discussed above that associated the D�
sD̄�

s structure
to the Xð4140Þ could equally have associated it to the
Xð4160Þ. One can guess that the fact that light-light
channels were not considered rendered the width of the
state small and the association to the Xð4140Þ state was
more natural. Yet, today, with the quantum numbers of the
Xð4140Þ established to be 0þð1þþÞ [1,2,9], the association
of the 0þþ, 2þþ states to the Xð4140Þ can no longer be
supported, but the idea of the D�

sD̄�
s molecule associated to

the Xð4160Þ has much weight.
The dominant terms of the interaction in Ref. [23]

correspond to the exchange of light vectors, and they
can be obtained from the picture where the heavy quarks of
the vector components are spectators, and only light quarks
are operative in the interaction [29,30]. This allows us to
obtain this interaction from the SU(3) light sector, con-
cretely from the K̄N → K̄N amplitude where the s quark
of the K̄ is also a spectator and ϕ is not exchanged, and at
the same time, it guarantees that heavy quark symmetry is
fulfilled since the heavy quarks are spectators in the
interaction. Transitions from heavy-heavy to light-light
require the exchange of heavy vectors leading to subdomi-
nant terms in the inverse of the heavy quark mass counting,
which are calculated using SU(4) symmetry and one
accepts as being model dependent. From this perspective,
wewill allow the total width of theXð4160Þ coming from the
light-light channels to be somewhat different than the one
obtained in Ref. [23] when we fit the data of Refs. [1,2].
Next we proceed to apply our approach to the data of

Refs. [1,2] which we consider from threshold up to about
4250 MeV, above the D�

sD̄�
s threshold. The data show a

narrow peak around 4140 MeV, followed by one broader
structure around 4160–4170 MeV, and a remarkable cusp
structure around the D�

sD̄�
s threshold. The presence of a

cusp at the D�
sD̄�

s threshold in the J=ψϕ mass distribution
clearly indicates a link of the resonance responsible for the
J=ψϕ spectrum with the D�

sD̄�
s channel. This link can be

provided assuming that the Xð4160Þ is mostly responsible
for this spectrum.
The next step requires us to discuss how aD�

sD̄�
s resonance

is produced in the weak decay B− → K−D�
sD̄�

s (we take the
complex conjugate reaction to dealwithb quark rather than b̄
quark). The dominant process at the quark level proceeds
as shown in Fig. 1, involving external emission [31]. This
allows us immediately to obtain the B− → K−D�

sD̄�
s ampli-

tude in the region around the Xð4160Þ resonance as depicted
in Fig. 2. Obviously in the neighborhood of the resonance
the tree level term of Fig. 2(a) is small compared to the
resonant term, but we keep it in the calculations. For the
production of J=ψϕ with this mechanism, the tree level
of Fig. 2(a) does not contribute and then we are led to the
diagram of Fig. 3.

FIG. 1. Microscopic quark level production of K−D�
sD̄�

s in B−

decay.

(a) (b)

FIG. 2. Mechanism for B− → K−D�
sD̄�

s in the presence of the
Xð4160Þ resonance.

FIG. 3. Mechanism for B− → K−J=ψϕ driven by the Xð4160Þ
resonance.
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The B− → K−J=ψϕ reaction can also proceed through
the mechanism of Fig. 4 involving internal conversion.
Yet, the internal conversion is penalized by color factors
with respect to the external emission of Fig. 1, and hence
this term, or rescattering of this term like that in Fig. 3,
but with J=ψϕ intermediate state instead of D�

sD̄�
s , which

would involve the extra factor gJ=ψϕ=gD�
s D̄�

s
versus the

amplitude of Fig. 3, can be safely neglected.
We can then write the amplitudes for the B− → K−J=ψϕ

and B− → K−D�
sD̄�

s . The resonance Xð4160Þ obtained
in Ref. [23] is a JPC ¼ 2þþ state with L ¼ 0 in D�

sD̄�
s .

To match angular momentum in the reaction, we need a
D-wave in the K− and the amplitude is thus of the type,

ttreeB−→K−D�
s D̄�

s
¼ A

�
⃗ϵ · k⃗⃗ϵ0 · k⃗ −

1

3
k⃗2 ⃗ϵ · ⃗ϵ0

�
; ð1Þ

where ⃗ϵ, ⃗ϵ0 are the polarization vectors of D�
s and D⃗�

s , and
we evaluate it in the frame of reference where the D�

sD̄�
s

system is at rest. A in Eq. (1) is an unknown factor that will
be fitted to the data. The sum over polarizations of jtj2 is

X
pol

jttreeB−→K−D�
s D̄�

s
j2 ¼ 2

3
jk⃗j4; ð2Þ

and then for the tree level term of Fig. 2(a) we obtain

dΓ
dMinvðD�

sD̄�
sÞ

¼ 1

ð2πÞ3
1

4M2
B−

2

3
jk⃗j4jk⃗0j ~pD�

s
jAj2; ð3Þ

where k⃗, as mentioned before, is the K− momentum in the
D�

sD̄�
s rest frame, k⃗0 theK− momentum in the B− rest frame,

and ~pD�
s
the D�

s momentum in the D�
sD̄�

s rest frame.
If we want to get the mass distribution for the mecha-

nisms depicted in Fig. 2 for D�
sD̄�

s production including the
Xð4160Þ resonance, we make the following replacement:

A → A½1þ GD�
s D̄�

s
ðMinvðD�

sD̄�
sÞÞ

× tD�
s D̄�

s→D�
s D̄�

s
ðMinvðD�

sD̄�
sÞÞ�: ð4Þ

To obtain the mass distribution for J=ψϕ through the
mechanism of Fig. 3, we make the following replacement
in Eq. (3):

A → A ×GD�
s D̄�

s
ðMinvðJ=ψϕÞÞ

× tD�
s D̄�

s→J=ψϕðMinvðJ=ψϕÞÞ; ð5Þ

and k, k0 are the same K− momenta as before suited to the
situation of having J=ψϕ in the final state rather than
D�

sD̄�
s . Similarly, ~pD�

s
in Eq. (3) is replaced by ~pϕ, which is

the ϕ momentum in the J=ψϕ rest frame.
The G function appearing in Eqs. (4) and (5) is the loop

function for two intermediate D�
sD̄�

s . To avoid potential
dangers using the dimensional regularization as pointed out
in Ref. [32], we use the cutoff method with qmax fixed such
as to give the same value as G with dimensional regulari-
zation used in Ref. [23] at the pole position.
The amplitudes appearing in Eqs. (4) and (5) are given in

terms of the gD�
s D̄�

s
and gJ=ψϕ obtained in Ref. [23] by

tD�
s D̄�

s→D�
s D̄�

s
¼

g2D�
s D̄�

s

M2
invðD�

sD̄�
sÞ −M2

X þ iMXΓX
; ð6Þ

tD�
s D̄�

s→J=ψϕ ¼ gD�
s D̄�

s
gJ=ψϕ

M2
invðJ=ψϕÞ −M2

X þ iMXΓX
; ð7Þ

where

ΓX ¼ Γ0 þ ΓJ=ψϕ þ ΓD�
s D̄�

s
; ð8Þ

with Γ0 accounting for the channels of Ref. [23] not
explicitly considered here (we shall fit that to the data as
discussed above), and

ΓJ=ψϕ ¼ jgJ=ψϕj2
8πM2

X
~pϕ; ð9Þ

ΓD�
s D̄�

s
¼ jgD�

s D̄�
s
j2

8πM2
X

~pD�
s
ΘðMinvðD�

sD̄�
sÞ − 2MD�

s
Þ: ð10Þ

Equations (6) and (7) together with Eqs. (9) and (10)
incorporate the Flatté effect for the opening of the impor-
tant D�

sD̄�
s channel above the D�

sD̄�
s threshold.

To account for the production of J=ψϕ via the
1þþ Xð4140Þ resonance, we take the suitable operator
with the kaon in P-wave ð⃗ϵJ=ψ × ⃗ϵϕÞ · k⃗, and the mass
distribution coming from this source is given by Eq. (3)
with the following substitution:

MinvðD�
sD̄�

sÞ → MinvðJ=ψϕÞ;
2

3
jk⃗j4 → 2jk⃗j2; ~pD�

s
→ ~pϕ;

A →
BM4

Xð4140Þ
M2

invðJ=ψϕÞ −M2
Xð4140Þ þ iMXð4140ÞΓXð4140Þ

; ð11Þ

with B a parameter to be fitted to the data. Here we take
MXð4140Þ ¼ 4132 MeV, since this is the peak of theXð4140Þ

FIG. 4. Tree level diagram to produce the B− → K−J=ψϕ
decay involving internal conversion.
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structure used in Refs. [1,2], and ΓXð4140Þ ¼ 19 MeV. In
Refs. [1,2] the authors use both a Breit-Wigner and a
structure incorporating the DsD̄�

s threshold, as suggested
in Ref. [33].
The freedom to fit the data are the parametersA,B, andΓ0.

A suitable fit to the data is obtained as shown in Fig. 5 with
Γ0 ¼ 65.0� 7.1 MeV (at 68% confidence level), which
together with ΓJ=ψϕ ≃ 22.0 MeV would provide ΓXð4160Þ ≃
87.0� 7.1 MeV which is compatible with the experimental
width from the PDG of Γ ¼ 139þ111

−61 � 21 MeV. With the
fitted parameters, our results (red solid curve, labeled as
“Full”) are in good agreement with the experimental data
at low J=ψϕ invariant masses, and we also present the
uncertainties of our results in Fig. 5. As we can see in the
figure, we obtain a contribution from the Xð4140Þ (blue
dotted curve) that is dominant at low invariant masses, and is
responsible for the peak observed in the experiment around
4135MeV. TheXð4160Þ (green dashed curve) is responsible
for most of the strength and produces a broader peak around
4170 MeV (we take the mass MXð4160Þ ¼ 4169 MeV as
obtained inRef. [23]).And finally a cusp appears at theD�

sD̄�
s

threshold as it shows up in the experiment. This cusp comes
from the factor GD�

s D̄�
s
ðMinvÞ and reflects the analytical

structure of this functionwith a discontinuity of the derivative
at threshold. One must stress that this factor appears here as
a consequence of analyticity, with a large strength due to
theD�

sD̄�
s molecular structure of the Xð4160Þ. In an analysis

like the one of Refs. [1,2], where a sum of amplitudes for
resonance excitation and some background are fitted to the
data, this factor is not considered, and as a consequence the
cusp aroundD�

sD̄�
s in the data is missed in the fit. To quantify

the improvement in the fit we compute our χ2 up to the datum
of 4240MeV, and compare it with the one of Refs. [1,2]. We
obtained χ2 ¼ 15.3 versus χ2 ¼ 22.8 inRefs. [1,2]. Yetmore
significative than this is the fact thatweobtain the structure of
the peaks in good agreement with experiment, while this is
not the case in Refs. [1,2].
The Flatté effect is visible in Fig. 5 as a sharp fall down of

the invariant mass distribution above the D�
sD̄�

s threshold.

From there on, our fit starts diverting from experiment, but
so it should, since definitely, other contributions from
resonances and backgrounds as discussed in Refs. [1,2],
should be considered. Our point is that the lower part of
the spectrum can be obtained from the contribution of the
Xð4140Þ ð1þþÞ andXð4160Þ ð2þþÞ resonances, theXð4140Þ
is narrow, like determined in most experiments, and the cusp
of the distribution at the D�

sD̄�
s threshold indicates that the

resonance to which the J=ψϕ is coupled in that region is
strongly tied to the D�

sD̄�
s channel.

We have conducted the same fit using MXð4140Þ ¼
4140 MeV (pink dash-dotted curve in Fig. 5, labeled as
“Full*”), and the fit is acceptable but slightly worse in the
first several points of the spectrum.
We should note that, some added 2þþ structures were not

compelling in Refs. [1,2], but once again, our point is that
the 2þþ state that we add comes in the form of an amplitude
Gt that cannot be accommodated by a Breit-Wigner
amplitude as in Refs. [1,2].
To finish the work, and as a test of the explanation given

here, we present in Fig. 6 theD�
sD̄�

s mass distribution above
threshold obtained with the same parameters as in Fig. 5.
This should allow a quantitative comparison with the J=ψϕ
mass distribution of Fig. 5, once this experiment is done,
which we very much encourage.
As we can see in Fig. 6, there is a peak close to threshold,

which should not be misidentified with a new resonance,
but it is the reflection of the Xð4160Þ which in our fit has
the mass at 4169 MeV. The strength at the peak is about
twice the one of the X(4140) in the J=ψϕ distribution,
which guarantees its observability. The B− → K−D�

sD̄�
s

mode is not reported in the PDG, but many modes with one
D�

s already exist. The present work and the prediction, tied
to the interpretation given for the B− → K−J=ψϕ spectrum,
should act as an incentive to measure this reaction and learn
about properties of the Xð4140Þ and Xð4160Þ.
Since there are more observables in the experiment, like

angular distributions, and other information not available to
us, it would also be most convenient that the present ideas
and the new algorithm for the analysis are implemented in
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future reanalyses of the LHCb data. This could also affect
other cases. The openness of the LHCb Collaboration to
consider these facts [34] opens new windows to further
learn about the dynamics of hadrons and their nature.
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