
 

Positivity of the real part of the forward scattering amplitude
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We prove the general theorem that the real part of the crossing even forward two-body scattering
amplitude is positive at sufficiently high energies if, above a certain energy, the total cross section increases
monotonically to infinity at infinite energy.
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I. HISTORICAL INTRODUCTION

In 1965, Khuri and Kinoshita published a series of
interesting papers on the real part of the forward scattering
amplitude obtained via dispersion relations from the
imaginary part which is proportional to the total cross
section [1]. Among their results was the prediction that, if
the Froissart bound is saturated, i.e., if the total cross
section behaves at high energies like ðln sÞ2 where s is the
square of the center-of-mass energy [2], then the real part is
positive at high energies. Moreover, the ratio ρ of the real
part to the imaginary part would behave as π

ln s at high
energies. At that time, nobody thought that the total cross
section would increase at high energies. Instead, the general
belief was that the Froissart-Martin bound is an upper
bound and that all total cross sections would approach
constants or decrease to zero at high energies. Earlier, in
1960, Gribov showed that it is not possible to have at the
same time a total cross section approaching a finite nonzero
limit and a diffraction peak approaching a fixed shape as a
function of the momentum transfer [3]. Instead, he pre-
ferred the total cross section to decrease to zero. In 1962, it
was discovered that the diffraction peak for proton-proton
scattering was shrinking [4].
In view of this situation, Cheng and one of us (TTW)

decided to learn about the high-energy behavior of total
cross sections by studying quantum gauge field theory,
specifically by summing the leading terms of the perturba-
tion series [5]. It was an Abelian massive gauge theory.

The perturbation character disappears in the summation.
From the point of view of physics, the advantage of using
quantum field theory is that the following three basic
features are all satisfied: (1) relativistic kinematics, (2) uni-
tarity, and (3) particle production [6]. The result found this
way in 1970 was a surprise: the total cross section must
increase at high energies, essentially saturating the Froissart-
Martin bound, and the real part of the forward scattering
amplitude does have the Khuri-Kinoshita behavior. At that
time, themeasured proton-proton total cross sectionwas still
decreasing, while the real part of the forward scattering
amplitudewas still negative but increasing rapidly [7]. Three
years later, two experiments at the Intersecting Storage Ring
(ISR) at CERN showed that the proton-proton total cross
section did turn around and start rising [8]. At CERN, after a
talk byAmaldi on these experimental results, one of us (AM)
“predicted” that the real part would become positive.
Actually it was a guess at that time; a rigorous proof is to
be presented in the present paper. A few years later, in 1977,
an experiment at CERN showed that the real part was indeed
becoming positive [9]. Years later, the rise of the total cross
section and the positively of the real part were both
confirmed [10,11].
Using the shrinking of the width of the diffraction peak

and the rise of the total cross section, one of us (AM)
proved in 1997 that, if the differential cross section at fixed
negative t, for −T < t < 0, decreases to zero sufficiently
rapidly and if the total cross section increases to infinity,
then the real part must change sign at least once in this
interval −T < t < 0 [12]. Here t is as usual the negative of
the square of the momentum transfer and T a positive
number arbitrarily small. It is in fact in reexamining this
theorem, the proof of which still seems rather mysterious,
that we were led to study again the problem of the real part
in the forward direction t ¼ 0. Various results were
obtained, the most striking one being the one presented
in this paper. However, these considerations have failed to
lead to an alternative proof of the result of reference [12].
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II. THEOREM ON THE REAL
PART AND ITS PROOF

The measurement of the real part of the scattering
amplitude in the forward direction is of great importance.
In the cases of proton-proton and antiproton-proton scatter-
ings, when the measured total cross sections were still
decreasing as function of energy, the first indication that
this total cross section would turn around and increase
came from the measurement of the real parts [5].
Specifically, at that time the measured values were negative
but becoming less so when the center-of-mass energy
increased, as expected. However, the increase (i.e., less
negative) was too fast and showed a tendency to overshoot
to become positive. Indeed, this was the first indication that
the proton-proton total cross section, among others, would
increase. As already mentioned, the theoretical prediction
of increasing total proton-proton cross section was first
made in 1970 and the experimental observation in 1973.
It is the purpose of the present paper to study in general

the sign of the real part of the forward scattering amplitude.
The specific problem is: under what general and realistic
conditions on the total cross section, the real part of the
forward two-body scattering amplitude can be guaranteed
to be positive at sufficiently high energies?
Clearly, this problem should be studied through

dispersion relations. Consider the elastic scattering process

aþ b → aþ b; ð1Þ
let s, t, u be the Mandelstam variables. Throughout this
paper, t ¼ 0 so that the scattering is in the forward
direction. In this case,

sþ u ¼ 2m2
a þ 2m2

b ð2Þ
where ma and mb are the masses of the particles a and b.
Thus, when t ¼ 0, the s − u symmetric variable is

ξ ¼ 1

2
ðs − uÞ ¼ s −m2

a −m2
b: ð3Þ

This scattering amplitudes for aþ b → aþ b and
aþ b̄ → aþ b̄ are in general different. Define fðξÞ to
be the average of the forward scattering amplitude for these
two processes and σðξÞ that of the total cross sections, then

Im fðξÞ ¼ k
ffiffiffi

s
p
8π

σðξÞ ð4Þ

when k is the c.m. momentum i.e. for ξ large

Im f ≃ ξσðξÞ
16π

The main result of the present paper is:
Theorem: If, for sufficiently large values of ξ, σðξÞ is

nondecreasing and approaches infinity as ξ → ∞. Then
Re fðξÞ is positive for all sufficiently large values of ξ.

The proof begins with the dispersion relation for fðξÞ

Re fðξÞ − fð0Þ ¼ 2ξ2

π

Z

∞

μ

dξ0

ξ0
lm fðξÞ
ξ02 − ξ2

ð5Þ

where μ ¼ 2mamb.fð0Þ is real, since fðξÞ is real between
the left hand cut and the right hand cut i.e. −μ < ξ < þμ.
Let ξo be the value of ξ such that

dσ
dξ

≥ 0 for ξ > ξ0: ð6Þ

The dispersion relation (5) can be rewritten as

Re fðξÞ − fð0Þ − 2ξ2

π

Z

ξ0

μ
dξ0σðξ0Þ 1

ξ02 − ξ2

¼ 2ξ2

π

Z

∞

ξ0

dξ0σðξ0Þ 1

ξ02 − ξ2
ð7Þ

In the left-hand side (LHS) of (7), for ξ → ∞

2ξ2

π

Z

ξ0

μ
dξ0σðξ0Þ 1

ξ02 − ξ2
∼ −

2

π

Z

ξ0

μ
dξ0σðξ0Þ; ð8Þ

and is therefore bounded in absolute value.
Integrating the right-hand side (RHS) of (7) by parts

leads to

RHS of ð7Þ ¼ ξ

π

Z

∞

ξ0

dξ0
∂
∂ξ0 σðξ

0Þ ln
�

�

�

�

ξ0 − ξ

ξ0 þ ξ

�

�

�

�

¼ ξ

π
σðξ0Þ ln

�

�

�

�

ξ0 þ ξ

ξ0 − ξ

�

�

�

�

þ IðξÞ; ð9Þ

where

IðξÞ ¼ ξ

π

Z

∞

ξ0

dξ0
dσðξ0Þ
dξ0

ln

�

�

�

�

ξ0 þ ξ

ξ0 − ξ

�

�

�

�

: ð10Þ

Note that the first term on the right-hand side of (9) is
again bounded.

If
dσðξÞ
dξ

> 0 for ξ > ξ0 ð11Þ

IðξÞ is positive.
It only remains to show that this IðξÞ increases without

bound for ξ → ∞ when

σðξÞ → ∞ ð12Þ
It follows from

ln

�

�

�

�

ξ0 þ ξ

ξ0 − ξ

�

�

�

�

≥ ln

�

�

�

�

ξþ ξ0
ξ − ξ0

�

�

�

�

≥
2ξ0
ξ

ð13Þ

when ξ > ξ0 that
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IðξÞ ≥ ξ

π

Z

ξ

ξ0

dξ0
dσðξ0Þ
dξ0

ln

�

�

�

�

ξ0 þ ξ

ξ0 − ξ

�

�

�

�

≥
ξ

π

Z

ξ

ξ0

dξ0
dσðξ0Þ
dξ0

2ξ0
ξ

¼ 2ξ0
π

½σðξÞ − σðξ0Þ�: ð14Þ

This proves that, because of (12), IðξÞ increases without
bound as ξ → ∞.
The result is therefore, with the conditions (11) and (12),

Re fðξÞ ≥ fð0Þ þ 2ξ2

π

Z

ξ0

μ
dξ0σðξ0Þ 1

ξ02−ξ2

−
ξ

π
σðξ0Þ ln

�

�

�

�

ξ0 þ ξ

ξ0 − ξ

�

�

�

�

þ 2ξ0
π

½σðξÞ − σðξ0Þ�: ð15Þ

On the right-hand side of this (15), the term 2ξ0
π σðξÞ

approaches infinity as ξ → ∞, while all the other terms are
bounded. Therefore

Re fðξÞ > 0 ð16Þ

for all sufficiently large values of ξ.
This proves the Theorem.

III. DISCUSSION

Without any additional work, the lower bound for
Re fðξÞ as given by (15) can be improved as follows.
Let ξ1 be any value between ξ0 and ξ, then the IðξÞ defined
by (10) clearly satisfies

IðξÞ ≥ ξ

π

Z

ξ

ξ1

dξ0
dσðξ0Þ
dξ0

ln

�

�

�

�

ξ0 þ ξ

ξ0 − ξ

�

�

�

�

: ð17Þ

The above argument then gives, entirely similar to (14),

IðξÞ ≥ 2ξ1
π

½σðξÞ − σðξ1Þ�: ð18Þ

The improved version of (15) is then

Re fðξÞ ≥ fð0Þ þ 2ξ2

π

Z

ξ0

μ
dξ0σðξ0Þ 1

ξ02 − ξ2

−
ξ

π
σðξ0Þ ln

�

�

�

�

ξ0 þ ξ

ξ0 − ξ

�

�

�

�

þmax
ξ0≤ξ1≤ξ

2ξ1
π

½σðξÞ − σðξ1Þ�:

ð19Þ
If, for example, σðξÞ saturates the Froissart-Martin bound,

then this maximum over ξ0 ≤ ξ1 ≤ ξ is reached when
ξ1∼ξ=e.
In some cases, (19) leads to a considerable improvement

over (15). As an example, if for large ξ

σðξÞ ∼ cðln ξÞγ ð20Þ
with 0 < γ ≤ 2, then (15) gives

Re fðξÞ > constþ 2

π
cξ0ðln ξÞγ; ð21Þ

while (19) gives

Re fðξÞ > constþ 2γ

πe
cξðln ξÞγ−1: ð22Þ

The lower bound (22) is much stronger than that of (21).
In fact, this bound (22) differs from the exact asymptotic
formula

Re fðξÞ ∼ 1

2
πcγξðln ξÞγ−1 ð23Þ

by only a factor of 4
πe.

Of course, in all the bounds derived here, by a slight
adjustment of the constants, such as those of (21) and (22),
all the ξ0s can be replaced by the Mandelstam variable s.
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