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Magnetic properties of octet baryons are investigated within the framework of chiral perturbation theory.
Utilizing a power counting for large magnetic fields, the Landau levels of charged mesons are treated
exactly giving rise to baryon energies that depend nonanalytically on the strength of the magnetic field. In
the small-field limit, baryon magnetic moments and polarizabilities emerge from the calculated energies.
We argue that the magnetic polarizabilities of hyperons provide a testing ground for potentially large
contributions from decuplet pole diagrams. In external magnetic fields, such contributions manifest
themselves through decuplet-octet mixing, for which possible results are compared in a few scenarios.
These scenarios can be tested with lattice QCD calculations of the octet baryon energies in magnetic fields.
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I. INTRODUCTION

Studying the response of systems to external conditions
is a central theme that appears in many branches of physics.
In quantum field theory, the external field problem was
pioneered long ago in the context of QED by Schwinger
[1], yet, in a deeply insightful and modern way. For QCD,
the color fields are confined within hadrons, but the quarks
nonetheless carry charges that couple to other currents in
the standard model. The QCD external field problem allows
one to probe the rich behavior of strongly interacting
systems under external conditions, including the modifi-
cation of vacuum and hadron structure due to external
electromagnetic fields. These dynamics, moreover, are
likely relevant to describe the physics in the interiors of
magnetars [2–4] and in noncentral heavy-ion collisions
[5–7], for which large magnetic fields upwards of
∼1019Gauss are conceivable. A comprehensive overview
of quantum field theories in external magnetic fields
appears in Ref. [8].
While relevant in certain physical environments, the

external field problem also provides a useful computational
tool. For nonperturbative QCD calculations using lattice
gauge theory, the external field technique has proven
valuable. Uniform magnetic fields, for example, were

employed in the very first lattice QCD computations of
the nucleon magnetic moments [9,10]. Since then, calcu-
lations continue to exploit features of the external field
technique, such as in computing electromagnetic polar-
izabilities [11–22], which would otherwise require the
determination of computationally expensive four-point
correlation functions; and, in computing the magnetic
properties of light nuclei [23–25], for which even three-
point correlation functions are not currently practicable for
calculations. Additional studies explore the behavior of
QCD in large magnetic fields, for example, the modifica-
tion of nucleon-nucleon interactions [26], and effects on the
phase diagram of QCD [27–32].
In this work, we explore the behavior of octet baryon

energies in large magnetic fields. This investigation is
carried out within the framework of chiral perturbation
theory, which can be used to study, in a model-independent
fashion, the modification of vacuum and hadron structure
in large electromagnetic fields; see Refs. [33–39]. One
motivation for this study is the prohibitive size of magnetic
fields required in lattice QCD computations. Uniform
magnetic fields on a torus are subject to ‘t Hooft’s
quantization condition [40], which restricts such field
strengths to satisfy eB ¼ 6πn=L2, where L is the spatial
extent of the lattice, n is an integer, and the factor of 3 arises
from the fractional nature of the quark charges. Assuming
mπL ∼ 4, the allowed magnetic fields satisfy eB=m2

π∼
1.2n. External field computations of hadron properties
require several values of the magnetic field, moreover,
leading us to consider eB=m2

π ∼ 3–4 for the extraction of
polarizabilities, which enter as a quadratic response to the
magnetic field. In this regime, chiral corrections from
charged-pion loops are altered by Landau levels. The same

*adeshmukh@gradcenter.cuny.edu
†btiburzi@ccny.cuny.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 97, 014006 (2018)

2470-0010=2018=97(1)=014006(21) 014006-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.97.014006&domain=pdf&date_stamp=2018-01-12
https://doi.org/10.1103/PhysRevD.97.014006
https://doi.org/10.1103/PhysRevD.97.014006
https://doi.org/10.1103/PhysRevD.97.014006
https://doi.org/10.1103/PhysRevD.97.014006
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


is true for charged-kaon loops, although their alteration is
comparatively less important. Both effects are addressed in
the present work1; and, while they cannot be treated
perturbatively in powers of the magnetic field, these effects
lead to modifications of baryon energies that are never-
theless of a reasonably small size.
An additional feature appears in the magnetic-field

dependence of octet baryon energies, namely, that of
mixing with decuplet baryons. Indeed, this complicating
feature can be anticipated from studying the magnetic
polarizabilities of the nucleon. The determination of
nucleon electromagnetic polarizabilities using chiral per-
turbation theory has been the subject of continued effort
[41–52]; and there are a number of reviews focusing on
different aspects of the subject [53–57]. The computation of
nucleon electric polarizabilities has remained relatively
uncontroversial, and the leading one-loop computation is
already in good agreement with experimental determina-
tions. The magnetic polarizabilities, by contrast, have
proved challenging due to large paramagnetic contributions
from the delta-pole diagram, and correspondingly large
diamagnetic contributions from higher-order, short-
distance operators. A central observation of the present work
is that these contributions can be disentangled in external
magnetic fields: the latter simply lead to energy shifts, while
the former require the summation of eB=ðΔMNÞ contribu-
tions, where Δ represents the delta-nucleon mass splitting,
and MN the nucleon mass. Such summation is achieved by
diagonalizing the magnetically coupled delta-nucleon sys-
tem.2 The role of loop contributions and decuplet mixing,
moreover, is addressed within the entire baryon octet, for
which U-spin and large-Nc considerations allow us to
compare results for magnetic polarizabilities and the behav-
ior of energies with respect to the magnetic field. While the
polarizabilities of hyperons have received comparatively less
attention, see [59–62], the lack of experimental constraints
can be ameliorated with future lattice QCD computations.
The results of such computations will enable paramagnetic
and diamagnetic contributions to be disentangled, along
with exposing the role symmetries play in the magnetic
rigidity of baryons.
The organization of our presentation is as follows. First,

in Sec. II, we review the necessary ingredients of meson
and baryon chiral perturbation theory in large magnetic
fields using a position-space formulation. Additionally we
explain the partial resummations employed to mitigate the
effects of SUð3ÞV breaking. Next, in Sec. III, we determine
expressions for the octet baryon energies as a function of

the magnetic field to third order in the combined chiral and
heavy baryon expansion. These results account for tree-
level and loop contributions; the former features a prob-
lematically large contribution from the decuplet pole
diagram. The expressions for baryon energies are then
utilized in Sec. IV, where three scenarios are investigated.
We explore the likelihood that a large baryon transition
moment leads to sizable mixing between decuplet and octet
baryons in magnetic fields. Consistent kinematics are
employed to reduce the size of magnetic polarizabilities,
as well as a scenario in which higher-order counterterms are
promoted. These scenarios can be tested with future lattice
QCD computations of the octet baryons in magnetic fields.
In Appendix A, we provide the corresponding results for
magnetic moments and electric polarizabilities computed in
our approach. Technical details concerning the coupled
three-state system of I3 ¼ 0 baryons are contained in
Appendix B. Finally in Sec. V, we conclude with a
summary of our findings.

II. CHIRAL PERTURBATION THEORY
IN LARGE MAGNETIC FIELDS

Our calculations of the octet baryon energies in large
magnetic fields are performed using three-flavor chiral
perturbation theory. Inclusion of the large magnetic field is
achieved through a modified power-counting scheme.
Here, we describe this scheme, as well as the necessary
ingredients of meson and baryon chiral perturbation theory.
The latter is implemented utilizing the heavy baryon
framework. Additionally, we employ a partial resummation
of SUð3ÞV breaking effects.

A. Meson sector

To compute the energies of the octet baryons, we
consider the three-flavor chiral limit, mu ¼ md ¼ ms ¼ 0,
about which an effective field theory description in terms of
chiral perturbation theory (χPT) is possible. In this limit,
the SUð3ÞL × SUð3ÞR chiral symmetry of QCD is sponta-
neously broken to SUð3ÞV by the formation of the quark
condensate. The emergent Goldstone bosons, which are
identified as the octet of pseudoscalar mesons (π, K, η), are
parametrized as elements of the coset space SUð3ÞL ×
SUð3ÞR=SUð3ÞV in the form

Σ ¼ exp

�
2iϕ
fϕ

�
; ð1Þ

where

ϕi
j ¼

0
BB@

1ffiffi
2

p π0 þ 1ffiffi
6

p η πþ Kþ

π− − 1ffiffi
2

p π0 þ 1ffiffi
6

p η K0

K− K̄0 − 2ffiffi
6

p η

1
CCA

i

j

: ð2Þ

1In the power counting utilized below, the decuplet-octet mass
splitting Δ is treated as the same order as the meson mass mϕ.
Thus decuplet loop contributions, which introduce dependence
on eB=Δ2, are also treated nonperturbatively.

2The analogous coupled-channels analyses have been per-
formed to study the following magnetically coupled systems:
np → dγ [25], Σ0–Λ [58], and ρ–π [22].
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Strictly speaking, fϕ is the three-flavor chiral-limit value of
the pseudoscalar meson decay constant. Because of rather
large SUð3ÞV breaking effects, we employ differing decay
constants within each meson isospin multiplet. This cor-
responds to a partial resummation of higher-order terms in
the chiral expansion. With our normalization, the values for
charged-meson decay constants obtained from experiment
are fπ ¼ 130 MeV and fK ¼ 156 MeV [63]. Note that fη
is not required in this work.
The low-energy dynamics of the pseudoscalar meson

octet can be described in an effective field theory frame-
work, which is three-flavor χPT [64]. The chiral
Lagrangian density is constructed based on the pattern
of explicit and spontaneous symmetry breaking. The
sources of explicit symmetry breaking are the masses
and the electric charges of the quarks, which are encoded
in the matrices mq ¼ diagðm̄; m̄; msÞ and Q ¼ diagð2

3
;− 1

3
;

− 1
3
Þ, respectively. We work in the strong isospin limit, and

accordingly use the isospin-averaged quark mass m̄, which
is given by m̄ ¼ 1

2
ðmu þmdÞ. To organize the infinite

number of possible terms in the chiral Lagrangian density,
we assume the power counting

k2

Λ2
χ
∼
m2

ϕ

Λ2
χ
∼
ðeAμÞ2
Λ2
χ

∼
eFμν

Λ2
χ

∼ ϵ2; ð3Þ

where k is the meson momentum, mϕ is the mass of the
meson, Aμ is the electromagnetic gauge potential, Fμν is the
corresponding field-strength tensor, and ϵ is assumed to be
small, ϵ ≪ 1. Notice that in the computation of gauge-
invariant quantities, Aμ cannot appear. The cutoff scale of
the effective theory, Λχ , can be identified through the loop

expansion as Λχ ∼ 2
ffiffiffi
2

p
πfϕ. According to the above power

counting, the Oðϵ2Þ terms in the (Euclidean) Lagrangian
density are

L ¼ f2

8
TrðDμΣ†DμΣÞ − λTrðm†

qΣþmqΣ†Þ; ð4Þ

where the action of the covariant derivative on the coset
field is specified by

DμΣ ¼ ∂μΣþ ieAμ½Q;Σ�: ð5Þ
Higher-order terms encode the short-distance physics; but
these appear at Oðϵ4Þ in the power counting and are not
required in our calculations.

To study the effects of a large magnetic field on hadrons,
we choose a uniform magnetic field in the x3 direction; and,
for definiteness, we implement this field through the choice
of gauge Aμ ¼ ð−Bx2; 0; 0; 0Þ. According to the power
counting assumed in Eq. (3), the effects of the external
magnetic field are nonperturbative with respect to the
meson momentum and mass. This requires summation
of the charge couplings of the Goldstone bosons to the
external magnetic field to all orders; see Fig. 1. In the
context of the chiral condensate, this summation can be
done at the level of the effective action; see Ref. [36]. For
computation of baryon energy levels, we require meson
propagators in the presence of the magnetic field, and these
can be determined using Schwinger’s proper-time trick [1].
We utilize Feynman rules in position space throughout, for
which the propagator of the pseudoscalar meson ϕ having
charge Qϕ is given by [39]

Gϕðx; yÞ ¼ eieQϕBΔx1x̄2

Z
∞

0

ds
ð4πsÞ2

eQϕBs

sinhðeQϕBsÞ
e−m

2
ϕs

× exp

�
−

eQϕBΔx⃗2⊥
4 tanhðeQϕBsÞ

−
Δx23 þ Δx24

4s

�
; ð6Þ

where the displacement is Δxμ ¼ xμ − yμ, the average
position is x̄ ¼ 1

2
ðxμ þ yμÞ, and the transverse separation

squared is Δx⃗2⊥ ¼ Δx21 þ Δx22. A few comments regarding
the form of the propagator are in order. When eQϕB ¼ 0,
one recovers the Klein-Gordon propagator, which has an
SOð4Þ symmetry and Euclidean translational invariance in
four directions. For nonzero values, however, the integrand
in the expression above has only an SOð2Þ × SOð2Þ
symmetry. The phase factor multiplying the integral, more-
over, breaks translational invariance in the x2 direction, as
well as the SOð2Þ symmetry in the plane transverse to the
magnetic field. The phase factor is gauge dependent;
consequently, the computation of gauge-invariant quan-
tities reflects SOð2Þ × SOð2Þ symmetry and translational
invariance.

B. Baryon sector

The naïve inclusion of baryons in the chiral Lagrangian
introduces a large mass scale that does not vanish in the
chiral limit, i.e., MB ∼ Λχ . A systematic way of treating
baryons in the chiral Lagrangian is to treat them non-
relativistically, and the framework of heavy baryon χPT
(HBχPT) proves especially convenient [65]. In our

FIG. 1. Charged meson propagator in a large magnetic field. Free meson propagators are shown as solid lines; external fields are
depicted as wiggly lines ending in crosses; charge couplings appearing in the Oðϵ2Þ chiral Lagrangian density are depicted by filled
circles, and these must be summed to obtain the propagator (dashed line) in the large-field power counting.
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computation, we include the spin-3=2 decuplet degrees of
freedom, which is necessitated by the three-flavor chiral
expansion.3 After the octet baryon mass MB is phased
away, the mass splitting Δ ¼ MT −MB appears in the
decuplet baryon Lagrangian. In addition to the chiral power
counting in Eq. (3), we have additionally the HBχPT power
counting

k
MB

∼
Δ
MB

∼ ϵ; ð7Þ

where k is the residual baryon momentum. This is the
phenomenologically motivated power counting known in
the two-flavor case as the small-scale expansion [66]. To
leading order, which in the baryon sector is OðϵÞ, the octet
baryon Lagrangian density is given by

L ¼ −iTrðB̄v ·DBÞ þ 2DTrðB̄SμfAμ; BgÞ
þ 2FTrðB̄Sμ½Aμ; B�Þ; ð8Þ

where the octet baryons are conventionally embedded in
the matrix

Bi
j ¼

0
BB@

1ffiffi
2

p Σ0 þ 1ffiffi
6

p Λ Σþ p

Σ− − 1ffiffi
2

p Σ0 þ 1ffiffi
6

p Λ n

Ξ− Ξ0 − 2ffiffi
6

p Λ

1
CCA

i

j

; ð9Þ

and the decuplet baryon Lagrangian density to the same
order is given by

L ¼ T̄μð−iv ·Dþ ΔÞTμ þ 2HT̄μS ·ATμ

þ 2CðT̄ ·ABþ B̄A · TÞ: ð10Þ

Appearing above is Sμ, which is the covariant spin operator
satisfying the relation SμSμ ¼ 3

4
, and vμ is the four-velocity.

There is the covariant constraint v · S ¼ 0, but our compu-
tations are restricted to the rest frame in which
vμ ¼ ð0; 0; 0; 1Þ. The decuplet baryons are embedded in
the completely symmetric flavor tensor, Tijk, in the
standard way, with the required invariant contractions
treated implicitly. The coupling of electromagnetism is
contained in the vector, Vμ, and axial-vector, Aμ, fields of
mesons, which have the form

Vμ ¼ ieAμQþ 1

2f2
½ϕ; Dμϕ� þ � � � ;

Aμ ¼ −
1

f
Dμϕþ � � � ; ð11Þ

where ellipses denote terms of higher order than needed for
our computation. The chirally covariant derivative,Dμ, acts
on the octet baryon fields and decuplet baryon fields,
respectively, as

ðDμBÞij ¼ ∂μBi
j þ ½Vμ; B�ij;

ðDμTÞijk ¼ ∂μTijk þ ðVμÞi0i Ti0jk

þ ðVμÞj
0
j Tij0k þ ðVμÞk0k Tijk0 : ð12Þ

Finally the low-energy constants D, F, and C are chiral-
limit values of the axial couplings. The decuplet-pion axial
coupling H is not needed in our computations.
As we perform our calculations in position space, the

static octet baryon propagator required in perturbative
diagrams has the form

DBðx; yÞ ¼ δð3Þðx⃗ − y⃗Þθðx4 − y4Þ; ð13Þ

whereas, the static decuplet propagator is

½DTðx; yÞ�μν ¼ Pμνδ
ð3Þðx⃗ − y⃗Þθðx4 − y4Þe−Δðx4−y4Þ; ð14Þ

where the polarization tensor, Pμν, for the spin-3=2 Rarita-
Schwinger field is given by Pμν ¼ δμν − vμvν − 4

3
SμSν.

As in the meson sector, we partially account for the
rather large breaking of SUð3ÞV symmetry. For the baryons,
this is accomplished by treating the baryon mass splittings
as their physical values. In terms of the octet baryons, for
example, such corrections to baryon masses arise from the
following Oðϵ2Þ terms in the Lagrangian density,

L ¼ bDTrðB̄fmq; BgÞ þ bFTrðB̄½mq; B�Þ
þ bσTrðB̄BÞTrðmqÞ; ð15Þ

where only the leading such contributions in the chiral
expansion are shown. The effect of these operators is to lift
the degeneracy between the octet baryons. Using the
physical mass splittings among the various baryons in
loop diagrams then corresponds to resummation of the
effects of Eq. (15), and analogously those for the decuplet
fields, into the propagators. Accordingly the propagators in
Eqs. (13) and (14) are modified away from their SUð3ÞV
symmetric forms. As we work in the strong isospin limit,
isospin-averaged baryon mass splittings are utilized in each
of these propagators.

3The basic argument is as follows. One cannot justify the
computation of Σ baryon properties by retaining, for example, πΣ
and KN loop contributions alone, because the KΔ loop con-
tributions represent those from an intermediate-state baryon lying
below the Σ. Furthermore, if one combines the three-flavor chiral
limit with the large-Nc limit, then both octet and decuplet degrees
of freedom are required to produce the correct spin-flavor
symmetric loop contributions.
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III. DETERMINATION OF OCTET BARYON
ENERGIES IN MAGNETIC FIELDS

Having spelled out the required elements of chiral pertur-
bation theory in both the meson and baryon sectors, we now
proceed to compute the energy levels of the octet baryons in
large magnetic fields. There are both tree-level and loop
contributions, and we compute the octet baryon self-energies
toOðϵ3Þ in the combined chiral and heavy baryon expansion.
Notice that for the loop contributions, the power counting,
Eq. (3), dictates that charged-meson propagators include the
magnetic field nonperturbatively compared to the meson
mass and momentum. Baryon propagators, by contrast, are
affected by the external magnetic field perturbatively.

A. Tree-level contributions

The tree-level contributions to the energies are simplest
and therefore handled first. Local operators contribute to
the energies at Oðϵ2Þ. These are the octet baryon magnetic
moment operators

L ¼ e
2MN

½μDTrðB̄SμνfQ; BgÞ þ μFTrðB̄Sμν½Q; B�Þ�Fμν;

ð16Þ
where we have made the abbreviation, Sμν ¼ ϵμναβvαSβ.
The low-energy constants are the Coleman-Glashow mag-
netic moments, μD and μF [67]. The remaining Oðϵ2Þ
contribution to the octet baryon energies arises from the
kinetic-energy term of the Lagrangian density. In the heavy
baryon formulation, this term is given by

L ¼ −Tr
�
B̄

D2⊥
2MB

B

�
; ð17Þ

where ðD⊥Þμ ¼ Dμ − vμðv ·DÞ, and the coefficient of this
operator is exactly fixed to unity by reparametrization
invariance [68]. For neutral baryons, this contribution
vanishes for states at rest. For baryons of charge Q, the
gauged kinetic term produces eigenstates that are Landau
levels, which, for zero longitudinal momentum, k3 ¼ 0, the
energy eigenvalues are given by

EnL ¼ jQeBj
MB

�
nL þ 1

2

�
: ð18Þ

In order to maintain the validity of the power counting, we
are necessarily restricted to the lower Landau levels
characterized by parametrically small values of the quan-
tum number nL. We restrict our analysis below to the lowest
Landau level, nL ¼ 0. While the Landau levels depend
nonperturbatively on the magnetic field, the Landau levels
of intermediate-state baryons affect energy levels at Oðϵ4Þ,
and fortunately can be dropped in our calculation.
Another operator that enters at order Oðϵ2Þ is the

magnetic dipole transition operator between the decuplet
and octet baryons, which takes the form [69]

L ¼ μU

ffiffiffi
3

2

r
ie
MN

ðB̄SμQTν þ T̄μQSνBÞFμν; ð19Þ

where theU-spin [70] symmetric transitionmoment,μU, can
be determined from the measured electromagnetic decay
widths of decuplet baryons. The dipole transition operator
contributes to octet baryon energies at Oðϵ3Þ through two
insertions in the tree-level diagram shown in Fig. 2.
Essentially the addition of a uniform magnetic field leads
to mixing between the octet and decuplet baryons via
Eq. (19), and the decuplet pole diagram represents the first
perturbative contribution from this mixing. The large size of
the transition moment, μU, is a well-known issue in the
description of nucleonmagnetic polarizabilities; for an early
investigation of the delta-pole contribution, see [71].
Consequently the OðB2Þ contribution to the octet baryon
energies in magnetic fields is problematic; and we inves-
tigate three scenarios for this contribution in Sec. IV below.
Considering all tree-level contributions, the resulting

energy levels of the octet baryons to Oðϵ3Þ are given by

Etr ¼MBþ
jQeBj
2MB

− ðαDμDþQμFÞ
eBσ3
2MN

−
αTμ

2
U

Δ

�
eB
2MN

�
2

;

ð20Þ
where neutral particles are taken at rest, and charged
particles are taken in their lowest Landau level with zero
longitudinal momentum. The U-spin symmetric coeffi-
cients are labeled by Q, αD, and αT . These coefficients
depend on the octet baryon state of interest, and are given in
Table I. Notice that the octet magnetic moment operators
lead to a Zeeman effect, with the energies depending on the
projection of spin along the magnetic field axis, σ3.

B. Meson-loop contributions

Beyond trees, meson loops contribute to the baryon
energies and such contributions are nonanalytic with
respect to the meson mass and magnetic field. The
diagrams that contribute at Oðϵ3Þ are depicted in Fig. 3.
The meson tadpole diagrams vanish, either by virtue of
time-reversal invariance or by the gauge condition,
v · A ¼ 0. The two sets of four sunset diagrams shown
are connected by gauge invariance. There is one set for
intermediate-state octet baryons and another set for inter-
mediate-state decuplet baryons. A set of four sunset

FIG. 2. Decuplet pole diagram that produces Oðϵ3Þ contribu-
tions to the octet baryon energies. The octet baryons are shown
with solid lines, while decuplet baryons are shown with double
lines. External fields are shown with wiggly lines terminating in
crosses.
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diagrams is best expressed as a single sunset, arising from a
gauge-covariant derivative at each meson-baryon vertex.
It is useful to sketch the required position-space com-

putation of the loop contributions to baryon energies in our
approach. Each loop contribution contains a product of
charge and Clebsch-Gordan coefficients, along with other
numerical factors. Putting aside such factors for simplicity,
the amputated contribution to the two-point function of the
octet baryon B, denoted δDBðx0; xÞ, in the case of an
intermediate-state octet baryon, B0, is given by

δDBðx0; xÞ ¼ σiDB0 ðx0; xÞσjD0
iDjGϕðx0; xÞ; ð21Þ

whereas, in the case of intermediate-state decuplet baryons,
T, the corresponding contribution is of the form

δDBðx0; xÞ ¼ ½DTðx0; xÞ�ijD0
iDjGϕðx0; xÞ: ð22Þ

Above, the primed gauge-covariant derivative depends on
the coordinate x0, which appears both in the partial
derivative and gauge potential. Perturbative corrections
to the octet baryon energies, δE, are identified by projecting

the amputated two-point function onto vanishing residual
baryon energy, k4 ¼ 0. The term linear in k4 produces the
wave-function renormalization; however, this contributes
to baryon energies at Oðϵ4Þ, which is beyond our consid-
eration. Putting the baryon B on shell, we haveZ

∞

−∞
dðx04 − x4ÞδDBðx0; xÞ ¼ −δ3ðx⃗0 − x⃗ÞδE; ð23Þ

where the delta function arises from translational invariance,
which is expected because the breaking of translational
invariance is a gauge artifact. The loop correction to the
baryon energy, δE, is conveniently decomposed into spin-
dependent and spin-independent contributions, in the form

δE ¼ −eBσ3δE1 þ δE2: ð24Þ
Careful computation of the gauge-covariant derivatives

acting on the meson propagator, Eq. (6), contraction of the
vector indices, and subsequent spin algebra produces the
amputated contributions to the two-point function required
in Eqs. (21) and (22). Carrying out the integral over the
relative time and appending the Clebsch-Gordan coeffi-
cients, along with other numerical factors, leads to the spin-
dependent and spin-independent loop contributions [38],
which are given by

δE1 ¼
X
B

ABS1B
Qϕmϕ

ð4πfϕÞ2
F1

�jeBj
m2

ϕ

;
ΔB

mϕ

�
;

δE2 ¼
X
B

ABS2B

m3
ϕ

ð4πfϕÞ2
F2

�jeBj
m2

ϕ

;
ΔB

mϕ

�
: ð25Þ

These expressions have been written using a compact
notation. First, the external-state baryon B has been treated

FIG. 3. Loop contributions to the octet baryon energies at Oðϵ3Þ. The single lines represent octet baryons, the double lines represent
decuplet baryons, and wiggly lines represent the external magnetic field. The dashed lines represent mesons propagating in the magnetic
field; see the diagrammatic depiction in Fig. 1. While generated from couplings in the Lagrangian density, diagrams in the first row
identically vanish.

TABLE I. U-spin symmetric coefficients for tree-level contri-
butions to the octet baryon energies appearing in Eq. (20).

B Q αD αT

p, Σþ 1 1
3

1
3

n, Ξ0 0 − 2
3

1
3

Λ 0 − 1
3

1
4

Σ0 0 1
3

1
12

Σ0 → Λ 0 1ffiffi
3

p − 1
4
ffiffi
3

p

Σ−, Ξ− −1 1
3

0
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implicitly to avoid an accumulation of labels. Each contri-
bution to the energy features a sumover the contributing loop
baryons, B, which are either octet baryons, B0, or decuplet
baryons,T. Given the external stateB, and internal baryonB,
the corresponding loop meson ϕ is uniquely determined;
hence, we do not additionally sum over the charged meson
states ϕ. Products of Clebsch-Gordan coefficients and axial
couplings are defined to beAB, and these appear in Table II.
The multiplicative S factors arise from the spin algebra. For
the spin-dependent contributions, we have S1B, which takes
the values S1B0 ¼ 1 and S1T ¼ − 1

3
, for all B ¼ B0 and

B ¼ T, respectively. For the spin-independent contributions,
we have the factor S2B, which takes the values S2B0 ¼ 1 and
S2T ¼ 2

3
, which also depend only on the spin of the

intermediate-state baryon. The arguments of loop functions
depend on the baryonmass splitting, denoted byΔB, which is
defined asΔB ¼ MB −MB. For clarity, the splittings are also
provided in Table II. Finally, the loop functions,F1ðx; yÞ and
F2ðx; yÞ, can be written in terms of integrals over the proper
time, for which the x- and y-dependence factorizes in the
integrands. For the spin-dependent loop contributions, we
have

TABLE II. CoefficientsAB and mass splittingsΔB, for intermediate-state baryons B. The entries are grouped according to the external
octet states B, except for the transition Σ0 → Λ, which represents contributions to the off-diagonal matrix element. For each state B,
factors for the contributing intermediate-state baryons are listed, along with the corresponding charged loop meson, the quantum
numbers of which are fixed by flavor conservation. The intermediate-state baryons are both octet, for which B ¼ B0, and decuplet, for
which B ¼ T. If an intermediate-state baryon is not listed, its contribution vanishes. Notice that in the case of intermediate-state decuplet
baryons, all coefficients AT are proportional to the baryon-transition axial coupling squared, C2.

B ϕ Qϕ B0 AB0 ΔB0 T AT=C2 ΔT

p π þ1 n ðDþ FÞ2 0 Δ0 1
3

MΔ −MN

−1 Δþþ 1 MΔ −MN

K þ1 Λ 1
6
ðDþ 3FÞ2 MΛ −MN

þ1 Σ0 1
2
ðD − FÞ2 MΣ −MN Σ�0 1

6
MΣ� −MN

n π þ1 Δ− 1 MΔ −MN

−1 p ðDþ FÞ2 0 Δþ 1
3

MΔ −MN

K þ1 Σ− ðD − FÞ2 MΣ −MN Σ�− 1
3

MΣ� −MN

Λ π þ1 Σ− 2
3
D2 MΣ −MΛ Σ�− 1

2
MΣ� −MΛ

−1 Σþ 2
3
D2 MΣ −MΛ Σ�þ 1

2
MΣ� −MΛ

K þ1 Ξ− 1
6
ðD − 3FÞ2 MΞ −MΛ Ξ�− 1

2
MΞ� −MΛ

−1 p 1
6
ðDþ 3FÞ2 MN −MΛ

Σþ π þ1 Λ 2
3
D2 MΛ −MΣ

þ1 Σ0 2F2 0 Σ�0 1
6

MΣ� −MΣ

K þ1 Ξ0 ðDþ FÞ2 MΞ −MΣ Ξ�0 1
3

MΞ� −MΣ

−1 Δþþ 1 MΔ −MΣ

Σ0 π þ1 Σ− 2F2 0 Σ�− 1
6

MΣ� −MΣ

−1 Σþ 2F2 0 Σ�þ 1
6

MΣ� −MΣ

K þ1 Ξ− 1
2
ðDþ FÞ2 MΞ −MΣ Ξ�− 1

6
MΞ� −MΣ

−1 p 1
2
ðD − FÞ2 MN −MΣ Δþ 2

3
MΔ −MΣ

Σ− π −1 Λ 2
3
D2 MΛ −MΣ

−1 Σ0 2F2 0 Σ�0 1
6

MΣ� −MΣ

K −1 n ðD − FÞ2 MN −MΣ Δ0 1
3

MΔ −MΣ

Ξ0 π þ1 Ξ− ðD − FÞ2 0 Ξ�− 1
3

MΞ� −MΞ

K þ1 Ω− 1 MΩ −MΞ

−1 Σþ ðDþ FÞ2 MΣ −MΞ Σ�þ 1
3

MΣ� −MΞ

Ξ− π −1 Ξ0 ðD − FÞ2 0 Ξ�0 1
3

MΞ� −MΞ

K −1 Λ 1
6
ðD − 3FÞ2 MΛ −MΞ

−1 Σ0 1
2
ðDþ FÞ2 MΣ −MΞ Σ�0 1

6
MΣ� −MΞ

Σ0 → Λ π þ1 Σ− 2ffiffi
3

p DF 0 Σ�− − 1
2
ffiffi
3

p MΣ� −MΣ

−1 Σþ − 2ffiffi
3

p DF 0 Σ�þ 1

2
ffiffi
3

p MΣ� −MΣ

K þ1 Ξ− − 1

2
ffiffi
3

p ðDþ FÞðD − 3FÞ MΞ −MΣ Ξ�− − 1

2
ffiffi
3

p MΞ� −MΣ

−1 p − 1
2
ffiffi
3

p ðD − FÞðDþ 3FÞ MN −MΣ
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F1ðx; yÞ ¼
Z

∞

0

dsfðx; sÞgðy; sÞ; ð26Þ

where the magnetic field dependence enters through the
function

fðx; sÞ ¼ π1=2

s3=2

�
xs

sinhðxsÞ − 1

�
: ð27Þ

Notice that this function is even with respect to x. For this
reason, we need not include the charge of the loop meson in
the argument, because jQϕj ¼ 1. The remaining function,
gðy; sÞ, encodes thedependence on the baryonmass splitting,
and is given by

gðy; sÞ ¼ e−sð1−y2ÞErfcðy ffiffiffi
s

p Þ: ð28Þ
The loop function F2ðx; yÞ, which is relevant for spin-
independent contributions to the energy, can be written in
terms of the same auxiliary functions

F2ðx; yÞ ¼ −
Z

∞

0

dsfðx; sÞ d
ds

gðy; sÞ: ð29Þ

Notice that both loop functions vanish in vanishing
magnetic fields, which is a consequence of fð0; sÞ ¼ 0.
For the spin-independent contributions to the energy, this
vanishing implies that all chiral corrections to the baryon
mass have been renormalized into the physical value of
MB. For the spin-dependent contributions to the energy,
the vanishing implies that chiral corrections to the baryon
magnetic moments have been renormalized into the
physical magnetic moments. For completeness, the χPT
corrections to magnetic moments in our approach are
provided in Appendix A.

1. Behavior of loop functions

Before presenting the results for octet baryon energies in
large magnetic fields, it is instructive to consider the general
behavior of the nonanalytic loop functions. The octet
baryon energies contain sums over these loop functions
evaluated for various values of the mass parameters; see
Eq. (25). To exhibit the general behavior, we compare the
loop functions F1 and F2 with their small- and large-x
asymptotic behavior, over a range of y values required by
the intermediate-state baryons.
The small-x behavior is relevant for perturbatively weak

magnetic fields, with the first nonvanishing term occurring
at order x2. In the case of F2, the Oðx2Þ term is a
contribution to the effect on the energy from the magnetic
polarizability. While the small-x expansion can be carried
out for general values of y > −1, we cite only the simple
expression for y ¼ 0. Notice that for this particular value,
we have F1ðx; 0Þ ¼ F2ðx; 0Þ, and further that

F1ðx; 0Þ ¼x≪1 −
π

12
x2
�
1 −

7

16
x2 þOðx4Þ

�
: ð30Þ

The large-x behavior, by contrast, becomes relevant in the
chiral limit. This limit, furthermore, can only be taken
provided y ≥ 0.4 The contributions with y > 0 vanish when
the chiral limit is taken, and these correspond to inter-
mediate states that decouple. The simplest expression arises
for y ¼ 0, for which the different loop functions are the
same; and we have

F1ðx; 0Þ ¼x≫1
2π

ffiffiffi
x

p �
ð1 − 2−

1
2Þζ1

2
þ 1ffiffiffi

x
p −

1 − 2−
3
2

2x
ζ3
2

þ 3
1 − 2−

5
2

8x2
ζ5
2
þOðx−3Þ

�
; ð31Þ

where ζz is used to denote the Riemann zeta-function, ζðzÞ.
Note that the fractional power of x appearing within the
brackets is the only such term in the asymptotic series.5

In Fig. 4, the behavior of the loop function F1ðx; 0Þ ¼
F2ðx; 0Þ is shown as a function of x. Additionally shown
are the small- and large-x asymptotic limits, with the
function interpolating between these extremes. The figure,
moreover, illustrates the dependence on y (for the particular
value x ¼ 1) by showing the loop functions over a range
spanning the smallest and largest values of y required by
the intermediate-state baryons. The Λ contribution to the Σ
energies requires the smallest value, y ≈ − 1

2
, while the delta

contribution to the nucleon energies requires the largest
value, y ≈ 2. The importance of the loop functions gen-
erally increases with decreasing values of y, which is
physically reasonable because lower-lying states have
smaller y values and should give more important nonana-
lytic contributions.

C. Complete third-order calculation

Accounting for the tree-level and loop contributions, as
well as the renormalization in vanishing magnetic fields, we
have the general expression for the octet baryon energies
valid to Oðϵ3Þ,

E ¼ MB þ jQeBj
2MB

− eBσ3

�
μB
2MN

þ δE1

�

−
αTμ

2
U

ΔT

�
eB
2MN

�
2

þ δE2: ð32Þ

4WhenΔB<0, the corresponding value of y approaches y→−∞
in the chiral limit. The loop functions F1ðx; yÞ and F2ðx; yÞ
themselves become infinite in this limit, and the correspond-
ing baryon states no longer exist in the low-energy spectrum.

5Because of the dominant
ffiffiffi
x

p
factor exhibited in the chiral

limit, we have from Eq. (25) the behavior of the loop contribu-
tions: δE1 ∼ jeBj1=2, and δE2 ∼m2

ϕjeBj1=2. As a result, only the
spin-dependent loop contributions survive; and, by virtue of
Eq. (24), we have the chiral-limit behavior δE ∼ −eBσ3jeBj1=2,
which deviates from a linear Zeeman effect.
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In the above expression, neutral baryons are taken at rest,
while charged baryons are in their lowest Landau level with
vanishing longitudinal momentum. The baryon energies
depend on known parameters: the hadron masses, baryon
magnetic moments, and meson decay constants. The axial
couplings are reasonably well constrained from phenom-
enological analyses, and we adopt the values D ¼ 0.61,
F ¼ 0.40, C ¼ 1.2 [42]. The transition dipole moment, μU,
is discussed below in conjunction with the nucleon mag-
netic polarizabilities. For reasons that will become clear, we
do not attempt to propagate uncertainties on parameters or
from neglected higher-order contributions.
While the above expression applies equally well to all

members of the baryon octet, there is the additional feature
of mixing between the Σ0 and Λ baryons. Because coupling
to the external magnetic field breaks isospin symmetry (but
preserves I3), mixing is possible between these two I3 ¼ 0
baryon states. In this two-state system, we must consider
the magnetic-field dependent energy matrix,

�
EΣ0 EΣ0Λ

EΛΣ0 EΛ

�
; ð33Þ

where the off-diagonal entries are also given by Eq. (32),
being careful to note that MB is 0 for such entries.6 The
eigenstates, which we write as λ�, are determined from
diagonalizing this energy matrix. We follow [58] and define
the linear transformation between the eigenstates as

�
λþ
λ−

�
¼
�

cos θ sin θ

− sin θ cos θ

��
Σ0

Λ

�
; ð34Þ

where the mixing angle is magnetic field dependent,
θ ¼ θðB2Þ.

IV. BARYON ENERGIES AND THREE SCENARIOS

The remaining parameter required to evaluate the mag-
netic-field dependence of octet baryon energies is the
transition magnetic moment between the decuplet and
octet, which has been labeled by μU above. As is well
known in the small-scale expansion, see, for example,
Ref. [45], the largeness of this moment presents a com-
plication in the determination of the magnetic polarizabil-
ities of the nucleon. Hence, the magnetic-field dependence
of baryon energies inherits a related complication. We
explore three scenarios for this coupling: large mixing with
decuplet states, mitigation by using consistent kinematics,
and promotion of higher-order counterterms. In the first
scenario, we additionally discuss determination of μU using
recent experimental results. Values of the magnetic polar-
izability are discussed in the second and third scenarios.

A. Large decuplet mixing

The baryon transition magnetic moment, μU, can be
determined using the measured values for the electromag-
netic decay widths of the decuplet baryons. Beyond the
Δ → Nγ decay, recent experimental measurements have
been carried out for the electromagnetic widths of the
decays Σ�0 → Λγ [72] and Σ�þ → Σþγ [73]. Using the
magnetic dipole operator appearing in Eq. (19), the decay
width is found to be

FIG. 4. Behavior of the nonanalytic loop functions F1ðx; yÞ and F2ðx; yÞ appearing in Eqs. (26) and (29), respectively. The left panel
shows the x-dependence of F1ðx; 0Þ (solid), along with the small- and large-x asymptotic behavior (dashed and dotted). Asymptotic
approximations are labeled by the order to which they are valid. Notice that the small-x expansions have been plotted beyond their range
of applicability. The right panel shows the y-dependence of each function evaluated at x ¼ 1, which corresponds to a magnetic field
strength satisfying jeBj ¼ m2

ϕ. The range of y values plotted encompasses the values required by the intermediate-state baryons in loop
diagrams. Notice that the functions become identical for y ¼ 0.

6With the mass splittings taken at their physical values in loop
diagrams, the off-diagonal elements of this matrix are not
identical but differ very slightly. We set EΛΣ0 ≡ EΣ0Λ in our
computation to avoid this complication.
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ΓðT → BγÞ ¼ αT
ω3

2π

MB

MT

�
eμU
2MN

�
2

; ð35Þ

assuming that the electric quadrupole contribution is
negligible. In the formula for the width, αT is the relevant
U-spin symmetric coefficient appearing in Table I; the
baryon transition moment μU appears in nuclear magneton
units; and ω is the photon energy, which is given by

ω ¼ M2
T −M2

B

2MT
: ð36Þ

The factor ofMB=MT arises from an exact treatment of the
relativistic spinor normalization factors. Using the three
experimentally measured widths, we obtain the values

ΓðΔ→NγÞ¼ 0.660ð60ÞMeV⇒ μU ¼ 6.04ð27Þ ½NM�;
ΓðΣ�0 →ΛγÞ¼ 0.445ð102ÞMeV⇒ μU ¼ 6.10ð70Þ ½NM�;

ΓðΣ�þ→ΣþγÞ¼ 0.250ð70ÞMeV⇒ μU ¼ 6.09ð109Þ ½NM�:
ð37Þ

Carrying out a weighted fit, we obtain the central value
μU ¼ 6.05 ½NM�. As our analysis is not precise enough to
make definite conclusions, we do not propagate the
uncertainty on this or other parameters. The values obtained
for μU are completely consistent with U-spin symmetry,
further consequences of which have been explored in
Ref. [74]; values are also consistent with the naïve
constituent quark model.
Accounting for the normalization convention used in

Eq. (19), the transition moment obtained in nuclear
magneton units is rather large. Assuming there are no
corrections that mitigate the size of this coupling, we assess
whether decuplet-octet mixing in magnetic fields may need
to be treated nonperturbatively. To perform this assessment,
we focus on the magnetic moment operators in each
coupled system of I3 ≠ 0 baryons, whose members we
label by T and B.7 AsU-spin symmetry forbids the Σ�−–Σ−

and Ξ�−–Ξ− baryon transitions, we omit these baryons
from our consideration. Their transition moments, which
are not proportional to μU, are expected to be quite small.
For a spin-half baryon B, the dipole transition operator in

Eq. (19) leads to mixing between T and B baryons in
magnetic fields, where the I3 quantum number of the spin
three-half T baryon is the same as B. Only them ¼ � 1

2
spin

states of the T, furthermore, can mix with the correspond-
ing spin states of the B. Considering the magnetic moment
operators in this system, the Hamiltonian takes the form

H ¼
 
MT þ jQeBj

2MT
0

0 MB þ jQeBj
2MB

!

−
eB
2MN

�
2mμT μTB

μTB 2mμB

�
; ð38Þ

in the basis ð TB Þ, where m denotes the baryon spin state.
Baryons are assumed to be in their lowest Landau levels,
where appropriate. We have additionally written the tran-
sition moment as μTB, which is related to the U-spin
symmetric moment through the relation μTB ¼ ffiffiffiffiffi

αT
p

μU, for
which the sign can be absorbed into the definition of the
mixing angle and is hence irrelevant to the energy eigen-
values. Notice that all moments are written in terms of
nuclear magneton units. The magnetic moments of decuplet
baryons are defined to be coefficients, μT , of the interaction
term − e

MN
J · B, where J is the spin operator for the

decuplet state T.
From the Hamiltonian in Eq. (38), the energy eigenval-

ues for spin states m ¼ � 1
2
are

EðmÞ
� ¼ MB þ jQeBj

2MB
þ 1

2

�
EΔ − μþ

eBm
MN

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
EΔ − μ−

eBm
MN

�
2

þ
�
μTB

eB
MN

�
2

s �
; ð39Þ

where the spin-independent energy difference EΔ is
given by

EΔ ¼ MT þ jQeBj
2MT

−MB −
jQeBj
2MB

; ð40Þ

and the parameters μ� are sums and differences of the
baryon magnetic moments, namely,

μ� ¼ μT � μB: ð41Þ

In theweak-field limit, the two spin states of lower energies,
EðmÞ
− , reduce to those determined in Eq. (20) for the octet

baryon B, with the magnetic moment replaced by its
physical value and the OðB2Þ contribution identical to that
from the corresponding decuplet-pole diagram. For large μU
couplings, this contribution dominates the magnetic polar-
izability of the octet state (see Table III below), which is
assumed to be the case here necessitating its resummation.
To evaluate the eigenstate energies, values of the decuplet

magneticmoments are required. A compilation ofmodel and
theory results for decuplet moments is contained in the
covariant baryon χPT calculation of Ref. [75], and we
adopt the results determined in that particular work:
μΔþ ¼ 2.84 ½NM�, μΣ�þ ¼3.07 ½NM�, and μΔ0¼−μΞ�0¼
−0.36 ½NM�, which are quite similar to values obtained
in the constituent quark model and from large-Nc analyses.
The magnetic field dependence of the energy shifts,
ΔE ¼ E −MB, is shown in Fig. 5, for the I3 ≠ 0 baryon

7The I3 ¼ 0 octet baryons, Σ0 and Λ, both mix with Σ�0,
leading to a coupled three-state system, which is detailed in
Appendix B.
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TABLE III. Possible anatomy of the octet baryon magnetic polarizabilities. The various contributions are βlp, the loop contribution,
βtr , the tree-level pole diagrams, btr , the rescaled decuplet-pole diagrams using consistent kinematics, βct, the promoted counterterms,
and, bct, the counterterms relevant for the rescaled decuplet-pole diagrams. Each contribution is given in units of 10−4 fm3, and
counterterms have been determined using the nucleon magnetic polarizabilities as input. For this reason, those values are starred. Finally,
the Σ0–Λ transition polarizability is not a true polarizability. Strictly speaking, it represents an off-diagonal matrix element in the system
of I3 ¼ 0 baryons at second order in the magnetic field.

B βlp βtr btr βct bct βlp þ βtr βlp þ btr βlp þ βtr þ βct βlp þ btr þ bct βexptM

p 1.37 13.22 6.89 −12.09 −5.76 14.59 8.26 * 2.50 * 2.50 2.5(4)
n 1.32 13.22 6.89 −10.84 −4.51 14.54 8.21 * 3.70 * 3.70 3.7(12)
Λ 0.83 10.79 6.40 −16.26 −6.76 11.62 7.23 −4.63 0.47 � � �
Σþ 0.96 20.22 14.05 −12.09 −5.76 21.18 15.02 9.09 9.26 � � �
Σ0 0.83 5.06 3.51 −27.10 −11.27 5.89 4.35 −21.21 −6.93 � � �
Σ− 0.71 0.00 0.00 � � � � � � 0.71 0.71 � � � � � � � � �
Ξ0 0.51 18.01 12.45 −10.84 −4.51 18.52 12.96 7.68 8.45 � � �
Ξ− 0.30 0.00 0.00 � � � � � � 0.30 0.30 � � � � � � � � �
Σ0 → Λ −0.03 −8.76 −6.09 −9.30 −3.91 −8.79 −6.12 −18.18 −10.03 � � �

FIG. 5. Assessment of decuplet-octet mixing arising from the Hamiltonian in Eq. (38). The spin-up (black) and spin-down (blue)
eigenstate energies are plotted as a function of the magnetic field. These energy shifts, ΔE ¼ E −MB, are given in units of the nucleon
mass, with the solid curves corresponding to the full solution in Eq. (39), and the dashed curves representing the approximation in
Eq. (20), which retains mixing only perturbatively through the decuplet-pole contribution.
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systems with Q ≠ −1. This behavior is compared with that
predicted by Eq. (20), with good agreement in small fields,
but with corrections beyond the decuplet-pole contribution
required with increasing magnetic field.
While the decuplet pole seems to be a reasonable approxi-

mation in most cases, we explore, in Fig. 6, whether mixing
with decuplet baryons can be treated perturbatively. The
figure shows the EðmÞ

− energy eigenvalue and mixing angle in
theΔ0–n system.Themixing angleθ is definedbywriting this
eigenstate, jΛ−i, as the linear combination

jΛ−i ¼ cos θjni þ sin θjΔ0i: ð42Þ

Mixing is seen to increase as a function of the magnetic field,
with greater mixing for the higher-lying spin state. Stated this
way, the feature is generically true across all the baryon
systemsdepicted in Fig. 5.Also shown in Fig. 6 are theOðB2Þ
andOðB4Þperturbative approximations to the energies,where
the former is given byEq. (20). For the higher-lying spin state,
the expansion appears to be under good perturbative control,
although one should note that the fourth-order expansion
includes linear, quadratic, and cubic magnetic field terms in
addition to the quartic. The lower-lying spin state, for which
the mixing angle is smaller, does not exhibit the same
convergence properties. For this spin state, the expansion
can be improved by utilizing8

ξ ¼
μTB

eB
MN

EΔ − μ−
eBm
MN

; ð43Þ

as the expansion parameter, which is suggested by the
exact solution in Eq. (39). In the case of Δ0–n mixing
for the spin-down state, the resummed delta-pole con-
tribution at Oðξ2Þ provides a much improved approxi-
mation to the exact solution, as can be seen in Fig. 6.
Because of the sign of the spin, we have ξ < μTB

eB
ΔMN

,
which ensures better convergence over an expansion
perturbative in B. For the spin-up state, by contrast, we
expect comparatively poor behavior due to ξ > μTB

eB
ΔMN

.
The expansion is actually much worse because ξ
exhibits a pole at the magnetic field strength eB ¼
2ΔMN=μ− > 0, which noticeably influences the behav-
ior of the Oðξ2Þ expansion in Fig. 6.
Using the value of μU obtained from electromagnetic

decays of the decuplet baryons, the magnetic mixing of
decuplet and octet baryons may need to be treated beyond
perturbation theory. Assessing the mixing using the linear-
order Hamiltonian in Eq. (38), the decuplet-pole contribu-
tion to the energies appears to be a reasonable approxi-
mation for magnetic fields satisfying eB=m2

π ≲ 3. While
we ultimately adopt a value for μU smaller than that
obtained in this section, we nevertheless estimate the effects
of mixing beyond the pole term in our complete analysis
(see Sec. IV D below).

B. Magnetic polarizabilities and consistent kinematics

The largeness of μU may require that baryon mixing be
treated nonperturbatively. The magnitude obtained above,

FIG. 6. Assessment of perturbative versus nonperturbative mixing in the Δ0–n system. On the left, the mixing angle in Eq. (42) is
plotted for the spin-up (black) and spin-down (blue) states. On the right, the energy shifts are plotted as a function of the magnetic field,
with solid curves corresponding to the result in Eq. (39) for the two spin states. Color correlated dashed and dotted curves show the
OðB2Þ and OðB4Þ approximations to Eq. (39), respectively. Despite larger mixing, the spin-up energy is well described by perturbation
theory in the magnetic field. The expansion for the spin-down energy can be considerably improved by the resummation into an
expansion in ξ, see Eq. (43), which is shown to Oðξ2Þ for both spin states as the (red) dotted curves. In the spin-up case, this
resummation introduces a pole, which is responsible for the rapid divergence from the solid black curve.

8It should be noted that the ξ expansion offers little benefit for
the case of Δþ–p and Σ�þ–Σþ baryon systems due to the value of
their magnetic moment difference, μ− ≈ 0. The Ξ�0–Ξ0 system,
however, is qualitatively the same as the Δ0–n system, and the ξ
expansion similarly offers an improved scheme for the spin-down
state.
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however, is unlikely due to the size of contributions from
decuplet-pole diagrams to magnetic polarizabilities. The
magnetic polarizabilities appear as the second-order terms
in the expansion of energies as a function of the magnetic
field. In the standard convention, the spin-averaged energy,
Ē, has the behavior

Ē ¼ M þ jQeBj
2M

−
1

2
4πβMB2 þ � � � ; ð44Þ

where the � � � represents higher-order terms in the magnetic
field strength, and the coefficient βM defines the magnetic
polarizability. Using the spin-independent energy deter-
mined in Eq. (32), we obtain the magnetic polarizability of
the octet baryons

βM ¼ βlp þ βtr; ð45Þ

which has been written as the sum of loop and tree-level
contributions. The loop contribution is determined by
expanding δE2 in Eq. (25) to second order in the magnetic
field, which leads to the expression

βlp ¼ α

6

X
B

ABS2B

mϕð4πfϕÞ2
G
�
ΔB

mϕ

�
; ð46Þ

with α as the fine-structure constant, and the loop function
defined by

GðyÞ ¼ −
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

y2 − 1
p log

�
y −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − 1þ iε

p
yþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − 1þ iε

p �
; ð47Þ

which takes the particular value Gð0Þ ¼ π. The tree-level
contribution arises from the decuplet pole diagram, and has
the form9

βtr ¼ αT
2πΔT

�
eμU
2MN

�
2

: ð48Þ

Expressions obtained for nucleon magnetic polarizabil-
ities agree with those determined in Refs. [41,42,45].
Furthermore, the octet contributions to hyperon magnetic
polarizabilities agree with those determined in Ref. [59].
Values of these loop and tree-level contributions are given
in Table III, with the corresponding magnetic polariz-
abilities found from their sum. In the case of the nucleon,
the tree-level contribution alone greatly exceeds the
experimental values.10

To mitigate the size of the tree-level contribution, we
note that the normalization factor MB=MT appearing in
the determination of μU from the decay width in
Eq. (35) has been appended by hand. Its removal from
the formula is not only consistent with the heavy-baryon
power counting; it leads to transition moments that show
the expected level of SUð3ÞV breaking. Thus, the close
agreement of the central values of the μU parameters in
Eq. (37) for each decay might be accidental.
Furthermore, the formula for the width employs exact
kinematics; whereas, to the order we work, the photon
energy in Eq. (36) is approximately given by ω ≈ ΔT.
Ordinarily such distinctions are unimportant, being of
higher order in the expansion; however, our goal is to
expose the sensitivity to such higher-order terms. To this
end, we investigate treating the kinematics consistently
within the power counting. This can be accomplished by
multiplying μ2U by the factor γ defined by

γ ¼ MB

MT

�
ω

ΔT

�
3

¼ MB

MT

�
MT þMB

2MT

�
3

: ð49Þ

The corresponding tree-level contributions to the mag-
netic polarizability are then given by btr ¼ γβtr, which
have been included in Table III. Notice that consistent
kinematics are being employed for the Δ–N, Σ�0–Λ, and
Σ�þ–Σþ transition moments, for which experimental
results are available. In the case of Σ�0–Σ0 and
Ξ�0–Ξ0 transitions, for which no experimental con-
straints currently exist, we use, as a guess, the U-spin
symmetry prediction, but scaled by γ to reduce the size
as might be expected from the reaction kinematics.
While the magnetic polarizabilities of the nucleons
are subsequently reduced, they still exceed the exper-
imental values.

9For the I3 ¼ 0 baryons, Λ and Σ0, there is an additional tree-
level contribution to polarizabilities arising from expanding the
eigenstate energies determined from Eq. (33) to second order in
the magnetic field. These additional contributions are given by

δβtrΛ ¼ 1

2πΔΣΛ

�
eμΣ0Λ

2MN

�
2

; δβtrΣ0 ¼ −
1

2πΔΣΛ

�
eμΣ0Λ

2MN

�
2

;

where ΔΣΛ ¼ MΣ −MΛ is the mass splitting. Such contributions
have the interpretation of pole terms arising from perturbative
Σ0–Λ mixing. Notice that the additional contribution to the Σ0

polarizability is diamagnetic because the Λ intermediate state is at
a lower energy. We do not include these Born-type contributions
in our definition of the magnetic polarizabilities of Λ and Σ0

baryons. Instead, such contributions are automatically accounted
for in the off-diagonal matrix elements of Eq. (33), and our
definition of the polarizabilities then corresponds to the OðB2Þ
contribution to the diagonal matrix elements.

10An additional complication is the constraint on the sum of
electric and magnetic polarizabilities, αE þ βM, provided by the
Baldin sum rule; see, for example, Ref. [76]. Given that the values
we obtain for nucleon electric polarizabilities are consistent with
experiment, see Table IV, the large magnetic polarizabilities
calculated violate the Baldin sum rules for the proton and
neutron.
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C. Counterterm promotion

In the context of the small-scale expansion, one
solution to the large size of calculated nucleon magnetic
polarizabilities is to partially cancel the effect of the
delta-resonance pole diagram by promoting counterterms
from the Oðϵ4Þ Lagrangian density. In two-flavor χPT,
there are two such local operators. Consequently one can
adjust these terms to produce any values for the proton
and neutron polarizabilities. In the three-flavor chiral
expansion, the same procedure yields U-spin relations
among the polarizabilities of the baryon octet, which are
detailed here.
The Oðϵ4Þ magnetic polarizability operators of the octet

baryons are contained in the Lagrangian density

ΔL ¼ −
1

2
4πB2

X4
i¼1

βcti Oi; ð50Þ

where the βcti are numerical coefficients, and a basis for the
four operators Oi is specified by

O1 ¼ TrðB̄BÞTrðQ2Þ;
O2 ¼ TrðB̄fQ; fQ; BggÞ;
O3 ¼ TrðB̄fQ; ½Q; B�gÞ;
O4 ¼ TrðB̄½Q; ½Q; B��Þ: ð51Þ

These operators were enumerated in Ref. [58] in the context
of SUð3ÞV symmetric lattice QCD computations; whereas,
they enter here as the leading terms in the expansion about
the SUð3ÞL × SUð3ÞR limit. Including the Σ0-Λ transition,
there are nine polarizabilities and only four operators;
hence, there exist five relations between the counterterm
contributions to the polarizabilities. Three of these are the
relations obtained under interchanging the d and s quarks,
namely,

βctp ¼ βctΣþ ; βctn ¼ βctΞ0 ; βctΣ− ¼ βctΞ− ; ð52Þ
while the remaining two relations can be chosen as

1ffiffiffi
3

p βctΣ0Λ ¼ βctΛ − βctn ¼ 1

2
ðβctΣ0 − βctΛÞ: ð53Þ

In this scenario, the experimental values of the nucleon
magnetic polarizabilities can thus be employed to deter-
mine the counterterm contributions to the Σþ and Ξ0

polarizabilities. Notice that knowledge of the nucleon
magnetic polarizabilities cannot help constrain the counter-
terms for the Σ− and Ξ− baryons, because the correspond-
ing Σ�− and Ξ�− pole diagrams vanish byU-spin symmetry.
In the large-Nc limit, the counterterm βct1 vanishes. In this
limit, one obtains an additional relation, which can be
utilized to show

βctn ¼ 2

5
βctΣ0 ¼ 2

3
βctΛ ¼ 2ffiffiffi

3
p βctΣ0Λ: ð54Þ

Thus U-spin symmetry along with the large-Nc limit
permits us to determine five of the seven octet baryon
magnetic polarizabilities, using the proton and neutron
magnetic polarizabilities for input. The nucleon counter-
term contribution provides the diamagnetism necessary
to cancel large paramagnetic effects from the delta-pole
contribution. Results for the counterterm contribution
and magnetic polarizabilities of octet baryons are given
in Table III. We adopt two possibilities for the decuplet-
pole contribution: one uses the baryon transition moment
obtained from the full kinematics, while the other uses
the moment obtained from kinematics expanded consis-
tently in our power counting. Results are summarized as
follows. The magnetic polarizaibilities of the Σþ and Ξ0

remain paramagnetic and somewhat large. The Λ polar-
izability is substantially reduced, and is quite small or
may even become diamagnetic. On the other hand, the
Σ0 polarizability becomes considerably diamagnetic in
nature. The transition polarizability between the Σ0 and
Λ baryons is consistently negative, perhaps more so with
addition of the counterterms.

D. Baryon energies

To investigate the magnetic-field dependence of the octet
baryon energies, we adopt the values of magnetic polar-
izabilities obtained through counterterm promotion using
consistent kinematics. Thus, the baryon magnetic polar-
izabilities are taken as

βM ≡ βlp þ btr þ bct; ð55Þ

where the numerical values appear in Table III. For the
proton and neutron, these are the experimentally measured
ones; while, for the other baryons, the values are a
consequence of U-spin symmetry and the large-Nc limit.
Finally, the Σ− and Ξ− magnetic polarizabilities, for which
counterterm contributions cannot be estimated, are taken to
be their one-loop values. With this choice, the octet baryon
energy to OðB2Þ is given by

ΔE ¼ jQeBj
2MB

−mμB
eB
MN

−
1

2
4πβMB2; ð56Þ

where the zero-field result has been subtracted to produce
the energy shift, ΔE ¼ E −MB, and m ¼ � 1

2
for the spin

states.
Beyond OðB2Þ, we have additionally determined loop

contributions as nonperturbative functions of jeBj=m2
π , and

are able to account for potentially large mixing with
decuplet states. To incorporate these effects, we determine
the energy eigenvalues of the Hamiltonian,
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H ¼
�
ĒT 0

0 ĒB

�
−

eB
2MN

�
2mμT μTB

μTB 2mMB

�
; ð57Þ

which goes beyond the approximation used for assessing
decuplet mixing in Sec. IVA above. The spin-independent
entries are defined by

ĒT ¼ MT þ jQeBj
2MT

;

ĒB ¼ MB þ jQeBj
2MB

−
1

2
4πbctB2 þ δE2; ð58Þ

whereas the spin-dependent term MB is given by

FIG. 7. Magnetic-field dependence of the I3 ≠ 0 baryon energy shifts, ΔE ¼ E −MB. The black curves correspond to spin-up states,
while the lighter (blue) curves correspond to spin down. The dashed curves only account for effects up toOðB2Þ, see Eq. (56), where the
magnetic polarizability is taken to be that in Eq. (55). The solid curves additionally include nonperturbative effects beyond OðB2Þ,
which include loop corrections and mixing with decuplet baryons; see Eq. (57).
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MB ¼ μB þ 2MNδE1: ð59Þ

Notice that the spin-dependent loop contribution δE1,
which is given in Eq. (25), vanishes in zero magnetic
field, so that μB are the physical baryon magnetic moments
in nuclear magneton units. The magnetic polarizability
appearing in ĒB requires a subtraction due to the treatment
of decuplet mixing. The decuplet-pole contribution, as well
as higher-order effects, is already generated by the off-
diagonal terms in Eq. (57), which are proportional to the
rescaled transition moment, μTB ¼ ffiffiffiffiffiffiffiffi

γαT
p

μU. Thus, use of
the rescaled polarizability counterterm bct in Eq. (58)
ensures that the magnetic polarizabilities are given
by Eq. (55).
For each I3 ≠ 0 baryon, we show the magnetic-field

dependence of their energies in Fig. 7. Energy shifts,
ΔE ¼ E −MB, are plotted for the spin-up and spin-down
states, in units of the nucleon mass, ΔE=MN , and grouped
according to the baryon’s charge. For each state, moreover,
we compare the energy computed to OðB2Þ, given in
Eq. (56), with the energy including higher-order effects,
which corresponds to the lower eigenvalue of Eq. (57).
Such higher-order effects arise from charged-meson loops
as well as mixing with decuplet baryons, and make
contributions at OðB3Þ and higher. These contributions
do not necessarily have a well-behaved expansion in
powers of the magnetic field over the range of fields
plotted (see Fig. 4, for the meson-loop contributions, in
particular). The loop contributions, furthermore, are gen-
erally largest for the nucleons, smaller for the Σ’s, and
smallest for the Ξ’s. This pattern is to be expected: the pion
loop contributions dominate over those of the kaon
(∝ f−2π m−1

π versus ∝ f−2K m−1
K for Δ ¼ 0), and pions couple

more strongly to multiplets with lower strangeness. In
particular, the meson-loop contributions to the Ξ0 and Ξ−

energies are numerically very small. Notice that all plots
terminate at the value eB=m2

π ¼ 6. Beyond this value,
neglected higher-order corrections, which naïvely scale as
eB=M2

N , may be appreciable.
The qualitative behavior of the energies as a function of

the magnetic field shown in Fig. 7 is somewhat similar
when grouped by baryon charge. When all effects are
accounted for, the proton and Σþ spin states have a curious
linear-appearing behavior. Within the OðB2Þ approxima-
tion, the Σþ states exhibit some curvature due to the large
paramagnetic value assumed for its magnetic polarizability.
The neutron and Ξ0 compare similarly: the neutron spin
states exhibit some curvature, but not as great as that seen
for the Ξ0. The spin-up neutron state is very insensitive to
higher-order corrections due to a near cancellation between
loop contributions and Δ0 mixing. For the Ξ0, however,
deviations from the OðB2Þ approximation are due almost
entirely to mixing with Ξ�0, because the pion-loop con-
tributions are very small. The Σ− and Ξ− exhibit very linear

behavior due to the small values assumed for their magnetic
polarizabilities and small loop contributions. Because the
magnetic moments of these baryons are very close to their
Dirac values, see Ref. [58], the spin-down states show an
almost exact cancellation of the energy from the lowest
Landau level. This leads to the near zero shifts for spin-
down states observed in the figure.
Finally we determine the eigenstate energies in the

coupled Σ0–Λ system by diagonalizing their energy matrix.
Potentially large mixing with the Σ�0 baryon, however,
renders the two-state description of Eq. (33) insufficient.
An assessment of mixing with the Σ�0 is carried out in
Appendix B, and shows that mixing with Σ�0 is nearly as
important as Σ0–Λ mixing itself. The eigenstate energies
determined from a coupled three-state analysis are plotted
as a function of the magnetic field in Fig. 8. The splitting
between spin-down states increases as a function of the
magnetic field. The lower, spin-down eigenstate exhibits a
greater dependence on higher-order corrections, which
arise mainly from mixing with Σ�0. On the other hand,
spin-up eigenstates appear quite insensitive to higher-order
effects.

V. SUMMARY

We determine energies of the octet baryons in large,
uniform magnetic fields using heavy baryon χPT. The
calculation employs a modified power-counting scheme
that treats the magnetic field nonperturbatively compared
with the square of the meson mass, Eq. (3). The analytic
expressions obtained for baryon energies are summarized
in Sec. III C. These results correspond to Oðϵ3Þ in the

FIG. 8. Energy eigenvalues in the Σ0-Λ system as a function of
the magnetic field for spin-up (black) and spin-down (blue) states.
These energies are shifted relative to the mass of the Λ baryon,
ΔE ¼ E −MΛ, and plotted in units of the nucleon mass. The
dashed curves indicate results using the OðB2Þ approximation in
Eq. (B5), while the solid curves include contributions from
charged-meson loops and mixing with the Σ�0 baryon, deter-
mined from the Hamiltonian in Eq. (B4).
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combined heavy baryon and chiral expansion, although we
have not adhered to a strict power counting. Instead, we
resum a subset of SUð3ÞV breaking effects. For reference,
octet baryon magnetic moments and electric polarizabilities
determined in this scheme are provided in Appendix A.
While evaluation of the magnetic-field dependence of

baryon energies is possible using phenomenological values
for the various couplings, the transition dipole moment
between the decuplet and octet baryons presents a critical
issue. The value determined from the electromagnetic
decays of the decuplet is large enough to require careful
treatment of mixing with decuplet states in uniform
magnetic fields; see Sec. IVA. For the I3 ¼ 0 baryons,
Σ�0, Σ0, and Λ, their coupled three-state system is detailed
in Appendix B. Adhering to a more strict power counting,
the extracted value of the baryon transition moment can be
reduced, as detailed in Sec. IV B. This reduction in value,
however, is not enough to produce nucleon magnetic
polarizabilities close to their smaller experimental values.
Within the heavy-baryon approach, the commonplace
solution is to promote higher-order counterterms in order
to provide the necessary diamagnetic contributions. We
detail consequences of this hypothesis for the baryon octet
in Sec. IV C, using U-spin and large-Nc arguments.
Possible anatomy of the magnetic polarizabilities of the
octet baryons is presented in Table III. The large variation
of results over the different scenarios considered does not
currently allow for predictions to be made. Forcing the
nucleon polarizabilities to take on their experimental
values, however, does not rule out large paramagnetic
polarizabilities for other members of the octet (the Σþ

and Ξ0 baryons, in particular). In Sec. IV D, we adopt the
experimental nucleon magnetic polarizabilities, and best
guesses for the remaining members of the octet, to
investigate the magnetic-field dependence of baryon ener-
gies; see Figs. 7 and 8. The p and Σþ energies appear
remarkably linear after accounting for effects beyond
OðB2Þ. The electrically neutral baryons exhibit a good
degree of cancellation of these higher-order effects in the
energies of spin-up states, but not for their spin-down
states. The Σ− and Ξ− appear rather pointlike and rigid,
magnetically speaking.
The results obtained here can be utilized to address the

pion-mass and magnetic-field dependence of baryon ener-
gies, which are relevant for lattice QCD computations of
magnetic polarizabilities. The study of octet baryons in
large magnetic fields, furthermore, provides a diagnostic on
the potentially large paramagnetic contributions from
decuplet states. To this end, refined χPT computations
(incorporating loop contributions to the baryon transitions,
and exploring alternative power-counting schemes for
inclusion of the decuplet) appear necessary. In lieu of
experimental results for these baryons, moreover, lattice
QCD can provide the necessary information to disentangle
long-range (charged pion loops, and decuplet mixing) from

short-range (promoted counterterm) contributions. While
this would require a dedicated effort, longstanding puzzles
may be illuminated with future lattice QCD results.
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APPENDIX A: MAGNETIC MOMENTS AND
ELECTRIC POLARIZABILITIES

For completeness, we utilize the results of the main text
to determine the magnetic moments and electric polar-
izabilities of the octet baryons to Oðϵ3Þ. For magnetic
moments, this represents the next-to-leading order result, as
tree-level contributions from the operators in Eq. (16) scale
as Oðϵ2Þ; while, for electric polarizabilities, this order
constitutes the leading-order result. For the latter, we
determine a value for the electric polarizability of the
Σ0–Λ transition, a quantity that appears to be overlooked in
the literature; however, it is an order of magnitude smaller
than the diagonal matrix elements.
To determine magnetic moments, notice that the com-

putation of the spin-dependent baryon energies, Eq. (25),
has been renormalized by a subtraction of the zero
magnetic field results. This regularization-independent
subtraction removes the ultraviolet divergences of loop
diagrams. Carrying out the computation of the loop
diagrams using dimensional regularization, by contrast,
allows one to renormalize the chiral-limit magnetic
moments, and thereby determine the corrections away
from the chiral limit. This is the way in which one recovers
the known results for chiral corrections to the baryon
magnetic moments [77–79], namely,

μB ¼ αDμD þQμF − 4MN

X
B

ABS1B
Qϕmϕ

ð4πfϕÞ2
F 1

�
ΔB

mϕ

�
;

ðA1Þ

where the loop function depends on the baryon mass
splittings, which is given by

F 1ðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − 1

q
log

�
y −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − 1þ iε

p
yþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − 1þ iε

p �
þ y logð4y2Þ;

ðA2Þ

and has been renormalized to vanish in the chiral limit for
ΔB > 0, that is, F 1ð∞Þ ¼ 0. Notice further the value of the
loop function for vanishing mass splitting, F 1ð0Þ ¼ π. The
tree-level coefficients, Q and αD, appear in Table I, while
the loop coefficients, AB, and splittings, ΔB, are given in
Table II. The factors S1B from the spin algebra are those
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appearing in Eq. (25). From a least-squares analysis, we fit
μD and μF using the experimentally measured magnetic
moments, and Σ0–Λ transition moment. The fit is performed
at tree level, and the leading one-loop order. Results are
provided in Table IV, and show reasonable agreement with
experiment,with the exception of theΛ baryon,which differs
considerably when the one-loop corrections are taken into
account. We have also performed fits treating the tree-level
computation in baryon magneton units, i.e., by considering
the Coleman-Glashow operators with a factor 1=MB that
depends on the octet baryon state. These fits largely show a
systematic improvement between tree-level and leading-loop
order; however, the Λ remains problematic. For this reason,
we do not tabulate baryon magneton fit results.
The baryon electric polarizabilities can be determined

in χPT. One way to obtain the electric polarizabilities of the
octet baryons is to determine the energy levels in the
presence of a weak uniform electric field. Within the heavy-
baryon approach, the acceleration of charged baryons does
not become relevant in loop diagrams until Oðϵ4Þ. Thus,
using the procedure outlined in Ref. [38], we obtain the
standard expression for meson-loop contributions to the
electric polarizability, given by

αE ¼ α

3

X
B

ABS2B

mϕð4πfϕÞ2
F 2

�
ΔB

mϕ

�
; ðA3Þ

where α is the fine-structure constant, the AB coefficients
are tabulated in Table II, the spin factors, S2B, are those in
Eq. (25), and the loop function is given by

F 2ðyÞ ¼
9y

y2 − 1
−

y2 − 10

2ðy2 − 1Þ32 log
�
y −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − 1þ iε

p
yþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − 1þ iε

p �
;

ðA4Þ

which has the particular value F 2ð0Þ ¼ 5π. The pion loop
contributions to these results agree with those in
Refs. [41,42,45] for nucleon electric polarizabilities, and
the octet loop contributions to hyperon electric polariz-
abilities agree with those determined in Ref. [59]. The
electric polarizabilities obtained from Eq. (A3) are col-
lected in Table IV. The nucleon electric polarizabilities
determined in three-flavor χPT agree well with experiment,
and this is to be expected given the dominance of the pion-
loop contributions. The small difference between proton
and neutron polarizabilities is attributable to differing kaon
loop contributions, and is comparable to the experimental
uncertainties. The previously overlooked transition polar-
izability between the Σ0 and Λ baryons is predicted to be
negative and an order of magnitude smaller than the
diagonal polarizabilities in this system. This smallness
occurs because only the kaon loops contribute.

APPENDIX B: COUPLED I3 = 0 BARYONS

In large magnetic fields, the size of the baryon transition
moment, μU, may lead to nonperturbative mixing between
decuplet and octet baryons. Here, we consider the effects of
mixing in the coupled system of three I3 ¼ 0 baryons.
Accounting for the magnetic moment interactions, this
system is described by the Hamiltonian

H ¼

0
B@

MΣ� 0 0

0 MΣ 0

0 0 MΛ

1
CA

−
eB
2MN

0
B@

2mμΣ�0 μΣ�0Σ0 μΣ�0Λ

μΣ�0Σ0 2mμΣ0 2mμΣ0Λ

μΣ�0Λ 2mμΣ0Λ 2mμΛ

1
CA; ðB1Þ

which has been written in the basis0
B@

Σ�0

Σ0

Λ

1
CA;

with m ¼ � 1
2
denoting the spin projection along the

magnetic field. To simplify the analysis slightly, we take
μΣ�0 ¼ 0, which is theU-spin prediction and consistent with
nearly all calculations; see Ref. [75]. The magnetic moment
of the Λ baryon is taken as the experimental one, and the
starred experimental values of Table IVare used for μΣ0Λ and
μΣ0 . The baryon transitionmoments are given in terms of the
U-spin symmetric coefficient μU as μΣ�0Σ0 ¼ − 1

2
ffiffi
3

p μU and

TABLE IV. Octet baryon magnetic moments and electric
polarizabilities determined using χPT, along with experimental
values [63].a All values for magnetic moments are given in
nuclear magnetons, while electric polarizabilities are given in
units of 10−4 fm3. While χPT results have been quoted to two
decimal precision, this does not necessarily reflect the accuracy of
the computed values.

B μB∶Oðϵ2Þ μB∶Oðϵ3Þ μexpt.B αE∶Oðϵ3Þ αexpt.B

p 2.59 3.12 2.793(0) 11.53 11.2(4)
n −1.65 −2.17 −1.913ð0Þ 11.09 11.8(11)
Λ −0.82 −0.33 −0.613ð4Þ 6.41 � � �
Σþ 2.59 2.38 2.458(10) 11.26 � � �
Σ0 0.82 0.61 * 0.649(15) 7.69 � � �
Σ− −0.94 −1.15 −1.160ð25Þ 9.06 � � �
Σ0 −1.65 −0.84 −1.250ð14Þ 4.68 � � �
Σ− −0.94 −0.41 −0.650ð3Þ 2.72 � � �
Σ0 → Λ 1.43 1.65 * 1.61(8) −0.45 � � �

aThe two starred values are derived from experiment with
additional assumptions. In the case of μΣ0 , we use the isospin
symmetry prediction, μΣ0 ¼ 1

2
ðμΣþ þ μΣ−Þ, and assign an

additional one-percent uncertainty in quadrature. This moment
is not included in the fits. As only jμΣ0Λj has been measured,
moreover, we take the sign consistent with SUð3ÞV symmetry
given that expectations for SUð3ÞV breaking are ∼30% rather
than ∼200%. The transition moment is included in the fits.
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μΣ�0Λ ¼ 1
2
μU. To assess the size of mixing in this three-state

system, we adopt the numerical value for μU determined in
Sec. IVA. While the energy eigenvalues of the Hamiltonian
in Eq. (B1) can be determined as the roots of a cubic
polynomial, the analytic expressions offer little insight. The
magnetic field dependence of the eigenstate energies of
Eq. (B1) is shown in Fig. 9. For comparison, we determine
the energies with Σ�0 mixing treated perturbatively. This
approximation is described by the Hamiltonian

H ¼

0
BB@MΣ −

μ2
Σ�0Σ0

MΣ�−MΣ

�
eB
2MN

�
2

0

0 MΛ −
μ2
Σ�0Λ0

MΣ�−MΛ

�
eB
2MN

�
2

1
CCA

−m
eB
MN

�
μΣ0 μΣ0Λ

μΣ0Λ μΛ

�
; ðB2Þ

which accounts for mixing among Σ0 and Λ, but only treats
theΣ�0 through the pole diagram; see Fig. 2. For the value of
μU employed, mixing with the Σ�0 is seen to be appreciable
for eB=m2

π ≳ 2. Away to write spin-up eigenstate of lowest
energy, jλ−i, is in terms of mixing angles θ and ϕ defined
through the relation

jλ−i ¼ cosϕ cos θjΛi þ cosϕ sin θjΣ0i þ sinϕjΣ�0i: ðB3Þ

For the spin-down eigenstate of lowest energy, we use the
opposite sign phase convention for θ, which accounts for the
sign flip in the off-diagonal Σ0–Λ matrix elements. In this
decomposition, no mixing with the Σ�0 baryon corresponds
to ϕ ¼ 0, for which θ is the mixing angle of Eq. (34). In

Fig. 9, we show the magnetic-field dependence of the
mixing angles determined from the eigenvector jλ−i of
Eq. (B1). The figure shows that mixing with the Σ�0 baryon
is expected to be almost as important as Σ0–Λ mixing.
In Sec. IV D of the main text, we move beyond the above

assessment of Σ�0–Σ0–Λ mixing to consider additionally
the magnetic polarizabilities and charged-meson loop
effects. The results shown in Fig. 8 are obtained from
the lowest two eigenvalues of the Hamiltonian

H ¼

0
B@

MΣ� 0 0

0 ĒΣ0 ĒΣ0Λ

0 ĒΣ0Λ ĒΛ

1
CCA

−
eB
2MN

0
B@

2mμΣ�0 μΣ�0Σ0 μΣ�0Λ

μΣ�0Σ0 2mMΣ0 2mMΣ0Λ

μΣ�0Λ 2mMΣ0Λ 2mMΛ

1
CA; ðB4Þ

where the spin-independent entries, ĒB, are given in
Eq. (58), and the spin-dependent entries, MB, are given
in Eq. (59). In contrast with Eq. (B1), the transition
moments in Eq. (B4) are taken to be the values rescaled
by

ffiffiffi
γ

p
, with γ given in Eq. (49). These eigenvalues are

compared with those obtained from retaining all OðB2Þ
contributions to the two-state problem, i.e., eigenvalues of

H ¼
�
MΣ þ ΔEΣ0 ΔEΣ0Λ

ΔEΣ0Λ MΛ þ ΔEΛ

�
; ðB5Þ

where the ΔE matrix elements are given by Eq. (56).

FIG. 9. Assessment of the magnetic field dependence of eigenstate energies in the coupled Σ�0–Σ0–Λ system. On the left, solid curves
correspond to the energy shifts, ΔE ¼ E −MΛ, of the eigenstates of Eq. (B1), which treats the magnetic moments of the I3 ¼ 0 baryons
to all orders, with black curves for spin-up states and blue curves for spin-down states. The dashed curves correspond to the energies
obtained by treating mixing with the Σ�0 baryon perturbatively, according to Eq. (B2). On the right, the mixing angles θ and ϕ of
Eq. (B3) are plotted as a function of the magnetic field, with black for spin-up states and blue for spin-down states.
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