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The decay width of Nð1535Þ → Nη is as large as that of Nð1535Þ → Nπ. This is in evident conflict with
simple expectations based on flavor symmetry and phase space. Similarly, the decay width of Λð1670Þ →
Λð1116Þη is larger than predicted by flavor symmetry. In this work, we propose that the axialUð1ÞA anomaly
is responsible for an enhanced coupling of (some) excited baryons to the η meson. We test this idea by
including a new, chirally symmetric but Uð1ÞA anomalous, term in an effective hadronic model describing
baryons and their chiral partners in themirror assignment. This term enhances the decay of the chiral partners
into baryons and an η meson, such as Nð1535Þ → Nη. Moreover, a strong coupling of Nð1535Þ to Nη0

emerges (this is important for studies of η0 production processes). Our approach shows that Nð1535Þ is
predominantly the chiral partner of Nð939Þ, and Λð1670Þ the chiral partner of Λð1116Þ. Finally, our
formalism can be used to couple the pseudoscalar glueball ~G to baryons. We expect a large cross section for

the reaction p̄p → ~G → p̄pð1535Þ, which can be experimentally tested in the future PANDA experiment.

DOI: 10.1103/PhysRevD.97.014007

I. INTRODUCTION

The experimental decay width of Nð1535Þ → Nη is
surprisingly large, ΓNð1535Þ→Nη ≃ ð65� 25Þ MeV [1].
In particular, it is as large as the decay width of
Nð1535Þ → Nπ, ΓNð1535Þ→Nπ ¼ ð67.5� 19Þ MeV [1]. On
the other hand, flavor symmetry predicts

ΓNð1535Þ→Nη

ΓNð1535Þ→Nπ
≈
1

3
cos2θP ≈ 0.17; ð1Þ

where the factor 3 takes into account the pion triplet
and θP ≃ −44.6° [2] is the pseudoscalar mixing angle
defined by

jηi ¼ cos θPjηN ≡ ðūuþ d̄dÞ=
ffiffiffi
2

p
i þ sin θPjηS ≡ s̄si:

This evident violation of flavor symmetry is hard to
understand. [Note that phase space would even further
reduce the ratio in Eq. (1).] One can easily extend these

flavor-symmetry considerations to the whole baryon octet
fNð1535Þ;Λð1670Þ;Σð1620Þ;Ξð?Þg, which decays into
the ground-state baryons fNð939Þ;Λð1116Þ;Σð1193Þ;
Ξð1338Þg and one pseudoscalar meson (for details, see
Sec. II). Quite remarkably, while decays involving pions
and kaons are well described, also the decay Λð1670Þ →
Λð1116Þη is underestimated by arguments based on flavor
symmetry. On the contrary, when repeating the study by
using the baryon octet fNð1650Þ;Λð1800Þ;Σð1750Þ;
Ξð?Þg, no underestimation of decays involving η mesons
is found. (A more elaborate discussion of this argument is
given in Sec. II of the present paper using a simple model
based on flavor symmetry.)
Evidently, the Nð1535Þ must couple to the η meson

much more strongly than predicted by flavor symmetry, but
it is not yet understood how such a strong coupling arises.
In some works [3–6], it has been proposed that Nð1535Þ
contains a sizable s̄s admixture. Namely, Nð1535Þ arises as
a dynamically generated quasibound state in the KΛ and
KΣ channels. In other works, see e.g., Refs. [7–9], a
pentaquark component of the type udus̄s is assumed to be
present in the resonance Nð1535Þ. In both scenarios,
Nð1535Þ would be a five-quark object: an enhanced
coupling to s̄s, and hence to η and η0, emerges naturally
in this case. However, in disagreement with these results,
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recent calculations [10] based on the lattice discretization of
quantum chromodynamics (QCD) found that Nð1535Þ has
a dominant three-quark core. In Ref. [11] the state Nð1535Þ
was studied on the lattice by assuming a three-quark
substructure. The resulting axial coupling constant is in
agreement with the nonrelativistic quark model, thus also
supporting the picture of a large three-quark contribution to
the wave function of this resonance. In Ref. [12], the large
Nη branching ratio of some baryon resonances is explained
within the constituent quark model in combination with a
fine-structure interaction between the quarks in terms of
Goldstone-boson exchange.
Another line of research makes use of effective models

of QCD based on the linear realization of chiral symmetry.
Investigations of nucleon-meson interactions within two-
flavor chiral effective models [13] (based on chiral sym-
metry and the mirror assignment for Nð1535Þ as the chiral
partner of the nucleon) showed that the decay width of
Nð1535Þ → Nη cannot be correctly described. This is
indeed expected, because flavor symmetry holds in any
chiral model, hence Eq. (1) follows. The inclusion of four
baryon multiplets and their mixing was considered in
Ref. [14], but the problem with the decay Nð1535Þ →
Nη is not resolved. For all solutions of the χ2 fit found there
Nð1535Þ → Nη is smaller than 10 MeV, hence definitely
too small. The small theoretical value turned out to be
stable under parameter variations.
Summarizing, the present status shows that further

studies are needed to understand the resonance Nð1535Þ
and its interaction with the η meson. There is, however, an
important QCD phenomenon which was not yet system-
atically taken into account within the above mentioned
framework of effective models with linearly realized chiral
symmetry, but can provide an answer to the above problem:
the axial Uð1ÞA anomaly. (In the chiral limit, the QCD
Lagrangian possesses a Uð1ÞA symmetry, which is broken
by quantum fluctuations [15]). The axial anomaly is known
to be responsible for the mass difference of η and η0
compared to pions and kaons, respectively. Note that the
axial anomaly is suppressed in the large-Nc expansion [16],
but is known to be exceptionally large: in contrast to other
large-Nc suppressed terms, the chiral anomaly is typically
not negligible for Nc ¼ 3.
Then, the large decay width of Nð1535Þ to Nη is

intuitively explained as follows: quantum fluctuations
related to the anomaly couple Nð1535Þ to N via emission
of two gluons in the isoscalar-pseudoscalar channel I ¼ 0,
JPC ¼ 0−þ. Since this di-gluon couples with the same
intensity to the quark-antiquark pairs ūu, d̄d, and s̄s, it
couples almost exclusively to η and η0 and is thus responsible
for a decay width which is enhanced compared to simple
flavor-symmetry arguments. [For a recent study of the effect
of the anomaly on various mesons, see Ref. [17].]
Yet, the technical question is how to achieve such

a coupling without spoiling chiral symmetry

SUð3ÞL × SUð3ÞR. The answer is that the desired anomaly
termcanbeeasily constructedwhen thepreviouslymentioned
mirror assignment is taken into account [18]. In the two-flavor
version of the mirror assignment, it is possible to construct a
chirally invariant mass term involving the nucleon and its
chiral partner. Thismass termand various generalizations of it
have been at the basis of many works in the vacuum
[13,14,19–21] and at nonvanishing density [22–26]. Just as
for the chiral mass term, it is possible to build an analogous
pseudoscalar term which couples the nucleon and its chiral
partner preserving SUð2ÞL × SUð2ÞR. This new term, how-
ever, breaksUð1ÞA and yields a coupling to the mesons η and
η0. When interpreting Nð1535Þ as the chiral partner of the
nucleon, an enhanced decayNð1535Þ → Nη can be obtained
by adjusting the respective coupling constant.We present this
line of arguments in Sec. III A. While the treatment is
completely general, for specific results we use the two-flavor
version of the so-called extended linear sigmamodel (eLSM)
developed in Refs. [13,21].
When considering the three-flavor version of the

mirror model, one can write analogous anomalous terms
(Sec. III B). Within this framework, one has four baryonic
multiplets from the very beginning. As a specific model, we
shall use the three-flavor version of the eLSM developed in
Ref. [14]. Interestingly, the axial anomaly naturally
provides some peculiar mutual interaction between baryons
which helps us to identify the octet fNð1535Þ;Λð1670Þ;
Σð1620Þ;Ξð?Þg as the chiral partners of the ground-state
baryons. The numerical implications of the axial anomaly
are then studied in Sec. III B 3.
As a last step, we use the developed mathematical

structure to couple the pseudoscalar glueball to baryons
(Sec. IV). Although at present no data exist, because the
pseudoscalar glueball has not been discovered yet, one can
still draw conclusions which can be of use when more
experimental information will be available. In particular,
we shall find that this pseudoscalar glueball can be
observed in the reaction pp̄ → pp̄ð1535Þ, which can be
studied at the future PANDA experiment [27]. Conclusions
and an outlook are presented in Sec. V. Some details of the
calculations are relegated to the appendices.
Clarifying the role of the axial anomaly is not only relevant

for vacuum spectroscopy. There are at least two related fields
where such investigations are of interest: (i) Understanding
the coupling of baryons to the η (as well as η0) meson is
important for the studyofmesonic nuclei,where anηmeson is
bound to an atomic nucleus. As discussed in Refs. [28–30],
these studies allow to test the axial anomaly and its purported
change in themedium.Namely, measurements of such bound
states in nuclei are a direct probe of axial-singlet dynamics.
Ongoing experiments at COSY, aswell as new experiments at
ELSA and GSI/FAIR try to find such bound states [31].
(ii) Neutron stars represent an excellent laboratory for
hadronic matter under extreme conditions. The development
of a three-flavor chiral model, which correctly describes the
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axial anomaly, can help to understand the role of hyperons in
neutron stars [26,32].

II. MODEL BASED ON FLAVOR SYMMETRY

Spontaneous breaking of the chiral symmetry leads to a
residualUðNfÞV flavor symmetry (for Nf degenerate quark
flavors). It is therefore instructive to first consider a simple
model based on this symmetry alone (i.e., without the full
chiral symmetry and without terms parametrizing the axial
anomaly) and to study the decays of a baryon resonance
with negative parity into a ground-state baryon and a
pseudoscalar meson.
Let us first define the fields corresponding to the decay

products that we aim to study. The nonet of pseudoscalar
states fπ; K�; K0; K0; ηð547Þ; η0ð958Þg is contained in the
3 × 3 matrix P:

P ¼ 1ffiffiffi
2

p

0
BB@

ηNþπ0ffiffi
2

p πþ Kþ

π− ηN−π0ffiffi
2

p K0

K− K̄0 ηS

1
CCA: ð2Þ

The fields ηN and ηS are related to the physical fields η ¼
ηð547Þ and η0 ¼ η0ð958Þ by a standard Oð2Þ rotation,
�

η

η0

�
¼

�
cos θP sin θP
− sin θP cos θP

��
ηN ¼ ðūuþ d̄dÞ= ffiffiffi

2
p

ηS ¼ s̄s

�
;

where θP ≃ −44.6° [2]. (Using a different value, such
as −42° found in Ref. [33], would lead only to minor
changes of our results.) The ground-state positive-parity
octet of baryons fNð939Þ;Λð1116Þ;Σð1193Þ;Ξð1338Þg is
described by the 3 × 3matrixO, and for the excited octet of
negative-parity baryons we introduce the matrix O�:

O≡

0
BBB@

Λffiffi
6

p þ Σ0ffiffi
2

p Σþ p

Σ− Λffiffi
6

p − Σ0ffiffi
2

p n

Ξ− Ξ0 − 2Λffiffi
6

p

1
CCCA;

O� ≡

0
BBB@

Λ�ffiffi
6

p þ Σ0�ffiffi
2

p Σþ� p�

Σ−�
Λ�ffiffi
6

p − Σ0�ffiffi
2

p n�

Ξ−� Ξ0� − 2Λ�ffiffi
6

p

1
CCCA: ð3Þ

At a microscopic level, a flavor transformation corre-
sponds to a simple rotation of the underlying quark field,

q → UVq;

where q ¼ ðu; d; sÞT and UV is a 3 × 3 unitary matrix
belonging to the group Uð3ÞV . When applied to the
matrices P, O, and O�, the following transformation
behavior emerges:

P → UVPU
†
V; O → UVOU†

V; O� → UVO�U
†
V:

Under parity, the fields transform as O → γ0Oðt;−xÞ and
O� → −γ0O�ðt;−xÞ, while under charge conjugation as
O → CŌT and O� → −CŌT� (where the transposition T
acts in Dirac and flavor spaces and C is the charge-
conjugation matrix).
It is now easy to construct a flavor, parity, and charge-

conjugation invariant model which couples O� to O and P:

LV ¼ iλVTrðŌPO� − Ō�POÞ: ð4Þ
The coupling constant λV is dimensionless. The explicit
form of the Lagrangian after evaluation of the trace as well
as the expressions of the corresponding decay widths are
presented in Appendix A.
The term in Eq. (4) is not the only flavor-invariant term

that can be written down. It is, however, the term domi-
nating in the large-Nc expansion, according to which λV ∝ffiffiffiffiffiffi
Nc

p
(it describes a standard decay by creating a quark-

antiquark pair from the vacuum). Further terms are given by

iβVTrðŌO�P− Ō�OPÞ; iγVTrðŌO�− Ō�OÞTrP: ð5Þ
As shown in Appendix B, these are, however, suppressed in
the large Nc limit, βV ∝ 1=

ffiffiffiffiffiffi
Nc

p
and γV ∝ 1=N3=2

c . This is
due to the fact that they involve (at least) two gluons in the
intermediate state. Such terms are typically negligible
compared to the dominant one and will be set to zero in
the remainder of this section. Yet, as mentioned above, an
important exception concerns terms that arise from the axial
anomaly. As we shall see, when the anomaly is coupled to
the model, a term of the type ∼γV in Eq. (5) emerges
(together with various other terms) from the anomalous
coupling of baryons to mesons (for details, see Sec. III).
This term can be responsible for the fact that some decay
widths are larger than expected.
We now turn to numerical results. We shall consider two

distinct models. In the first one, the octet O� describes the
baryon states fNð1535Þ;Λð1670Þ;Σð1620Þ;Ξð?Þg, while
in the second one, it represents the heavier states
fNð1650Þ;Λð1800Þ;Σð1750Þ;Ξð?Þg. (Indeed, one could
go further: each baryon octet with quantum numbers JP ¼
1
2
− can be assigned to O�.)

A. Model with O� ≡ fNð1535Þ;Λð1670Þ;Σð1620Þ; Ξð?Þg
For the first assignment, the parameter λV can be

determined by fitting the decay width of N� ≡ Nð1535Þ →
Nπ to the experimentally well determined value ð67.5�
19Þ MeV [1]:

λV ¼ λNð1535Þ
V ¼ 1.37� 0.19:

Using this result, we can compute the remaining decay
widths, which are summarized in Table I. Most of the decay
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widths are in agreement with the experimental data. For
completeness, in the second part of the table, we also
present the results for the assignment Σ� ≡ Σð1560Þ.
There are two important mismatches, both of them

linked to the η meson, which were mentioned in the
introduction as a motivation of the present paper: the
decay widths Nð1535Þ → Nη and Λð1670Þ → Λη (bold-
faced in Table I) come out too small by about one order of
magnitude. Evidently, flavor symmetry is not sufficient
to describe the decays of fNð1535Þ;Λð1670Þ;Σð1620Þ;
Ξð?Þg states into a ground-state baryon and an η meson.
These results show that an additional component is needed
when the η meson is considered. As we shall see, the chiral
anomaly does the desired job in both channels.

B. Model with
O� ≡ fNð1650Þ;Λð1800Þ;Σð1750Þ; Ξð?Þg

For the second assignment, using the decay width of
Nð1650Þ → Nπ to fit the parameter λV, we obtain

λV ¼ λNð1650Þ
V ¼ 1.45� 0.20:

The results for the remaining decay widths are listed in
Table II. In this case the value for the width of the
experimentally well-known decay Λð1800Þ → Λη is in
agreement with the data. The decay width Nð1650Þ →
Nη comes out too small by (at least) a factor of 1.4 (if we
consider the maximum theoretical and minimum exper-
imental values). However, note that the experimental range
of the Nη branching ratio was located at smaller values in
the previous edition of the PDG [34] (between 5.5 and
25.5 MeV). In the new edition of 2016 [1], it seems that
only the analysis of Ref. [35] has been taken into account,
while the much smaller result of Ref. [36] has been
neglected (it was quoted in the list of experiments included

in the average, but was not used to compute the latter).
Quite peculiarly, while the result of Ref. [35] is reported in
the table of decay modes, later on no average or fit is
reported for this branching ratio. Concerning the decay
Σð1750Þ → Ση, the maximum theoretical value of the
decay width of 3 MeV underestimates the minimum
experimental value of 9 MeV by a factor 3. [The exper-
imental result was originally determined in a single experi-
ment which was performed over four decades ago [37].] In
conclusion, at present there is no stringent evidence of
enhanced decays with an η meson in the final state.
There is, however, a disagreement concerning the decays

Λð1800Þ → NK̄ and Σð1750Þ → Σπ. The theoretical decay
width for Λð1800Þ → NK̄ is too small. Interestingly, in a
recent partial-wave analysis of K̄N scattering [38], the
numerical value reads ΓΛð1800Þ→NK̄ ¼ ð33� 20Þ MeV,
which agrees with our theoretical result. Concerning the
decay Σð1750Þ → Σπ, the PDG [1] quotes only (a rather
small) upper limit in its summarizing table. Here, our result
is too large. In the analysis of Ref. [38], the decay
Σð1750Þ → Σπ is clearly seen. (The result of Ref. [38] is
cited by the PDG [1] but is not included in the summary
table.) Although the errors are large, the central value reads
58 MeV, in good agreement with our theoretical value.
Finally, according to Ref. [38] the decay width for
Σð1750Þ → Λπ is of the order of 20 MeV, which is also
compatible with our results. In summary, while some of our
results are in disagreement with the PDG [1], most of them
agree well with the most recent and complete analysis of
the decays of Ref. [38].
Summarizing the results of this section, the inability to

properly describe the decays into η in a flavor-symmetric
model calls for an explanation: as we shall see, the
inclusion of the Uð1ÞA anomaly provides a candidate.

TABLE I. Results from the flavor model with O� ≡ fNð1535Þ;
Λð1670Þ;Σð1620Þ;Ξð?Þg.

Flavor model [MeV] Experiment [1] [MeV]

ΓNð1535Þ→Nπ 67.5� 19 67.5� 19

ΓNð1535Þ→Nη 4.3� 1.1
1.3

40–91
ΓΛð1670Þ→NK̄ 6.0� 1.6

1.8
5–15

ΓΛð1670Þ→Σπ 21.3� 5.6
6.4

6.25–27.5
ΓΛð1670Þ→Λη 0.6� 1.6

1.8
2.5–12.5

ΓΣð1620Þ→NK̄ 32� 20
26

−
ΓΣð1620Þ→Λπ 21.7� 5.7

6.5
−

ΓΣð1620Þ→Σπ 39� 10
12

−
ΓΣð1620Þ→Ση kinematically not allowed −

ΓΣð1560Þ→NK̄ 27� 17
22

−
ΓΣð1560Þ→Λπ 19.8� 5.2

6.0
−

ΓΣð1560Þ→Σπ 34� 9.1
10

−
ΓΣð1560Þ→Ση kinematically not allowed −

TABLE II. Results from the flavor model with O�≡
fNð1650Þ;Λð1800Þ;Σð1750Þ;Ξð?Þg.

Flavor model [MeV] Experiment [1] [MeV]

ΓNð1650Þ→Nπ 84� 23 84� 23

ΓNð1650Þ→Nη 8.7� 2.2
2.6

15.4–37.5
ΓNð1650Þ→ΛK 13.2� 3.4

3.9
5.5–25.5

ΓΛð1800Þ→NK̄ 8.2� 2.1
2.4

50–160
ΓΛð1800Þ→Σπ 28.2� 7.2

8.2
seen

ΓΛð1800Þ→Λη 3.09� 0.79
0.91

2–44
ΓΣð1750Þ→NK̄ 23.0� 5.9

6.7
6–64

ΓΣð1750Þ→Λπ 28.2� 7.2
8.2

seen
ΓΣð1750Þ→Σπ 53� 14

16
<12.8

ΓΣð1750Þ→Ση 2.37� 0.60
0.69

9–88

ΓΣð1620Þ→NK̄ 18.1� 4.6
5.3

−
ΓΣð1620Þ→Λπ 24.2� 6.2

7.2
−

ΓΣð1620Þ→Σπ 44� 11
13

−
ΓΣð1620Þ→Ση kinematically not allowed −
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III. ANOMALY TERM IN THE
MIRROR ASSIGNMENT

In this section we investigate chiral models for baryons
(and in particular the eLSM) and introduce a term which
preserves chiral symmetry but explicitly breaks the axial
Uð1ÞA symmetry. We treat baryons in the so-called mirror
assignment. We first present the basic ideas for a two-flavor
model, where it is easier to see how the mechanism works.
Then, we extend our considerations to a three-flavor model.
For both cases we discuss the consequences of the anomaly
for the decays of baryons.

A. The case Nf = 2

Let us briefly discuss the mirror assignment in the two-
flavor case Nf ¼ 2, i.e., for the nucleon and its chiral
partner, originally introduced in Ref. [18] and further
studied in Refs. [13,19,21–25] and references therein.
We recall that a quark field q ¼ ðu; dÞT is split into its

left- and right-handed components by using the chiral
projection operators PL=R ¼ ð1 ∓ γ5Þ=2:

qL=R ¼ PL=Rq:

Under a chiral SUð2ÞL × SUð2ÞR transformation, the two
components transform differently:

qL → ULqL; qR → URqR: ð6Þ

Here, UL ∈ SUð2ÞL and UR ∈ SUð2ÞR are two, in general
distinct, matrices. We now turn to composite baryon fields.
In the mirror assignment, one starts with two nucleon
fields,Ψ1 andΨ2. These two fields mix (see below) to form
the nucleon N ¼ ðp; nÞT , where p describes the proton and
n the neutron, and its chiral partner, which for the sake of
definiteness we assume to be the resonance Nð1535Þ. The
central point is how the baryon fields transform under chiral
transformations. In the mirror assignment, the following
transformations are postulated:

Ψ1;L → ULΨ1;L; Ψ1;R → URΨ1;R;

Ψ2;L → URΨ2;L; Ψ2;R → ULΨ2;R;

where Ψk;L=R ¼ PL=RΨk. One observes that the baryon
field Ψ1 transforms under chiral transformations just as the
underlying fundamental quark field q. The left-handed part
transforms under UL and the right-handed part under UR.
However, this is not the case for the baryon field Ψ2, which
transforms in a mirror way: the left-handed part transforms
under UR and vice versa. We also recall that under parity
transformations the fields behave as Ψ1 → γ0Ψ1ðt;−xÞ and
Ψ2 → −γ0Ψ2ðt;−xÞ, while under charge-conjugation
transformations as Ψ1 → CΨ̄T

1 and Ψ2 → −CΨ̄T
2 .

The peculiar mirror transformation allows to introduce a
chirally (as well as P and C) invariant mass term:

L
Nf¼2
m0

¼ m0ðΨ̄2γ
5Ψ1 − Ψ̄1γ

5Ψ2Þ
¼ m0ðΨ̄2;LΨ1;R − Ψ̄2;RΨ1;L

þ Ψ̄1;RΨ2;L − Ψ̄1;LΨ2;RÞ; ð7Þ
which was first written down in Ref. [18] and further
investigated in various works, e.g., Refs. [13,22,23,25,39]
and references therein. The physical fields N and N�
corresponding to the nucleon and to Nð1535Þ are given by:�

N

N�

�
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 cosh δ
p

�
eδ=2 γ5e−δ=2

γ5e−δ=2 −eδ=2

��Ψ1

Ψ2

�
; ð8Þ

where

cosh δ ¼ mN þmN�
2m0

: ð9Þ

For m0 → 0 one has δ → ∞, and the mixing vanishes:
N ¼ Ψ1, N� ¼ −Ψ2. The numerical value of m0 depends
on the model employed. For instance, in Ref. [21] the
value m0 ¼ ð459� 117Þ MeV has been obtained. In other
works, it ranges between 200 and 700 MeV [22–25].
Interestingly, the Lagrangian can be made dilatation-invariant
via the substitution

m0 → aχ þ bG

where χ is a four-quark field [pre-dominantly corres-
ponding to f0ð500Þ] [26,40], while G is a dilaton field
[pre-dominantly corresponding to f0ð1710Þ] [41]. The pre-
viously introduced constantm0 is obtained after condensation
of χ and G: m0 ¼ aχ0 þ bG0. For further study of this term,
see Refs. [23,24,26,42]. We now turn to the axial anomaly.
First, we notice that the combination

Ψ̄2Ψ1 − Ψ̄1Ψ2

¼ Ψ̄2;LΨ1;R þ Ψ̄2;RΨ1;L − Ψ̄1;RΨ2;L − Ψ̄1;LΨ2;R

is chirally invariant, but has negative parity (charge con-
jugation is positive). As it stands, it cannot be a term of an
effective Lagrangian. However, when including mesons,
things change. For Nf ¼ 2, scalar and pseudoscalar mesons
are incorporated in the field

Φ ¼ Sþ iP

¼ 1ffiffiffi
2

p

0
B@

σNþa0
0ffiffi

2
p aþ0

a−0
σN−a00ffiffi

2
p

1
CAþ iffiffiffi

2
p

0
B@

ηNþπ0ffiffi
2

p πþ

π− ηN−π0ffiffi
2

p

1
CA; ð10Þ

where π is the pion field, ηN is the nonstrange two-flavor
version of the η (and η0) meson(s) [see Eq. (2) in the previous
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section], a0 is identified with a0ð1450Þ, and σN with
f0ð1370Þ [2,43]. Under chiral transformations of the under-
lying quark fields,

Φ → ULΦU†
R: ð11Þ

Moreover, one has Φ → Φ† under parity and Φ → ΦT

under charge-conjugation transformations. Hence, the
negative-parity term

detΦ − detΦ†

is invariant under chiral SUð2ÞL × SUð2ÞR transformations,
but not under Uð1ÞA. Namely,

detΦ → ðdetULÞðdetΦÞðdetURÞ�;

which is clearly invariant under SUð2ÞL × SUð2ÞR, since in
this case detUL ¼ detUR ¼ 1. On the other hand, an axial
Uð1ÞA transformation corresponds to the choice UL ¼
eiα ¼ U†

R, which implies that

detΦ → e4iα detΦ ≠ detΦ: ð12Þ

This is why terms involving the determinant are usually
employed to model the axial anomaly.
It is now possible to construct a parity-even chiral

invariant which couples baryons to mesons in the following
way:

L
Nf¼2

A ¼ λ
Nf¼2

A ðdetΦ − detΦ†ÞðΨ̄2Ψ1 − Ψ̄1Ψ2Þ; ð13Þ

where the parameter λA has dimension [energy−1]. The
previous equation contains the main idea of the present
work. After spontaneous symmetry breaking, the scalar
field σN acquires a nonzero expectation value: hσNi ¼ ϕN .
After the shift σN → σN þ ϕN and in the absence of (axial-)
vector mesons, one has

detΦ − detΦ† ¼ −i½ðσN þ ϕNÞηN − a0 · π�:

One observes that a direct coupling of the meson ηN to the
baryonic combination Ψ̄2Ψ1 − Ψ̄1Ψ2 appears.
When the hadronic model contains (axial-)vector mesons

as well [such as in the eLSM for Nf ¼ 2 [13,21,43]], then
ϕN ¼ Zπfπ , where fπ ¼ 92.1 MeV is the pion decay
constant and Zπ ≃ 1.79. In addition, in order to ensure
canonically normalized kinetic terms, one also has to
replace π → Zππ and ηN → ZηNηN , where ZηN ≃ Zπ .
These changes only quantitatively influence our picture.
Summarizing, in the two-flavor version of the eLSM [43]

the term in the Lagrangian describing the chiral anomaly
for baryons as a function of the physical fields reads:

L
Nf¼2

A ¼ −
iλ

Nf¼2

A

cosh δ
½ZηN ðσN þ ϕNÞηN − Zπa0 · π�

× ðN̄γ5N þ N̄�γ5N� − sinh δN̄N� þ sinh δN̄�NÞ:

One observes that a contribution to the decay width of
N� → Nη arises:

iλ
Nf¼2

A tanh δϕNZηN N̄ηNN� þ H:c:

In Ref. [13] it is shown that within the eLSM with baryons
for two flavors the decay width of N� → Nη turns out to be
far too small if we choose Nð1535Þ as the chiral partner of
the nucleon. Interestingly, the contribution of the anomaly
term solves this problem. In Appendix C we report the
details of the calculation as well as the numerical results of
the eLSM for Nf ¼ 2. However, it must be also stressed
that the case Nf ¼ 2, even if interesting because it shows
that a new decay mechanism is possible, does not allow to
make additional predictions. For that purpose, we turn to
the case Nf ¼ 3 in the next subsection.
As a further technical remark, we point out that it is also

possible to write an anomalous term

ðdetΦþ detΦ†ÞðΨ̄2γ
5Ψ1 − Ψ̄1γ

5Ψ2Þ;

that represents a possible further anomalous contribution to
m0. After condensation one obtains a contribution to m0

proportional to ϕ2
N .

A similar approach for coupling the baryons to the
mesons η and η0 via the QCD axial anomaly can be
followed to study the QED anomaly. First, one has to
replace detΦ − detΦ† with Fμν

~Fμν, where Fμν ¼ ∂μAν −
∂νAμ is the electromagnetic field tensor and ~Fμν ¼
1
2
εμναβFαβ its dual. Second, one has to take into account

that ψ1 ¼ ðp1; n1ÞT and ψ2 ¼ ðp2; n2ÞT as well as the
different electric charges of the quark emitting two gluons,
leading to the Lagrangian

L
Nf¼2

A;QED ¼ λ
Nf¼2

A;QEDe
2Fμν

~Fμν

×

�
4

9
ðp̄2p1 − p̄1p2Þ þ

1

9
ðn̄2n1 − n̄1n2Þ

�
:

Various interaction terms emerge, some of which lead to
decays of the type nð1535Þ → nγγ and pð1535Þ → pγγ. At
present, there is no data for such reactions. Moreover, these
decays can also take place via other processes involving the
QCD and QED anomalies, leading to the transition chains
Nð1535Þ → NX → Nγγ with X ¼ π0, η, η0. We recall that
π0, η, η0 couple to γγ via the QED anomaly, XFμν

~Fμν, see
e.g., Ref. [44] for a description of such processes within a
linear sigma model.
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B. The case Nf = 3

In the three-flavor case, both mesons and baryons are
described by 3 × 3 matrices (in nonet and octet matrix
fields, respectively). Moreover, in Ref. [14] it was shown
that, using the quark-diquark picture and requiring a mirror
assignment, for Nf ¼ 3 one can construct four baryonic
multiplets. In the following, we briefly recall their main
characteristics, then we concentrate on implications for
decays involving the η meson.

1. The baryonic fields

The fundamental chiral transformation for the three-
flavor case has the same form as in Eq. (6), with q ¼
ðu; d; sÞT and unitary 3 × 3 matrices UL;R. For hadronic
fields composed of quarks, the chiral transformation for
mesonic fields is a straightforward generalization of
Eq. (6), while for baryonic fields it is less obvious. The
mesonic field matrix Φ containing scalar and pseudoscalar
degrees of freedom reads

Φ ¼ Sþ iP ¼ 1ffiffiffi
2

p

0
BBB@

σNþa0
0ffiffi

2
p aþ0 K�þ

0

a−0
σN−a00ffiffi

2
p K�0

0

K�−
0 K�0

0 σS

1
CCCA

þ iffiffiffi
2

p

0
BBB@

ηNþπ0ffiffi
2

p πþ Kþ

π− ηN−π0ffiffi
2

p K0

K− K̄0 ηS

1
CCCA; ð14Þ

where the identification of the nonstrange fields is identical
to the Nf ¼ 2 case. In addition, σS corresponds predomi-
nantly to f0ð1500Þ (with an admixture of f0ð1710Þ, which
is, however, predominantly gluonic; for more details, see
Ref. [41]), the field K�

0 corresponds to K�
0ð1430Þ, and K to

the kaons. As already stated in Sec. II, see Eq. (2), ηN and
ηS mix and generate the physical states η and η0. The chiral
transformation of Φ is the same as in Eq. (11). Under
SUð3ÞL × SUð3ÞR ×Uð1ÞA the determinant transforms as

detΦ → e6iα detΦ ≠ detΦ; ð15Þ

i.e., as in Eq. (12), one observes an explicit breaking of
Uð1ÞA. The anomalous terms in the Lagrangian are given
by detΦþ detΦ†, see Refs. [43,45] and references therein,
and by ðdetΦ − detΦ†Þ2, see Ref. [2] and references
therein. They generate an additional mass difference
between η and π, as discussed in Ref. [28].
In Ref. [14], four baryonic multiplets were constructed

from the quark-diquark picture. They transform under
chiral transformations as follows:

N1R → URN1RU
†
R; N1L → ULN1LU

†
R;

N2R → URN2RU
†
L; N2L → ULN2LU

†
L;

M1R → ULM1RU
†
R; M1L → URM1LU

†
R;

M2R → ULM2RU
†
L; M2L → URM2LU

†
L: ð16Þ

The chiral transformation matrix acting from the left acts on
the quark, while that on the right acts on the diquark. As
one observes, N1 and N2 transform (as far as transforma-
tion from the left is concerned) in the standard way,
while M1 and M2 transform (from the left) in a mirror
way. These fields behave under parity and charge-con-
jugation transformations as shown in Table III. Baryonic
fields with definite behavior under parity transformations
are introduced as:

BN ¼ N1 − N2ffiffiffi
2

p ; BN� ¼
N1 þ N2ffiffiffi

2
p ;

BM ¼ M1 −M2ffiffiffi
2

p ; BM� ¼
M1 þM2ffiffiffi

2
p ;

where now BN and BM have positive parity and BN� and
BM� have negative parity. In Ref. [14] it was shown that
Nð1535Þ is always the chiral partner of the nucleon, but
depending on the values of the coupling constants of the
underlying Lagrangian, Nð1535Þ can be (predominantly)
a state of the multiplet BM� or of the multiplet BN� . Both
possibilities give a similarly good description of masses
and decay widths (with the notable exception of the decay
Nð1535Þ → Nη). In this work we shall restrict ourselves to
the former possibility, for reasons which will become
apparent below. Thus, in the following the negative-parity
mirror field BM� is regarded as the chiral partner of the
ground-state baryon field BN , while BN� is the chiral
partner of BM. Taking the two-flavor limit, BN → Ψ1

and BM� → Ψ2. While in principle mixing between BN ,
BM, BN� , and BM� takes place, see Ref. [14], in order to
keep the discussion simple we will neglect this for the
remainder of this paper (a detailed study of mixing should,

TABLE III. Parity and charge-conjugation transformations of
the baryonic fields.

Field Parity Charge conjugation

N1R −γ0N2Lðt;−xÞ −iγ2ðN2LÞ⋆
N1L −γ0N2Rðt;−xÞ −iγ2ðN2RÞ⋆
N2R −γ0N1Lðt;−xÞ −iγ2ðN1LÞ⋆
N2L −γ0N1Rðt;−xÞ −iγ2ðN1RÞ⋆
M1R −γ0M2Lðt;−xÞ iγ2ðM2LÞ⋆
M1L −γ0M2Rðt;−xÞ iγ2ðM2RÞ⋆
M2R −γ0M1Lðt;−xÞ iγ2ðM1LÞ⋆
M2L −γ0M1Rðt;−xÞ iγ2ðM1RÞ⋆
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nevertheless, be subject of future work). We thus simply
identify:

BN ≡ fNð939Þ;Λð1116Þ;Σð1193Þ;Ξð1318Þg; ð17Þ

BM ≡ fNð1440Þ;Λð1600Þ;Σð1660Þ;Ξð1690Þg; ð18Þ

BM� ≡ fNð1535Þ;Λð1670Þ;Σð1620Þ;Ξð?Þg; ð19Þ

BN� ≡ fNð1650Þ;Λð1800Þ;Σð1750Þ;Ξð?Þg; ð20Þ

see Eq. (3) for the matrix form. For the full eLSM
Lagrangian for Nf ¼ 3 we refer to Ref. [14] (and for
the mesonic sector to Ref. [2]).

2. The Lagrangian

In terms of the fieldsN1,N2,M1, andM2 the Lagrangian
describing the chiral anomaly is constructed as:

L
Nf¼3

A ¼ λA1ðdetΦ − detΦ†ÞTrðM̄1RN1L − N̄1LM1R

− M̄2LN2R þ N̄2RM2LÞ
þ λA2ðdetΦ − detΦ†ÞTrðM̄1LN1R − N̄1RM1L

− M̄2RN2L þ N̄2LM2RÞ; ð21Þ

where the parameters λA1 and λA2 have dimension
[energy−2]. This term is analogous to the two-flavor
version in Eq. (13). Using Eq. (16), it is easy to show
that chiral invariance under SUð3ÞR × SUð3ÞL is fulfilled,
but due to the determinant, Uð1ÞA is explicitly broken
[see Eq. (15)].
In terms of the fields with definite parity BN, BM, BN� ,

and BM� [which, in the limit of zero mixing, are assigned as
in Eqs. (17)–(20)], the Lagrangian takes the form:

L
Nf¼3

A ¼ λA1 þ λA2
2

ðdetΦ − detΦ†Þ
× TrðB̄M�BN − B̄NBM� − B̄N�BM þ B̄MBN� Þ

−
λA1 − λA2

2
ðdetΦ − detΦ†Þ

× TrðB̄Nγ5BM þ B̄Mγ5BN

þ B̄N�γ5BM� þ B̄M�γ5BN� Þ; ð22Þ

where the γ5 matrix originates from writing out the chiral
projection operators. This Lagrangian is analogous to the
two-flavor version of Eq. (13) upon settingΨ1 ¼ BN ,Ψ2 ¼
BM� and identifying:

λ
Nf¼3

A ¼ λA1 þ λA2
2

:

The first line of Eq. (22) shows that the anomaly gives
contributions to terms which couple mesons to BN and BM�

(as well as BM and BN�), which allows for the possibility of
an enhanced decay of the type

BM� → BNη:

If we identify BM� ≡ fNð1535Þ;Λð1670Þ;Σð1620Þ;Ξð?Þg
as the chiral partners of the ground-state baryons, we are
then naturally lead to the possibility that the anomalous
terms can give rise to an enhanced decay of Nð1535Þ
into Nη. In contrast, the anomaly does not produce terms
where mesons couple to BN and BN� or BM and BM� .
Identifying BN� ≡ fNð1650Þ;Λð1800Þ;Σð1750Þ;Ξð?Þg, it
is then obvious that there is no additional contribution from
the anomaly to the decay of Nð1650Þ into Nη.
While the fit of Ref. [14] to masses and decay widths in

principle also allows for the possibility to identify BN� with
fNð1535Þ;Λð1670Þ;Σð1620Þ;Ξð?Þg, the anomaly would
then not give an enhanced decay width ofNð1535Þ intoNη.
For this reason we discarded this option from the very
beginning of our discussion. Vice versa, requiring a proper
description of the decay width Nð1535Þ → Nη via the
anomaly forces us to discard the scenario where
BN� ≡ fNð1535Þ;Λð1670Þ;Σð1620Þ;Ξð?Þg.
In conclusion, just as we have seen in Sec. II, the

anomaly could explain decays involving the η mesons,
which are enhanced above the values predicted by flavor
symmetry alone. We finally note that the second line of
Eq. (22) describes interactions of the (pseudo)scalar mes-
ons with two baryons of equal parity. However, decays
involving the η meson are kinematically forbidden.
The present discussion of the anomaly shows that

Nð1535Þ, Λð1670Þ, Σð1620Þ, Ξð?Þ are predominantly the
chiral partners of the ground-state baryons. However, even
if the states Nð1535Þ and N are (predominantly) chiral
partners, there is no mass degeneracy (indeed, the ratio
MNð1535Þ−MNð1940Þ

2ðMNð1535ÞþMNð1940ÞÞ ∼ 50% shows a large effect of spontaneous

symmetry breaking) and the interaction of Nð1535Þ with
Nπ is not small, as the corresponding decay rate shows.
Similar considerations hold for the other members of the
multiplet. The situation is expected to be different for
heavier baryons, where a mass degeneracy between chiral
partners and weak interactions with pions (as well as kaons
and the η8 meson) are expected [46–48]. Our chiral model
takes these features into account in a natural way: namely,
when the chiral condensate ϕN → 0, one recovers the
degeneracy of Nð1535Þ and N and the decay Nð1535Þ →
Nπ vanishes. Thus, we expect that such a model is
suitable to perform a detailed study of pp̄ scattering in
the future. [For a first study in this direction, see Ref. [49],
where nucleon-nucleon scattering close to threshold is
studied within the eLSM. A study of pp → ppX where
X ¼ ω; ρ;…, is currently ongoing. Another interesting
application of pp̄ scattering is connected to the search
for a putative pseudoscalar glueball, see Sec. V.]
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Interestingly, as discussed in Ref. [47], models based on
chiral doublets can be useful to understand massive
baryons. Heavy baryons can be described by a larger value
of m0 (which, in turn, implies a minor role of spontaneous
symmetry breaking in generating their masses).

3. Consequences of the anomaly

We now discuss the consequences of the chiral anomaly.
Using the matrix form (14) of the (pseudo)scalar meson
field Φ, one has

detΦ − detΦ† ¼ i

2
ffiffiffi
2

p ½ZηSϕ
2
NηS þ 2ZηNϕNϕSηN � þ � � � ;

ð23Þ
where spontaneous symmetry breaking has been taking into
account via the shifts σN → ϕN þ σN and σS → ϕS þ σS. In
the following, for all constants we use the numerical values
as given in Ref. [2]. For instance, the vacuum expectation
values are ϕN ¼ 164.6 MeV and ϕS ¼ 126.2 MeV. Due
to the fact that (axial-)vector degrees of freedom are
present in the eLSM, also wave-function renormalization
factors occur, leading to the field redefinitions π → Zππ,
ηN → ZηNηN , ηS → ZηSηS, and K� → ZKK�. Here,
Zπ ¼ ZηN ¼ 1.79, ZηS¼1.47, and ZK¼1.56, for details,
see Ref. [2].
Equation (23) shows that detΦ − detΦ† is proportional

to the fields ηS and ηN (the dots refer to further non-linear
terms in the fields). In the Uð3ÞV-limit (with ϕN ¼ ffiffiffi

2
p

ϕS),
one has

detΦ − detΦ† ¼ iZπ

2

ffiffiffi
3

2

r
ϕ2
Nη0 þ � � �

where, as expected, the isosinglet-pseudoscalar combina-
tion η0 ¼ ð ffiffiffi

2
p

ηN þ ηSÞ=
ffiffiffi
3

p
enters. Thus, the anomaly term

of Eq. (22) causes an enhanced interaction with the flavor-
singlet field η0 ¼

ffiffiffi
2

p
TrP. Note that in terms of physical

fields one has:

η0 ¼
ffiffiffi
2

p
TrP ¼ ηffiffiffi

3
p ð

ffiffiffi
2

p
cos θP þ sin θPÞ

þ η0ffiffiffi
3

p ðcos θP −
ffiffiffi
2

p
sin θPÞ:

Using θP ¼ −44.6° [2], one obtains η0 ¼ 0.18ηþ 0.98η0.
We now turn to the interaction with baryons and to

one particular term which has a nonzero contribution to
decays. Restricting ourselves to the fields BN and BM� , the
interaction Lagrangian takes the form

L
Nf¼3

A ¼ i~λATrðB̄M�BN − B̄NBM� ÞTrPþ � � � ; ð24Þ

with

~λA ¼ λA1 þ λA2
2

ffiffiffi
3

p
Zπ

2
ϕ2
N;

where dots refer to interactions with more than one
mesonic field and to flavor-breaking terms. Here, we recall
that BN ≡ fNð939Þ;Λð1116Þ;Σð1193Þ;Ξð1338Þg and
BM� ≡ fNð1535Þ;Λð1670Þ;Σð1620Þ;Ξð?Þg. Identifying
BN ≡O and BM� ≡O� (see Sec. II, first model) we thus
recognize that the anomaly yields a term of the form
i~λATrðŌO� − Ō�OÞTrP, cf. Eq. (5). Hence, by taking
into account the axial anomaly, we obtain an improved
flavor model:

Limproved
V ¼ LV þ L

Nf¼3

A

¼ iλVTrðŌPO� − Ō�POÞ
þ i~λATrðŌO� − Ō�OÞTrP: ð25Þ

By using the decay widths of Nð1535Þ → Nη, we obtain
the following values of the parameters:

~λA ¼ 11� 0.6;

and

λ
Nf¼3

A ¼ λA1 þ λA2
2

¼ ð264� 13Þ GeV−2:

Besides the decay width of Nð1535Þ → Nη, it was not
possible to reproduce the decay width of Λð1670Þ → Λη in
a model with flavor symmetry only, compare Table I. Now,
including the anomaly term (22), the model reproduces this
decay width properly:

ΓΛð1670Þ→Λη ¼ ð8.7� 0.4Þ MeV:

According to Ref. [1] the numerical value should lie in
the range of (2.5–12.5) MeV, see Table I. Hence, the
increase caused by the anomaly is in very good agreement
with the present experimental value. [Note that there is a
second solution, which is realized for ~λA ¼ −19� 0.6, or
ðλA1 þ λA2Þ=2 ¼ ð−451� 13Þ GeV−2. However, this sol-
ution implies that ΓΛð1670Þ→Λη ¼ ð51� 4Þ MeV, which is
unacceptably large.] Other decays into the η meson are
kinematically forbidden.
Another interesting consequence of the anomaly is the

enhanced coupling of the nucleon N and its chiral partner
N� to η0. When expanding the Lagrangian Limproved

V one
obtains:

Limproved
V ¼ igηNN�ηðN̄�N − N̄N�Þ

þ igη0NN�η
0ðN̄�N − N̄N�Þ

þ igπNN�π · ðN̄�τN − N̄τN�Þ þ � � � ;
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where

gηNN� ¼
iλV
2

cos θP þ i~λAffiffiffi
6

p ð
ffiffiffi
2

p
cos θP þ sin θPÞ≃ 1.9;

gη0NN� ¼
iλV
2

sin θP þ i~λAffiffiffi
6

p ð−
ffiffiffi
2

p
sin θP þ cos θPÞ≃ 7.2;

gπNN� ≃ −
λV
2

¼ −0.7:

When the anomaly is neglected, ~λA ¼ 0, we have gηNN�≃
jgη0NN� j≃ 0.5. Hence, our results confirm that the anomaly
leads to an increased coupling of N and N� to η0. This result
is in qualitative agreement with Ref. [50], where gη0NN� ≃
3.7 was found by studying scattering processes of the type
pn → pnη0. Scattering processes can also be studied within
the eLSM, see Ref. [49]. We leave a more detailed
discussion of this issue for future work.

IV. INTERACTIONS OF THE PSEUDOSCALAR
GLUEBALL WITH BARYONS

The search for glueballs is an interesting topic in
hadronic physics [51–55]. Quenched lattice-QCD calcu-
lations [56] predict a rich glueball spectrum. Unquenched
lattice-QCD studies confirm these results [57], but the
mixing of glueballs with ordinary mesons could not yet be
determined. In the future, the ongoing BESIII [58] and,
most importantly, the planned PANDA experiments [27]
can shed light on these missing states of QCD. In the
framework of the eLSM, glueballs were studied in
Refs. [41,59–63]. In particular, the pseudoscalar glueball
is directly linked to the chiral anomaly [60,61]. The
mathematical formalism developed in this paper allows
to couple the pseudoscalar glueball to baryons.
We first consider the two-flavor case. The coupling of the

pseudoscalar glueball ~G to pseudoscalar mesons reads [61]:

L
Nf¼2

~GΦ
¼ g

Nf¼2

~GΦ
~GðdetΦ − detΦ†Þ;

whereΦ is the 2 × 2matrix given in Eq. (10). The coupling

constant g
Nf¼2

~GΦ
has dimension [energy]. The coupling to the

glueball is obtained from Eq. (13) by replacing the
determinant term with ~G (for a preliminary discussion of
this coupling, see Ref. [61]):

L
Nf¼2

~GΦ
¼ ig

Nf¼2

~GΦ
~GðΨ̄2Ψ1 − Ψ̄1Ψ2Þ

¼ −i
g
Nf¼2

~GΦ
cosh δ

~GðN̄γ5N þ N̄�γ5N�

− sinh δN̄N� þ sinh δN̄�NÞ: ð26Þ

In the limit of zero mixing (δ → ∞), Ψ1 ¼ N and
Ψ2 ¼ −N�. Hence, the interaction shows that a strong

coupling of ~G to NN� is realized. When mixing is present
(δ < ∞), one obtains

Γ ~G→N̄N ¼ ðgNf¼2

~GΦ
Þ2pNN

f

4πcosh2δ
;

Γ ~G→N̄N�þH:c: ¼
ðgNf¼2

~GΦ
Þ2tanh2δ

4πM2
~G

× ½M2
~G
− ðmN þmN� Þ2�pN�N

f ;

where

pNN
f ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

~G

4
−m2

N

s

and

pN�N
f ¼ 1

2M ~G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

~G
−m2

N� −m2
NÞ2 − 4m2

N�m
2
N

q

are the absolute values of the momenta of the final particles.
Hence the ratio reads:

Γ ~G→N̄N

Γ ~G→N̄�NþH:c:
¼ M2

~G

2sinh2δ½M2
~G
− ðmN þmN� Þ2�

pNN
f

pN�N
f

:

Using Eq. (9) and the value m0 ¼ ð460� 136Þ MeV from
Ref. [13] as well as the pseudoscalar glueball mass of
M ~G ¼ 2.6 GeV [56], the numerical value of this ratio is

Γ ~G→N̄N

Γ ~G→N̄�NþH:c:
≃ 1.96:

Thus, ~G → N̄N is only slightly larger than ~G → N̄�N, even
if it has a much larger phase space. Neglecting phase space,
one has:

M2
~G

2sinh2δ½M2
~G
− ðmN þmN�Þ2�

≃ 0.85;

which shows that the coupling of ~G to N̄�N is expected to
be sizable. While the numerical value depends onm0 and is
therefore model-dependent, a strong decay ~G → N̄�N can
be viewed as a rather solid prediction. For this reason, it
seems promising to search for the pseudoscalar glueball in
the process

pþ p̄ → pþ p̄ð1535Þ þ H:c: ð27Þ

at the future PANDA experiment [27].
Let us now turn to the generalization to Nf ¼ 3. The

coupling to ordinary mesons has the same formal expres-
sion as in Eq. (26),
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L
Nf¼3

~GΦ
¼ g

Nf¼3

~GΦ
~GðdetΦ − detΦ†Þ;

but now Φ is the 3 × 3 matrix of Eq. (14) and g
Nf¼3

~GΦ
¼

g
Nf¼2

~GΦ
=ϕS is dimensionless. This Lagrangian was studied in

detail in Ref. [61]. Concerning baryons, we follow the same
procedure by replacing detΦ − detΦ† with the glueball
field ~G in Eq. (22), obtaining the Uð3ÞL ×Uð3ÞR-
symmetric expression

L
Nf¼3

~GB
¼ i

~g1 þ ~g2
2

~GTrðB̄M�BN − B̄NBM�

− B̄N�BM þ B̄MBN� Þ

− i
~g1 − ~g2

2
~GTrðB̄Nγ5BM þ B̄Mγ5BN

þ B̄N�γ5BM� þ B̄M�γ5BN� Þ:

From this expression, one expects a strong coupling of ~G to
B̄M�BN , B̄MBN� , B̄Nγ5BM, and B̄M�γ5BN� . By taking into
account the pseudoscalar glueball mass of 2.6 GeV [56],
there are only a few kinematically allowed decays.
Summarizing, one expects the following sizable decays:

~G → Nð1440ÞN;

~G → Nð1535ÞN:

(The latter agrees with theNf ¼ 2 case, as it should.) When
mixing among baryons is considered, also the decay
~G → N̄N emerges for Nf ¼ 3. While this coupling is
important because it also induces the production of the
glueball in proton-antiproton scattering, the corresponding
amplitude should be smaller than ~G → Nð1535ÞN.
In conclusion, the present status of the search for the

pseudoscalar glueball is still uncertain. However, decays
into baryons seem to be potentially promising candidates to
look for this elusive state. Also, the production of the
pseudoscalar glueball in proton-antiproton scattering, see
Eq. (27), is expected to be relevant.
Concerning the practical search of the pseudoscalar

glueball at PANDA (and at other experiments), much
depends on the phenomenological properties of the glueball
and nearby states. Assuming that the lattice-QCD estimate is
correct (i.e., the glueball JPC ¼ 0−þ has a mass of about
2.6 GeV), a crucial question is the coupling strength of the
glueball to mesons (which could not be evaluated in
Refs. [60,62]). If the glueball turns out to be relatively
narrow (as suggested by large-Nc arguments, see the recent
discussion in Ref. [64]), its experimental discovery will be
easier. Another important feature is the existence of nearby
pseudoscalar-isoscalar mesons (i.e., particles of the η-type):
in the most favorable scenario, there is only one state whose
decays are compatible with those of the pseudoscalar glue-
ball. If other q̄q states are present, one should performamore

detailed studyofmixingof the pseuodscalar-isoscalar sector.
Undoubtedly, in the latter scenario the identification of the
pseudoscalar glueball would be more difficult.

V. SUMMARY AND CONCLUSIONS

A simple model which features only flavor symmetry
cannot describe the decaysNð1535Þ → Nη andΛð1670Þ →
Λη; the numerical values for these decays are underesti-
mated. On the contrary, Nð1650Þ → Nη and Λð1800Þ →
Λη are in agreement with flavor symmetry. We have argued
that, in the context of the mirror assignment for baryons,
one can naturally add a term that embodies the axial
anomaly in the baryonic sector. This term induces an
additional interaction of the chiral partners with ground-
state baryons and the η meson. We have first discussed the
consequences of this idea for the simpler two-flavor case
and then extended it to the three-flavor case. In the latter,
one can show that, after fixing the decay width for
Nð1535Þ → Nη, the decay Λð1670Þ → Λη can be also
correctly described. Another result of our approach is a
strong Nð1535ÞNη0 coupling.
Finally, we studied the coupling of a putative pseudo-

scalar glueball to baryons by using the fact that the
mathematical structure of this coupling resembles very
closely that of the axial anomaly. We have found that the
pseudoscalar glueball couples strongly to Nð1535ÞN
and possibly to Nð1440ÞN. It is therefore expected that
the pseudoscalar glueball can be seen in the future PANDA
experiment [27] by studying the process pþ p̄ →
pþ p̄ð1535Þ þ H:c.
As an outlook of the present work, we plan to study the

Nf ¼ 3 eLSM in full detail by evaluating the mixing
among the four different baryonic octets. The anomaly
studied in this work represents an important aspect of this
investigation.
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APPENDIX A: DECAY WIDTHS OF THE
(IMPROVED) FLAVOR MODEL

In this Appendix we present the full expression of the
(improved) flavor Lagrangian of Eq. (25), Limproved

V ¼
LV þ L

Nf¼3

A . This Lagrangian contains the original flavor

model LV introduced in Sec. II, see Eq. (4), as well as the

influence of the anomaly contained in L
Nf¼3

A discussed in
Sec. III B, see Eq. (24). After evaluating the traces, we
extract the following terms describing decays into π, K, η,
and η0:

Limproved
V ¼ iλV

2
ffiffiffi
3

p Λ̄ðπ · Σ�Þ þ
iλV
2

ffiffiffi
3

p ðΣ̄ · πÞΛ� þ
iλV
2

Σ̄ · ðπ × Σ�Þ þ
iλV
2

N̄ðπ · τÞN�

þ iλV
6

Λ̄ðηN þ i2
ffiffiffi
2

p
ηSÞΛ� þ

iλV
2

Σ̄ηNΣ� þ
iλV
4

ffiffiffi
2

p Ξ̄ηSΞ� þ
iλV
2

N̄ηNN�

−
iλVffiffiffi
3

p Λ̄K · Ξ� þ
iλV
2

ffiffiffi
3

p N̄ · KΛ� −
iλV
2

KTðΣ̄ · τÞΞ�

þ iλVffiffiffi
3

p Λ̄ðK̄ · N�Þ −
iλV
2

ffiffiffi
3

p Ξ̄ · K̄Λ� −
iλV
2

Ξ̄ðΣ� · τÞK̄

þ i~λA
2

ffiffiffi
3

p ð
ffiffiffi
2

p
ηN þ ηSÞ½Λ̄Λ� þ Σ̄Σ� þ Ξ̄Ξ� þ N̄N�� þ H:c: ðA1Þ

Because of the existing experimental data [1], we are
especially interested in the decays of excited baryon
resonances into ground-state baryons and a pseudoscalar
meson, π, η, or K̄. The Lagrangian describing the decay of a
resonance B� into a ground-state baryon B and a pseudo-
scalar meson P ¼ π, η, K̄ has the general structure

L ¼ igPBB�B̄PB�;

where the explicit expressions for the coupling constants
gPBB� can be obtained from the respective terms of the
Lagrangian (A1) and are listed in Table IV. The respective
tree-level decay widths can be calculated as

ΓB�→BP ¼ γPBB�
pf

8πm2
B�

jiMB�→BPj2

¼ γPBB�
pf

mB�

g2PBB�
4π

ðEB þmBÞ;

where EB is the baryon energy in the rest frame of the
decaying B�, while the magnitude of the three-momenta of
the decay products is

pf ¼
1

2mB�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

B� −m2
B −m2

PÞ2 − 4m2
Bm

2
P

q
:

The factor γPBB� takes into account the isospin of the
involved particles. The respective values are listed in
Table IV.
In the case P ¼ η one has to remember that the physical η

is a mixture of the pseudoscalar octet and the singlet, see
Sec. II, Eq. (2). In this paper we have chosen θP ¼ −44.6°
obtained from Ref. [2]. The amplitude for a decay involving
η is given by

MB�→Bη ¼ cos θPMB�→BηN þ sin θPMB�→BηS :

In this case the coupling constant gηBB� is defined as a
mixture of the constants of the nonstrange and the strange
sector:

gηBB� ¼ gηNBB� cos θP þ gηSBB� sin θP:

The results in Tables I and II were obtained by setting the
effects of the anomaly to zero, ~λA, while in Sec. III B the
effects of ~λA on decays and couplings have been studied.

TABLE IV. Coupling constants gPBB� and γPBB� factors ac-
counting for isospin.

Decay gPBB� γPBB�

Σ� → Λπ iλV
2
ffiffi
3

p 1

Λ� → Σπ iλV
2
ffiffi
3

p 3

Σ� → Σπ iλV
2

2

N� → Nπ iλV
2

3

Λ� → Λη iλV
6
cos θP þ i~λAffiffi

6
p ð ffiffiffi

2
p

cos θP þ sin θPÞ 1

Σ� → Ση iλV
2
cos θP þ i~λAffiffi

6
p ð ffiffiffi

2
p

cos θP þ sin θPÞ 1

Ξ� → Ξη iλV
4
ffiffi
2

p cos θP þ i~λAffiffi
6

p ð ffiffiffi
2

p
cos θP þ sin θPÞ 1

N� → Nη iλV
2
cos θP þ i~λAffiffi

6
p ð ffiffiffi

2
p

cos θP þ sin θPÞ 1

Ξ� → ΛK̄ − i2λV
2
ffiffi
3

p 1

Λ� → NK̄ iλV
2
ffiffi
3

p 1

Σ� → NK̄ iλV
2

2
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APPENDIX B: LARGE-Nc SCALING PROPERTIES

In the large-Nc limit, baryons are formed by Nc quarks
and their mass grows with Nc [16], mB ∝ Nc. Indeed, its
color wave function can be expressed as

B≡ εa1a2…aNc qa1qa2…qaNc

with ak ¼ 1; 2;…; Nc. In line with our approach, we may
present a baryon in the large-Nc limit as an (Nc − 1)-quark
and a quark. An (Nc − 1)-quark is a generalization of the
diquark:

Da1 ≡ εa1a2…aNc qa2…qaNc :

As a consequence also the mass of a generalized diquark
scales as Nc, mD ∝ Nc. Moreover, the baryon can still be
expressed as a “generalized diquark”-quark object:

B≡Da1qa1 :

The basic diagram is the mass energy of a baryon, see
Fig. 1. Since the baryon mass must grow with Nc, the
coupling constant gB−Dq scales as

ffiffiffiffiffiffi
Nc

p
, in such a way that

the whole amplitude corresponding to Fig. 1 contributes as
ðgB−Dq

1
mD

gB−DqÞNc ∝ Nc (where the overall factor Nc

arises from the circulating color a1).
The dominant interaction of a baryon with a meson is

depicted in Fig. 2 and scales as

�
gB−Dq

1

mD
gM−q̄qgB−Dq

�
Nc ∝

ffiffiffiffiffiffi
Nc

p
;

where we have used that the coupling of a standard meson
to q̄q scales ∼gM−q̄q ∝ 1=

ffiffiffiffiffiffi
Nc

p
, in agreement with

Ref. [16]. Figure 2 corresponds to the dominant term in
our interaction Lagrangian of Eq. (4). The terms in the
parenthesis correspond to the various elements of the
diagram; the generalized diquark, being heavy, contributes
as 1=mD ∝ 1=Nc. An overall factor Nc emerges for the
same reasons as in Fig. 1.
We now show that this term corresponds to the term of

Eq. (4). By rendering the flavor indices in the flavor traces
explicit (see Ref. [14] for details), and remembering that a

baryon is a diquark-quark object (Oij ≡Djqi) and a meson
a quark-antiquark object (Pij ≡ q̄jqi), the first term of
Eq. (4) is

iλVTr½ŌPO�� ¼ iλVŌijPjkOki

≡ iλVðq̄jD̄iÞðq̄kqjÞðDiqkÞ:

It is evident that the quark lines of the diquark field are
closed (same index i), while the quark lines of the in- and
outgoing baryons are linked to the produced meson, just as
Fig. 2 shows.
Next, we consider the case where the outgoing meson

emerges from (at least) two gluons forming a white
configuration. The corresponding diagrams are presented
in Fig. 3 (the second diagram uses the double-quark line
notation for the gluons and helps to clarify the Nc
counting). The large-Nc scaling of this contribution is

�
gB−Dq

1

mD
gM−q̄qg4QCDgB−Dq

�
N2

c ∝
1ffiffiffiffiffiffi
Nc

p ;

where one factor of Nc arises from the color circulating in
the main part of the diagram (as in Figs. 1 and 2) and
another one from the color circulating in the loop created by
the digluon exchange. The whole diagram is hence sup-
pressed by a factor Nc with respect to the dominant term.
This interaction corresponds to the term proportional to γV
in Eq. (5). Namely:

iγVTr½ŌO��Tr½P� ¼ iγVŌijOjiPkk

≡ iγVðq̄jD̄iÞðDiqjÞðq̄kqkÞ;

where it is clear that the flavor of the external meson is not
exchanged with the quark of the baryon. This term
generates also a coupling of the type N̄�NηS, which is
not possible for the dominant term proportional to λV .
Namely, a strange-antistrange pair can be attached to a
baryon-baryon coupling only via a digluon in a white
configuration.FIG. 1. Mass energy of the baryon.

FIG. 2. Dominant baryon-meson interaction term.
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In the pseudoscalar channel, one can intuitively
understand this term via the exchange of two gluons
in the pseudoscalar configuration, whose coupling is
ðq̄jD̄iÞðDiqjÞGa

μν
~Ga;μν. Then, Ga

μν
~Ga;μν couples to the

singlet configuration η0 ≡ q̄bkq
b
k via η0 Ga

μν
~Ga;μν. The

quantity Ga
μν
~Ga;μν is related to the QCD axial anomaly,

which increases the amplitude for the production of η0, as
described at length in the main text.
The last term that needs to be studied is iβVTr½ŌO�P�.

Contrary to naive expectations, this is the most subtle and
difficult one. The flavor structure reads

iβVTr½ŌO�P� ¼ iβVŌijOjkPki

≡ iβVðq̄jD̄iÞðDkqjÞðq̄iqkÞ:

Here, one observes that the quark-antiquark pair of the
meson couples to the diquark, while the single quark line
with flavor j goes through undisturbed. Recalling that
Di ¼ εimnqmqn, various terms exist. For instance, for i ¼ 3

and k ¼ 3 the coupling term D̄3D3ðq̄3q3Þ implies the
transition ½u; d� → ½u; d�s̄s, which shows the emergence
of an s̄s pair from a non-strange structure, hence this term

must be large-Nc suppressed. On the other hand, for
i ¼ 2 and k ¼ 3 one has D̄2D3ðq̄2q3Þ, which implies
½u; s� → ½u; d�d̄s, therefore at first glance simple flavor-
connected diagrams seem to be possible. However, when
color is taken into account the situation is not that simple.
Restoring the color indices, the interaction term reads

iβVðq̄aj D̄a
i ÞðDa

kq
a
j Þðq̄ai qakÞ; ðB1Þ

which means that transitions of the type ½R;G� → ½R;G�B̄B
occur (for a ¼ 3, Nc ¼ 3 and Da ¼ εabcqbqc), i.e., color
changes. Note that we keep only one color index for
simplicity; other diagrams with different color lines exist,
but they are either of the same order in large Nc (hence, can
be formally reabsorbed in the hadron-quark vertices) or
they are further suppressed. The color index being the same
for all objects in Eq. (B1) and in virtue of the Levi-Civita
tensor defining the diquarks, only those transitions are
allowed in which the emerging color-anticolor is different
from the one carried by the quarks of the diquark:

D̄a
i D

a
kðq̄ai qakÞ ¼ ½εabcεirsq̄br q̄cs �½εab0c0εkr0s0qb0r0 qc

0
s0 �ðq̄ai qakÞ:

In the case i ¼ 2 and k ¼ 3 as mentioned above, one has
(upon setting a ¼ 3) D̄3

2D
3
3q̄

3
2q

3
3, hence a transition of the

type sRuG → uRdGðd̄BsBÞ follows. This transition is not
possible by simply exchanging quark lines, but additional
gluons that properly switch color are necessary. Instead of
searching for these gluon configurations, we use an alter-
native elegant way to achieve these transitions by taking
into account all the features listed above: we make use of an
additional white intermediate virtual baryon, as depicted in
Fig. 4. Namely, in this way one automatically couples a
diquark to a quark with the right “missing” color.
Moreover, the large-Nc scaling of this can be easily
calculated by using the previously introduced scaling
properties:

FIG. 3. Baryon-meson interaction with intermediate gluons,
where the first diagram represents the favor flow, and the second
one represents the color flow.

FIG. 4. Baryon-meson interaction with an intermediate virtual
baryon.
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�
gB−Dq

1

mD
gB−DqgM−q̄q

1

mB
gB−Dq

1

mD
gB−Dq

�
Nc

∝ N−1=2
c :

In the end, this term is also suppressed with Nc and βV
scales as 1=

ffiffiffiffiffiffi
Nc

p
, just as γV .

The above considerations can be carried out for arbitrary
Nc in a straightforward way provided that the number of
flavors Nf equals Nc. Namely, in this way the generalized
diquark reads Da

k ¼ εaa2…aNc εkk2…kNc qi2;k2…qikNc and all
the traces above are defined in a way similar to the physical

case Nf ¼ Nc ¼ 3. Extensions to Nf ≠ Nc, are possible,
but would require a more detailed study, which goes
beyond the scope of the present work. Here, large-Nc
arguments are needed to distinguish dominant and sub-
dominant terms.

APPENDIX C: EXPLICIT EXPRESSIONS FOR
THE DECAY WIDTHS IN THE ELSM FOR Nf = 2

The inclusion of the anomaly term (13) into the model of
Ref. [13] yields an additional contribution to the decay
width of N� → Nη:

ΓN�→Nη ¼ Γwithout anomaly
N�→Nη þ λη

pf

2π

mN

mN�

Z2

2
λAϕN

��
−
1

2
ðĝ1 − ĝ2Þ

sinh δ
cosh2δ

þ λAϕN tanh2δ

��
EN

mN
þ 1

�

−
1

2
wðc1 þ c2Þ

sinh δ
cosh2δ

�
m2

N� −m2
N −m2

η

2mN
þ Eη

��
;

with

Γwithout anomaly
N�→Nη ¼ λη

pf

2π

mN

mN�

Z2

32cosh2δ

�
ðĝ1 − ĝ2Þ2

�
EN

mN
þ 1

�

þ w2ðc1 þ c2Þ2
�
ðm2

N� −m2
N −m2

ηÞ
Eη

mN
þm2

η

�
1 −

EN

mN

��

þ2ðĝ1 − ĝ2Þwðc1 þ c2Þ
�
m2

N� −m2
N −m2

η

2mN
þ Eη

��
;

where the constants ĝ1 ¼ 10.2� 0.7, ĝ2 ¼ 17.3� 0.8,
c1 ¼ −2.65� 0.18, c2 ¼ 10.2� 2.6, Z ¼ 1.81 were ob-
tained in Ref. [21] and parametrize the interactions of
baryonic fields with scalar and pseudoscalar mesons. The
factor λη ¼ cos2 θP (θP ¼ −40° in Ref. [21]) takes into
account the mixing of Eq. (2), where it is assumed that the
amplitude of the decay N� → NηS is suppressed (this is not
in agreement with the anomaly term studied here; this is
why in Ref. [13] a too small decayN� → Nηwas obtained).
Furthermore, we introduced the energy of the nucleon and
the η meson together with the modulus of the three-
momentum of the two outgoing particles:

EN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
f þm2

N

q
; Eη ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
f þm2

η

q
;

with

pf ¼ 1

2mN�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

N� −m2
N −m2

ηÞ2 − 4m2
Nm

2
η

q
:

The new constant λA influences only the η decay and
therefore it can be chosen such that it correctly describes
the decay width of N� → Nη. Choosing

λ
Nf¼2

A ¼ 0.006 MeV−1 or λ
Nf¼2

A ¼ −0.011 MeV−1

allows for a correct description of the decay Nð1535Þ→Nη.

APPENDIX D: ADDITIONAL DETAILS
FOR THE ANOMALY TERM FOR Nf = 3

We now turn in more detail to the interaction with
baryons discussed in Sec. III B. To this end, we simplify the
notation by introducing the vectors

X ≔ ðXN; γ5XN� ; XM; γ5XM� ÞT;
X̄ ≔ ðX̄N;−X̄N�γ5; X̄M;−X̄M�γ5Þ:

They combine the four types of particles or resonances
which are included in the baryon octet, i.e., X ¼ N,Λ, Σ, or
Ξ. In this way, we can write the anomaly Lagrangian in a
very compact form:

L
Nf¼3

A ¼ −iX̄γ5η̂ANηNX − iX̄γ5η̂ASηSX þ � � � ;

where we omitted all terms describing four- and five-point
interactions. In this expression η̂AN and η̂AS are 4 × 4matrices
containing the coupling constants:
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η̂AN ¼ ZηNϕNϕS

2
ffiffiffi
2

p

0
BBB@

0 0 λA1 − λA2 λA1 þ λA2

0 0 −ðλA1 þ λA2Þ −ðλA1 − λA2Þ
λA1 − λA2 −ðλA1 þ λA2Þ 0 0

λA1 þ λA2 −ðλA1 − λA2Þ 0 0

1
CCCA;

η̂AS ¼ ZηSϕ
2
N

4
ffiffiffi
2

p

0
BBB@

0 0 λA1 − λA2 λA1 þ λA2

0 0 −ðλA1 þ λA2Þ −ðλA1 − λA2Þ
λA1 − λA2 −ðλA1 þ λA2Þ 0 0

λA1 þ λA2 −ðλA1 − λA2Þ 0 0

1
CCCA:

We see that the anomaly Lagrangian describes inter-
actions of the η meson with two baryons with different
parity, indicated by the index combinations ðN;M�Þ or
ðM;N�Þ, or with equal parity, indicated by the index
combination ðN;MÞ or ðN�;M�Þ.
With the definition of the X vector of fields introduced

above, also the interaction Lagrangian involving the pseu-
doscalar glueball (discussed in Sec. IV) can be rewritten in
a compact form:

LNf¼3
~GB

¼ −X̄γ5Ĝ ~GX;

where the 4 × 4 matrix Ĝ contains the coupling
constants:

Ĝ¼ 1

2

0
BBB@

0 0 ~g1 − ~g2 ~g1 þ ~g2
0 0 −ð~g1 þ ~g2Þ −ð~g1 − ~g2Þ

~g1 − ~g2 −~g1 þ ~g2Þ 0 0

~g1 þ ~g2 −ð~g1 − ~g2Þ 0 0

1
CCCA:

At present, the coupling constants ~g1 and ~g2 are
unknown.
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