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We compute the transport coefficients, namely, the coefficients of shear and bulk viscosities, as well as
thermal conductivity for hot and dense matter. The calculations are performed within the Polyakov quark
meson model. The estimation of the transport coefficients is made using the Boltzmann kinetic equation
within the relaxation time approximation. The energy-dependent relaxation time is estimated from meson-
meson scattering, quark-meson scattering, and quark-quark scattering within the model. In our calculations,
the shear viscosity to entropy ratio and the coefficient of thermal conductivity show a minimum at the
critical temperature, while the ratio of bulk viscosity to entropy density exhibits a peak at this transition
point. The effect of confinement modeled through a Polyakov loop potential plays an important role both
below and above the critical temperature.

DOI: 10.1103/PhysRevD.97.014005

I. INTRODUCTION

Transport coefficients of matter under extreme conditions
of temperature, density, or external fields are interesting for
several reasons. In the context of relativistic heavy ion
collisions, these properties enter as dissipative coefficients
in the hydrodynamic evolution of the quark gluon plasma
that is produced following the collision [1–5]. Indeed, an
extremely low value of the shear viscosity-to-entropy ratio
(η=s) is needed to successfully describe the collective
dynamics of the quark gluon matter at high temperature
and vanishing chemical potential to explain the elliptic flow
data [6,7]. At intermediate densities, near the chiral phase
transition, which is being probed at the Facility for anti-
proton and Ion Research (FAIR) program at Geselleschaft
fuer Schwerionenforschung (GSI)–[8] and the Nuclotron-
based IonCollider fAcility (NICA) programat Joint Institute
for Nuclear Research(JINR)–[9] motivates us to understand
the behavior of transport coefficients at finite chemical
potential and temperature. Further, in the low-temperature
and high-density regime, the matter could be in one of the

possible types of color superconducting phases of which the
transport properties also need to be understood [10,11]. The
cooling of neutron stars at short time scales constrains the
thermal conductivity [12,13], while the cooling through
neutrino emission on much larger time scales constrains the
phase of thematter in the interior of the compact star [14,15].
Further, the observable regarding the viscosity of the such
matter is the r-mode instability. In the absence of viscous
damping, the fluid in the rotating star becomes unstable to a
mode that is coupled to gravity and radiates away the angular
momentum of the star [16,17]. Apart from the wide variety
of applications of the transport coefficients of strongly
interacting matter, their temperature and chemical potential
dependencemay also be indicative of a phase transition [18].
Transport coefficients for QCDmatter in principle can be

calculated using Kubo formulation [19]. However, QCD is
strongly interacting for both at energies accessible in heavy
ion collision experiments as well as for the densities
expected to be there in the core of the neutron stars making
the perturbative estimations unreliable. Calculations using
lattice QCD simulations at finite chemical potential are also
challenging and are limited only to the equilibrium
thermodynamic properties at small chemical potentials.
The understanding of the elliptic flow in relativistic

heavy ion collisions using hydrodynamics with a low
(η=s) and its connection to the conjectured lower bound
(η=s > 1=4π) using ADS/CFT correspondence [20] stimu-
lated extensive investigation of this ratio for QCD matter.
These have been studied using perturbative QCD [21],
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transport simulations of the Boltzmann equation [22,23],
relaxation time approximation for solving the Boltzmann
equations [24–27], and lattice simulation of QCD [28].
Most of these calculations have been performed at vanish-
ing baryon density. The general variation of this ratio with
temperature in most of these studies shows a minimum at
the transition temperature. The numerical value of η at the
minimum, however, differs by an order of magnitude. For
example, near transition temperature, Refs. [29–33] have
predicted η of order 0.001 GeV3, η ¼ 0.002–0.003 GeV3,
while Ref. [34] predicts a value of η≃ 0.4 GeV3. Further,
the behavior of η=s shows a monotonic decrease in the
Nambu–Jona-Lasinio (NJL) model in Ref. [35].
The bulk viscosity coefficient ζ has also been estimated

in various effective models as well as in lattice QCD. The
rise of the bulk viscosity coefficient near the transition
temperature has been observed in these effective models
such as chiral perturbation theory [36], quasiparticle
models [37], the linear sigma model [38], and the
Nambu–Jona-Lasinio model [24,25]. Large bulk viscosity
of matter produced in relativistic heavy ion collisions can
give rise to different interesting phenomenon such as
cavitation where pressure vanishes and hydrodynamic
description of evolution becomes invalid [39]. Here, again,
the numerical values of the bulk viscosity coefficients vary
widely from 10−5 [40] to 10−2 GeV3 [24].
The other transport coefficient that is important at

finite baryon density is the coefficient of thermal conduc-
tivity λ [41–43]. The effects of thermal conductivity in
relativistic hydrodynamics have been discussed recently in
Refs. [43,44]. This coefficient has been evaluated in various
effective models like the Nambu–Jona-Lasinio model using
the Green-Kubo approach [45], relaxation time approxi-
mation [25], and the instanton liquid model [46]. The
results, however, vary over a wide range of values, with
λ ¼ 0.008 GeV−2 as in Ref. [31] to λ ∼ 10 GeV−2 as in
Ref. [35] for a range of temperatures (0.12 GeV < T <
0.17 GeV), which has been nicely tabulated in Ref. [47].
We shall attempt here to estimate these transport coef-

ficients within an effective model of strong interaction,
the Polyakov loop extended quark meson (PQM) model. It
has become quite popular during last few years due to its
close relationship with the linear sigma model that captures
the chiral symmetry breaking aspect while being in agree-
ment with the lattice QCD results for thermodynamics at
vanishing baryon density. The physics of confinement is
taken care of at least partially by coupling the quark field to
the Polyakov loops so that quark excitations are suppressed
below the transition temperature. Let us note that the
transport coefficients like bulk viscosity apart from the
distribution functions also depend upon the bulk thermo-
dynamic quantities like the velocity of sound. We wish to
explore the effects of such nonperturbative properties on the
transport coefficients.
The transport coefficients are evaluated within the

relaxation time approximation of the Boltzmann equation.

The relaxation time is calculated by evaluating the scatter-
ing rates of the particles in the model, namely, the quarks
and pion and sigma mesons, with their respective medium-
dependent masses. The scattering processes considered here
are meson scatterings as considered in Ref. [38], quark
scattering through meson exchanges as in Refs. [24,25,35]
and quark-meson scattering. As we shall see in the follow-
ing, each of these processes brings out distinct features for
the transport coefficients. We would like to mention here
that these coefficients have also been estimated using Kubo
formulation through one-loop self-energies for quarks and
mesons in a separate work [48].
We organize the present investigation as follows. In the

following section, we discuss the two-flavor PQM model
thermodynamics. The reason is that the expressions for
transport coefficients involve meson masses which are
medium dependent. Further, some transport coefficients like
the bulk viscosity involves bulk thermodynamical properties
such as energy density, pressure and the velocity of sound.
As the order parameters for chiral and confinement-decon-
finement transitions are coupled, this leads to nontrivial
relations for derivatives of the thermodynamic potential with
respect to external parameters like chemical potential or
temperature as the mean fields themselves are also medium
dependent. Furthermore, the implicit dependence of these
mean fields/order parameters are calculated here analytically
to avoid possible numerical errors. In Sec. III, we give the
expressions for the transport coefficients in terms of relax-
ation time and estimate them to finally give the results for
these coefficients. We also compare them with the same
obtained with alternate approaches like the NJL model so
that the effects of the confinement-deconfinement transition
modeled through the Polyakov loop potential are explicitly
seen. Finally, we summarize and draw the conclusions of the
present investigation in Sec. IV.

II. THERMODYNAMICS OF PQM MODEL

We shall adopt here an effective model that captures two
important features of QCD, namely, chiral symmetry
breaking and its restoration at high temperature and/
densities as well as the confinement-deconfinement tran-
sitions. Two such effective models have become popular
recently—the Polyakov loop extended Nambu–Jona-
Lasinio model and the PQM. These models are extensions,
respectively, of the NJL model and linear sigma model that
captures various aspects of chiral symmetry breaking
pattern of strong interaction physics. Explicitly, the
Lagrangian of the PQM model is given by [49–53]

L ¼ ψ̄ðiγμDμ −m − gσðσ þ iγ5τ · πÞÞψ

þ 1

2
½∂μσ∂μσ þ ∂μπ∂μπ� − Uχðσ; πÞ −UPðϕ; ϕ̄Þ: ð1Þ

In the above, the first term is the kinetic and interaction
term for the quark doublet ψ ¼ ðu; dÞ interacting with the
scalar (σ) and the isovector pseudoscalar pion (π) field. The
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scalar field σ and the pion field π together form an SU(2)
isovector field. The quark field is also coupled to a spatially
constant temporal gauge field A0 through the covariant
derivative Dμ ¼ ∂μ − ieAμ; Aμ ¼ δμ0Aμ.
The mesonic potential Uχðσ; πÞ essentially describes the

chiral symmetry breaking pattern in strong interaction and
is given by

Uχðσ; πÞ ¼
λ

4
ðσ2 þ π2 − v2Þ2 − cσ: ð2Þ

The last term in the Lagrangian in Eq. (1) is responsible
for including the physics of color confinement in terms of a
potential energy for the expectation value of the Polyakov
loop ϕ and ϕ̄, which are defined in terms of the Polyakov
loop operator, which is a Wilson loop in the temporal
direction,

P ¼ P exp
�
i
Z

β

0

dx0A0ðx0;xÞ
�
: ð3Þ

In the Polyakov gauge, A0 is time independent and is in the
Cartan subalgebra, i.e., Aa

0 ¼ A3
0λ3 þ A8

0λ8. One can per-
form the integration over the time variable trivially as path
ordering becomes irrelevant so that PðxÞ ¼ expðβA0Þ. The
Polyakov loop variable ϕ and its Hermitian conjugate ϕ̄ are
defined as

ϕðxÞ ¼ 1

Nc
TrPðxÞ ϕ̄ðxÞ ¼ 1

Nc
P†ðxÞ: ð4Þ

In the limit of heavy quark mass, the confining phase is
center symmetric, and therefore hϕi ¼ 0, while for the
deconfined phase, hϕi ≠ 0. Finite quark masses break this
symmetry explicitly. The explicit form of the potential
Upðϕ; ϕ̄Þ is not known from first principle calculations.
The common strategy is to choose a functional form of the
potential that reproduces the pure gauge lattice simulation
thermodynamic results. Several forms of this potential have
been suggested in the literature. We shall use here the
polynomial parametrization [49]

UPðϕ; ϕ̄Þ ¼ T4
h
−
b2ðTÞ
2

ϕ̄ϕ −
b3
2
ðϕ3 þ ϕ̄3Þ þ b4

4
ðϕ̄ϕÞ2

i

ð5Þ
with the temperature-dependent coefficient b2 given as

b2ðTÞ ¼ a0 þ a1

�
T0

T

�
þ a2

�
T0

T

�
2

þ a3

�
T0

T

�
3

: ð6Þ

The numerical values of the parameters are

a0 ¼ 6.75; a1 ¼ −1.95;

a2 ¼ 2.625; a3 ¼ −7.44 ð7Þ

b3 ¼ 0.75; b4 ¼ 7.5: ð8Þ

The parameter T0 corresponds to the transition temperature
of Yang-Mills theory. However, for the full dynamical
QCD, there is a flavor dependence on T0ðNfÞ. For two
flavors, we take it to be T0ð2Þ ¼ 192 MeV as in Ref. [49].
The Lagrangian in Eq. (1) is invariant under SUð2ÞL ×

SUð2ÞR transformation when the explicit symmetry break-
ing term cσ vanishes in the potential Uχ in Eq. (2). The
parameters of the potential Uχ are chosen such that the
chiral symmetry is spontaneously broken in the vacuum.
The expectation values of the meson fields in vacuum are
hσi ¼ fπ and hπi ¼ 0. Here, fπ ¼ 93 MeV is the pion
decay constant. The coefficient of the symmetry breaking
linear term is decided from the partial conservation of the
axial vector current as c ¼ fπm2

π , mπ ¼ 138 MeV, being
the pion mass. Then, minimizing the potential, one has
v2 ¼ f2π −m2

π=λ. The quartic coupling for the meson λ is
determined from the mass of the sigma meson given as
m2

σ ¼ m2
π þ 2λf2π . In the present work, we take mσ ¼

600 MeV, which gives λ ¼ 19.7. The coupling gσ is fixed
here from the constituent quark mass in vacuumMq¼gqfπ ,
which has to be about one-third of nucleon mass that leads
to gσ ¼ 3.3 [54].
To calculate the bulk thermodynamical properties of the

system, we use a mean field approximation for the meson
and the Polyakov fields while retaining the quantum and
thermal fluctuations of the quark fields. The thermody-
namic potential can then be written as

ΩðT; μÞ ¼ Ωq̄q þ Uχ þUPðϕ; ϕ̄Þ: ð9Þ

The fermionic part of the thermodynamic potential is
given as

Ωq̄q ¼ −2NfT
Z

d3p
ð2πÞ3 ½ln ð1þ 3ðϕþ ϕ̄e−βω−Þe−βω− þ e−3βω−Þ þ ln ð1þ 3ðϕþ ϕ̄e−βωþÞe−βωþ þ e−3βωþÞ� ð10Þ

modulo a divergent vacuum part. In the above, ω∓ ¼
Ep ∓ μ, with the single particle quark/antiquark energy

Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

p
. The constituent quark/antiquark mass is

defined to be

M2 ¼ g2σðσ2 þ π2Þ: ð11Þ

The divergent vacuum part arises from the negative
energy states of the Dirac sea. Using standard renormal-
ization, it can be partly absorbed in the coupling λ and v2.
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However, a logarithmic correction from the renormalization
scale remains, and we neglect it in the calculations that
follow [54].
The mean fields are obtained by minimizing Ω with

respect to σ, ϕ, ϕ̄, and π. Extremizing the effective potential
with respect to the σ field leads to

λðσ2 þ π2 − v2Þ − cþ gσρs ¼ 0; ð12Þ
where the scalar density ρs ¼ −hψ̄ψi is given by

ρs ¼ 6Nfgσσ
Z

dp
ð2πÞ3

1

EP
½f−ðpÞ þ fþðpÞ�: ð13Þ

In the above, f∓ðpÞ are the distribution functions for the
quarks and antiquarks given as

f−ðpÞ ¼
ϕe−βω− þ 2ϕ̄e−2βω− þ e−3βω−

1þ 3ϕe−βω− þ 3ϕ̄e−2βω− þ e−3βω−
ð14Þ

and

fþðpÞ ¼
ϕ̄e−βωþ þ 2ϕe−2βωþ þ e−3βωþ

1þ 3ϕ̄e−βωþ þ 3ϕe−2βωþ þ e−3βωþ
: ð15Þ

The condition ∂Ω
∂ϕ ¼ 0 leads to

T4

�
−
b2
2
ϕ̄ −

b3
2
ϕ2 þ b4

2
ϕ̄ϕϕ̄

�
þ Iϕ ¼ 0; ð16Þ

where

Iϕ ¼ ∂Ωq̄q

∂ϕ ¼ −6NfT
Z

dp
ð2πÞ3

×

�
e−βω−

1þ 3ϕe−βω− þ 3ϕ̄e−2βω− þ e−3βω−

þ e−2βωþ

1þ 3ϕ̄e−βωþ þ 3ϕe−2βωþ þ e−3βωþ

�
: ð17Þ

Similarly, ∂Ω
∂ϕ̄ ¼ 0 leads to

T4

�
−
b2
2
ϕ −

b3
2
ϕ̄2 þ b4

2
ϕ̄ϕ2

�
þ Iϕ̄ ¼ 0 ð18Þ

with

Iϕ̄ ¼ ∂Ωq̄q

∂ϕ̄ ¼ −6NfT
Z

dp
ð2πÞ3

×

�
e−2βω−

1þ 3ϕe−βω− þ 3ϕ̄e−2βω− þ e−3βω−

þ e−βωþ

1þ 3ϕe−βωþ þ 3ϕ̄e−2βωþ þ e−3βωþ

�
: ð19Þ

Finally, minimization of the effective potential with
respect to π fields leads to

∂Ω
∂π ¼ λðσ2 þ π2 − v2Þπ þ gρps ¼ 0; ð20Þ

where the pseudoscalar density can be expressed as

ρps ¼ hq̄ιγ5τqi

¼ 6Nfgσπ
Z

dp
ð2πÞ3

1

EP
½f−ðpÞ þ fþðpÞ�: ð21Þ

The σ and π masses are determined by the curvature ofΩ
at the global minimum

M2
σ ¼

∂2Ω
∂σ2 ; M2

πi ¼
∂2Ω
∂π2i : ð22Þ

These equations lead to the masses for the σ and pions
given as

M2
σ ¼ m2

π þ λð3σ2 − f2πÞ þ g2σ
∂ρs
∂σ ð23Þ

M2
π ¼ m2

π þ λðσ2 − f2πÞ þ g2σ
∂ρps
∂π : ð24Þ

Explicitly, using Eq. (13),

∂ρs
∂σ ¼ 6

π2

Z
dpp2

×

�
gσp2

EðpÞ3 ðf−ðpÞ þ fþðpÞÞ þ
M

EðpÞ
�∂f−
∂σ þ ∂fþ

∂σ
��

:

ð25Þ

The derivatives of the distribution functions with respect to
the scalar field σ are given as

∂f−ðpÞ
∂σ ¼ βg2σσ

EðpÞ
�
3f2− −

3e−3βω− þ4ϕ̄e−2βω− þϕe−βω−

1þ3ϕe−βω− þ3ϕ̄e−2βω− þe−3βω−

�

ð26Þ

and

∂fþ
∂σ ¼ βg2σσ

EðpÞ
�
3f2þ −

3e−3βωþ þ 4ϕe−2βωþ þ ϕ̄e−βωþ

1þ 3ϕ̄e−βωþ þ 3ϕe−2βωþ þ e−3βωþ

�
:

ð27Þ

Similarly, using Eq. (21),

∂ρps
∂π ¼ 6

π2

Z
dp

p2

EðpÞ ½f−ðpÞ þ fþðpÞ�: ð28Þ
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In the above, we have set the expectation value of the pion
field to be zero, i.e., π ¼ 0, so that the constituent quark
mass is M2 ¼ g2σσ2.
The net quark density is given by

n ¼ −
∂Ω
∂μ ¼ 6

π2

Z
p2dp½f−ðpÞ − fþðpÞ� ð29Þ

The energy density ϵ ¼ Ω − T∂Ω=∂T þ μρq is given by

ϵ ¼ 6

π2

Z
p2dpEðpÞðf−ðpÞ þ fþðpÞÞ þUχ − 3UPðϕ; ϕ̄Þ

þ T5

2

db2ðTÞ
dT

ϕ̄ϕ: ð30Þ

In Fig. 1(a), we have plotted the constituent quark mass and
the meson masses as given in Eqs. (23) and (24) as a
function of temperature for vanishing baryon density. In the
chirally broken phase, the pion mass, being the mass of an
approximate Goldstone mode, is protected and varies
weakly with temperature. On the other hand, the mass of
σ, Mσ, which is approximately twice the constituent quark
mass,M, drops significantly near the crossover temperature.
At high temperature, being chiral partners, the masses of the
σ and π mesons become degenerate and increase linearly
with temperature. In Fig. 1(b), we have plotted the order
parameters σ and ϕ as a function of temperature for the
vanishing quark chemical potential. We also note that for
μ ¼ 0 the order parameters ϕ and ϕ̄ are the same. Because
of the approximate chiral symmetry, the chiral order
parameter decreases with temperatures to small values
but never vanishes. The Polyakov loop parameter, on the
other hand, grows from ϕ ¼ 0 at zero temperature to about
ϕ ¼ 1 at high temperatures. We might mention here that at
very high temperature the value of the Polyakov loop

parameter exceeds unity, the value in the infinite quark
mass limit.
Next, in Fig. 2, we show the dependence of the

trace anomaly ðϵ − 3pÞ=T4 on temperature. The conformal
symmetry is broken maximally at the critical temperature.
Further, finite chemical potential enhances this breaking
as it breaks scale symmetry explicitly. As we shall see
later, this will have its implication on the bulk viscosity
coefficients.
Next, to discuss critical behavior as well as to calculate

different thermodynamic quantities, one has to take deriv-
atives of the thermodynamic potential with respect to the
mean fields as well as the parameters like temperature and
the chemical potential. Vanishing of the first-order
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FIG. 1. (a) Temperature dependence of the masses of constituent quarks (M) and pions (Mπ) and sigma mesons (Mσ) and (b) the order
parameters σ and ϕ as a function of temperature for μ ¼ 0 MeV.
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derivatives of the thermodynamic potential with respect to
the order parameters leads to the values of the order
parameters satisfying the coupled gap equations as shown.
However, to calculate many different thermodynamic quan-
tities, one also has to take into account the implicit
dependence of the order parameters on temperature as well
as chemical potential. One can do a numerical differ-
entiation of the order parameters after solving for them
from the gap equation. However, this can be numerically
less accurate, particularly for the higher-order derivatives.
We shall use here a semianalytic approach to calculate the
implicit contributions to the extent of taking the differ-
entiation of the expressions analytically [55]. Only the
values of the final expressions so obtained are computed
numerically. For example, to calculate the derivative of the
order parameter X, ðX ¼ σ;ϕ; ϕ̄Þ with respect to temper-
ature is given by the equation

∂
∂T

�∂Ω
∂X

�
þ ∂
∂σ

�∂Ω
∂X

�
dσ
dT

þ ∂
∂ϕ

�∂Ω
∂X

�
dϕ
dT

þ ∂
∂ϕ̄

�∂Ω
∂X

�
dϕ̄
dT

¼ 0: ð31Þ

Thus, we have a matrix equation of the type A · Y ¼ B,
where A is the coefficient matrix of the variables

Y ¼ ðdσdT ; dϕdT ; dϕ̄dTÞ
T, and B is the matrix of derivatives of

the thermodynamic potential involving explicit dependence
on temperature, i.e., B ¼ ð− ∂

∂T ð− ∂Ω
∂σ ;−

∂Ω
∂ϕ ;−

∂Ω
∂ϕ̄ÞTÞ. These

matrix equations can be solved using Cramer’s rule. The
coefficient matrix A is given by

A ¼

2
64
Ωσσ Ωσϕ Ωσϕ̄

Ωϕσ Ωϕϕ Ωϕϕ̄

Ωϕ̄σ Ωϕ̄ϕ Ωϕ̄ ϕ̄

3
75 ð32Þ

with Ωab ¼ ∂2Ω
∂a∂b, where a, b stand for σ;ϕ and ϕ̄. Similarly,

to calculate the derivatives with respect to chemical poten-
tial, the coefficient matrix A remains the same, while the
matrix B will involve derivatives of the thermodynamic
potential involving explicit dependence on the chemical
potential.
Solving Eq. (31) this way, we have plotted the deriva-

tives of the order parameters in Fig. 3. The critical
temperature is defined by the position of the peaks of
these derivatives of the order parameters. At zero chemical
potential, this occurs at TC ≃ 176 MeV. Let us note that at
TC the quark mass is mq ¼ gσσ ¼ 134 MeV, while the
Polyakov loop variable ϕ∼ ¼ 0.5. Thus, at the critical
temperature, the effect of interaction is significant. As the
chemical potential for the quarks increases, the critical
temperature decreases. With finite chemical potential,
the peaks also become sharper, and at higher chemical
potential, the transition becomes a first-order one. The
critical point within this model occurs at ðTc; μcÞ ¼
ð155; 163Þ MeV.
The other thermodynamic quantity that enters into the

transport coefficient calculation is the velocity of sound.
The same at constant density is defined as

c2s ¼
�
−
∂P
∂ϵ

�
n
¼ sχμμ − ρχμT

Tð χTTχμμ − χ2μTÞ
; ð33Þ

where P, the pressure, is the negative of the thermodynamic
potential given in Eq. (9). Further, s ¼ − ∂Ω

∂T is the entropy

density, and the susceptibilities are defined as χxy ¼ − ∂2Ω
∂x∂y.

The velocity of sound shows a minimum near the crossover
temperature as may be seen in Fig. 4. Within the model, at
low temperature when the constituent quarks start contrib-
uting to the pressure, their contribution to the energy
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FIG. 3. (a) Temperature derivative of the chiral order parameter ðdσdTÞ and (b) Polyakov loop parameter ðdϕdTÞ as a function of temperature.
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density is significant compared to their contribution to the
pressure, leading to decreasing behavior of the velocity of
sound until the crossover temperature, beyond which it
increases as the quarks become light and approach the
massless limit of c2s ¼ 1

3
. Such a dip in the velocity of sound

is also observed in lattice simulation [56]. As we shall
observe later, this behavior will have important conse-
quences for the behavior of bulk viscosity as a function of
temperature. We might mention here that such a dip for the
sound velocity was not observed for two-flavor NJL [25].
For the linear sigma model calculations, such a dip was
observed only for a large sigma meson mass [38].

III. TRANSPORT COEFFICIENTS IN
RELAXATION TIME APPROXIMATION

We shall attempt here to estimate the transport coeffi-
cients in the relaxation time approximation where the
particle masses are medium dependent. Such attempts
were made earlier for the σ model [38] as well as in the
NJL model to compute the shear and bulk viscosity
coefficients. Such an approach was also made to estimate
the viscosity coefficients of pure gluon matter [57]. In all
these attempts, the expressions for the viscosity coefficients
were derived for vanishing chemical potential. Several
attempts were made to estimate these coefficients with
finite chemical potential with different Ansätze. These
expressions were put on firmer ground by deriving the
expressions when there are mean fields and medium-
dependent masses in a quasiparticle picture [58]. The
resulting expressions for the transport coefficients were
manifestly positive definite as they should be. These
expressions were derived explicitly for the NJL model
[25]. We use the same expressions here for the transport
coefficients. The shear viscosity coefficient is given by

η ¼ 1

15T

X
a

Z
dp

ð2πÞ3
p4
a

E2
a
τðEaÞf0að1� f0aÞ; ð34Þ

where the sum is over all the different species contributing
to the viscosity coefficients including the antiparticles and
τa is the energy-dependent relaxation time that we define in
the following subsection. The coefficient of bulk viscosity
is given by

ζ ¼ 1

9T

X
a

Z
dp

ð2πÞ3
τa

Ea
2
fa0ð1� fa0Þ

�
p2ð1 − 3vn2Þ

− 3vn2
�
M2 − TM

dM
dT

− μM
dM
dμ

�

þ 3

�∂P
∂n

�
ϵ

�
M

dM
dμ

− Eata
��

2

: ð35Þ

The thermal conductivity, on the other hand, is given by

λ ¼
�
w
nT

�
2X

a

Z
dp

ð2πÞ3
p2

3E2
a
τaðEaÞ

�
ta −

nEa

w

�
2

× f0að1� f0aÞ: ð36Þ

In the above expressions, f0a is the equilibrium fermion/
boson distribution functions depending upon the statistics
with ð1� f0aÞ being the Bose enhancement/Fermi suppres-
sion factors and ta ¼ þ1;−1, and 0 for the quark,
antiquark, and meson, respectively. Further, c2s ¼ ð∂p∂ϵÞn is
the velocity of sound at constant density, and w ¼ ϵþ p is
the enthalpy density.

A. Relaxation time estimation—Meson scatterings

As may be noted, the expressions for the transport
coefficients as in Eqs. (34), (35), and (36) depend not
only on bulk thermodynamic properties like energy density,
pressure, and velocity of sound but also on the energy-
dependent relaxation time τðEÞ. In the following, we shall
first estimate the relaxation times involving meson
exchanges similar to Ref. [38].
Using the Lagrangian Eq. (1), we calculate the relaxation

time in the PQM model by taking into account the
following scattering amplitudes with the corresponding
matrix elements being given as

Mσþσ→σþσ ¼ −6λ − 36λ2fπ2

×

�
1

s −mσ
2
þ 1

t −mπ
2
þ 1

u −mπ
2

�
ð37Þ

Mπþσ→πþσ ¼ −2λ − 4λ2fπ2

×

�
3

t −mσ
2
þ 1

u −mπ
2
þ 1

s −mπ
2

�
ð38Þ
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FIG. 4. Temperature dependence of the velocity of sound at
constant density.
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Mπþπ→πþπ ¼ −2λ
�
s −mπ

2

s −mσ
2
δabδcd þ

t −mπ
2

t −mσ
2
δacδbd

þ u −mπ
2

u −mσ
2
δadδbc

�
ð39Þ

Mπþπ→σþσ ¼ −6λ − 4λ2fπ2

×

�
3

s −mσ
2
þ 1

t −mπ
2
þ 1

u −mπ
2

�
: ð40Þ

The terms involving the propagators yield divergent
integrals due to the poles in the s and u channels, which
is known in the literature [38]. To regulate these integrals,
one can include a width for the mesons as evaluated in
the next subsection [Eq. (54)]. However, such a substitu-
tion violates crossing symmetry. Further, these terms are
generated from the three-point vertices, which are not taken
into account in the mean field approximation used in
solving the gap equations and the resulting equation of
state. Hence, to be consistent with the equation of state
while maintaining crossing symmetry for the scattering
amplitudes, we approximate the above scattering ampli-
tudes by their limits when s, t, and u are taken to be infinity
and the scattering amplitudes reduce to constants [38].
Thus, the scattering amplitudes essentially reduce to con-
stants. This allows us to compare our results with the earlier
work of Ref. [38] and study the effect of the Polyakov loop
and quarks within a similar approximation.
The energy-dependent interaction frequency ωaðEaÞ for

the particle species a arising from a scattering process
a; b → c; d, which is also the inverse of the energy-
dependent relaxation time τðEaÞ, is given by, with dΓi ¼

dpi
2EiðpÞð2πÞ3 [25],

ωðEaÞ≡ τðEaÞ−1 ¼
X
b

Z
dΓbf0bWabðsÞ: ð41Þ

In the above, the summation is over all the particles except
the species a with a, b as the initial state.
The quantity Wab is dimensionless and Lorentz invari-

ant, and depends only on the Mandelstam variable s and is
given by

WabðsÞ ¼
1

1þ δab

Z
dΓcdΓdð2πÞ4δ4ðpa þ pb − pc − pdÞ

× jMj2ð1þ fcÞð1þ fdÞ: ð42Þ

In the above, we have included the Bose enhancement
factors for the meson scattering. The quantity WabðsÞ is
related to the cross section by noting that, with t as the
Mandelstam variable t ¼ ðpa − pcÞ2,

dσ
dt

¼ 1

64πs
1

p2
ab

jMj2; ð43Þ

where pabðsÞ ¼ 1=ð2 ffiffiffi
s

p Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðs;m2

a; m2
bÞ

q
, and the kin-

ematic function λðx; y; zÞ ¼ x2 þ y2 þ z2 − 2xy − 2yz −
2zx is the magnitude of the 3-momentum of the incoming
particle in the c.m. frame. In the c.m. frame, using the
energy momentum–conserving delta function and integrat-
ing over the final momenta, we have

WabðsÞ ¼
4

ffiffiffi
s

p
pabðsÞ

1þ δab

Z
tmax

tmin

dt

�
dσ
dt

�

× ð1þ fcðEcÞÞð1þ fdðEdÞÞ; ð44Þ

where

tmax;min ¼ m2
a þm2

c −
1

2s
ðsþm2

a −m2
bÞðsþm2

c −m2
dÞ

� 1

2s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðs;m2

a; m2
bÞλðs;m2

c; m2
dÞ

q
:

In the limit of constant jMj2, Eq. (44) reduces to

WabðsÞ ¼
1

1þ δab

jMj2
16π

ffiffiffi
s

p
pab

ðtmax − tminÞð1þ fcðEcÞÞ

× ð1þ fdðEdÞÞ; ð45Þ
and the transition frequency or the inverse relaxation time is
given as

ωðEaÞ≡ τðEaÞ−1¼
1

256π3Ea

Z
∞

mb

dEb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
b−m2

b

q
fðEbÞjMj2

×
Z

1

−1

dx
1þδab

1

pab
ffiffiffi
s

p ðtmax− tminÞ: ð46Þ

In the above,

s ¼ 2EaEb

�
1þm2

a þm2
b

2EaEb
−
papb

EaEb
x

�
:

To calculate, e.g., the πþ relaxation time (τπþ), we consider
the scattering processes πþ þ πi → πþ þ πi (i ¼ þ;−; 0)
and πþ þ σ → πþ þ σ.
To get an order of magnitude of the average relaxation

time, one can also calculate an energy-averaged mean
interaction frequency for a given species as ω̄a ≡ τ̄a

−1 as

ω̄a ¼
1

na

Z
dp

ð2πÞ3 ωaðEaÞfaðEaÞ; ð47Þ

with

na ¼
Z

dp
ð2πÞ3 faðEaÞ: ð48Þ
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B. Relaxation time estimation—Quark scatterings

We next consider the quark scattering within the model
through the exchange of pion and sigma meson resonances.
The approach is similar to Refs. [25,35,59] performed
within the NJL model to estimate the corresponding
relaxation time for the quarks and antiquarks. The tran-
sition frequency is again given by Eq. (41), with the
corresponding Wab given as

Wq
abðsÞ ¼

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 4m2Þ

p
1þ δab

Z
0

tmin

dt

�
dσ
dt

��
1 − fc

� ffiffiffi
s

p
2

; μ

��

×

�
1 − fd

� ffiffiffi
s

p
2

; μ

��
; ð49Þ

where

dσ
dt

¼ 1

16πsðs − 4m2Þ
1

p2
ab

jM̄j2; ð50Þ

with the corresponding suppression factors appropriate for
fermions. For the quark scatterings, in the present case

for two flavors, we consider the following scattering
processes:

uū → uū; ud̄ → ud̄; uū → dd̄;

uu → uu; ud → ud; ūū → ūū;

ūd̄ → ūd̄; dd̄ → dd̄; dd̄ → uū;

dū → dū; dd → dd; d̄d̄ → d̄d̄:

One can use i-spin symmetry, charge conjugation sym-
metry, and crossing symmetry to relate the matrix element
square for the above 12 processes to get them related to one
another, and one has to evaluate only two independent
matrix elements to evaluate all the 12 processes. We choose
these, as in Ref. [59], to be the processes uū → uū and
ud̄ → ud̄ and use the symmetry conditions to calculate the
rest. We note, however, that, while the matrix elements are
related, the thermal-averaged rates are not, as they involve
also the thermal distribution functions for the initial states
as well as the Pauli blocking factors for the final states. We
also write down the square of the matrix elements for these
two processes explicitly [25,59]:

jM̄uū→uūj2 ¼ g4σ

�
s2jDπð

ffiffiffi
s

p
; 0Þj2 þ t2jDπð0;

ffiffiffiffiffi
−t

p Þj2ðs − 4m2Þ2jDσð
ffiffiffi
s

p
; 0Þj2 þ ðt − 4m2Þ2jDσð0;

ffiffiffiffiffi
−t

p Þj2

þ 1

Nc
ReðstD�

πð
ffiffiffi
s

p
; 0ÞDπð0;

ffiffiffiffiffi
−t

p Þ þ sð4m2 − tÞD�
πð

ffiffiffi
s

p
; 0ÞDσð0;

ffiffiffiffiffi
−t

p Þ

þ tð4m2 − sÞDπð0;
ffiffiffiffiffi
−t

p ÞD�
σð

ffiffiffi
s

p
; 0Þ þ ð4m2 − sÞð4m2 − tÞDσð0;

ffiffiffiffiffi
−t

p ÞD�
σð

ffiffiffi
s

p
; 0ÞÞ

�
: ð51Þ

Similarly, the same for the process ud̄ → ud̄ is given as [59]

jM̄ud̄→ud̄j2 ¼ g4σ

�
4s2jDπð

ffiffiffi
s

p
; 0Þj2 þ t2jDπð0;

ffiffiffiffiffi
−t

p Þj2ðs − 4m2Þ2jDσð
ffiffiffi
s

p
; 0Þj2 þ ðt − 4m2Þ2jDσð0;

ffiffiffiffiffi
−t

p Þj2

þ 1

Nc
Reð−2stD�

πð
ffiffiffi
s

p
; 0ÞDπð0;

ffiffiffiffiffi
−t

p Þ þ 2sð4m2 − tÞD�
πð

ffiffiffi
s

p
; 0ÞDσð0;

ffiffiffiffiffi
−t

p ÞÞ
�
: ð52Þ

The meson propagators Dað
ffiffiffi
s

p
; 0Þ, (a ¼ σ; π) are given by

Dað
ffiffiffi
s

p
; 0Þ ¼ i

s −M2
a − iImΠMa

ð ffiffiffi
s

p
; 0Þ : ð53Þ

In the above, the masses of the mesons are given by
Eqs. (23) and (24) determined by the curvature of
the thermodynamic potential. Further, in Eq. (53),
ImΠð ffiffiffi

s
p

; 0Þ, which is related to the width of the resonance
as Γa ¼ ImΠa=Ma, is given as [59]

ImΠaðω; 0Þ ¼ θðω2 − 4m2ÞNcNf

8πω
ðω2 − ϵ2aÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − 4m2

p

× ð1 − f−ðωÞ − fþðωÞÞ; ð54Þ

with ϵa ¼ 0 for pions and ϵa ¼ 2m for sigma mesons.
With the squared matrix elements for the quark scatter-

ings given as above, the transition frequency for the quark
of a given species is

ωqðEaÞ ¼
1

2Ea

Z
dπbfðEbÞWq

ab: ð55Þ
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C. Quark pion scattering and
relaxation time

Next, we compute the contribution of quark meson
scattering to the relaxation times for both mesons as well
as quarks. One can argue that the dominant contribution
comes from pions as their number is large compared to
the sigma mesons both below and above Tc. Therefore,
in the following, we consider the quark pion scattering
only. The Lorentz-invariant scattering matrix element can
be written as Ūðp2ÞTbaUðp1Þ, with ŪU ¼ 2mq and with
p1, p2 denoting the initial and final the quark momenta,
respectively, and q1 and q2, being the momenta of the
pions,

Tba ¼ δba
1

2
ðq1 þ q2ÞμγμðδabBðþÞ þ iϵabcτcBð−ÞÞ; ð56Þ

where

BðþÞ ¼ g2σ

�
1

u −m2
q
−

1

s −m2
q

�
; ð57Þ

and

Bð−Þ ¼ −g2σ
�

1

u −m2
q
þ 1

s −m2
q

�
: ð58Þ

Averaging over the spin and isospin factors, the matrix
element square for the quark pion scattering is given by

jM̄j2 ¼ g4σ
6
ððs − uÞ2 − tðt − 4m2

πÞÞð3B2þ þ 2B2
−Þ: ð59Þ

The corresponding transition frequency is given by

ωqπðEaÞ ¼
1

2Ea

Z
dπbfðEbÞWðq−πÞ

ab ; ð60Þ

where

Wðq−πÞ
ab ¼ 1

8π
×

1

2
ffiffiffi
s

p
p0

Z
dtjM̄q−πj2ð1 − fqÞð1þ fπÞ:

ð61Þ
In the above, p2

0 ¼ ðsþm2
q −m2

πÞ2=ð4sÞ −m2
q. The scat-

tering will contribute to both the quark relaxation time as
well as to the pion relaxation time using Eq. (60) with
appropriate modification for the initial state.
Let us note that there are poles in the u channel in the

quark pion scattering term beyond the critical temperature
when the pion mass becomes larger than the quark mass.
However, this is taken care of once we include the
imaginary part of the quark self-energy in the propagators
for the quarks in the calculation of the amplitude in
Eqs. (57) and (58). The quark self-energy due to scattering
with mesons can be written as [30]

Σðp0;pÞ ¼ mΣ0 þ γ · pΣ3 − γ0p0Σ4 ð62Þ

so that the quark propagators get modified as

Sðp0;pÞ ¼
1

p −m − Σ

¼ mð1þ Σ0Þ þ γ0p0ð1þ Σ4Þ − γ · pð1þ Σ3Þ
p2
0ð1þ Σ4Þ2 − p2ð1þ Σ3Þ2 −m2ð1þ Σ0Þ2

:

ð63Þ
The imaginary part of the dimensionless Σj, (j ¼ 0, 3, 4), is
given as

ImΣjðp0;pÞ ¼
g2

32πp
dj

Z
Emax

Emin

dEfCj½fbðEbÞ

þ f−ðEfÞ þ fþðEfÞ�. ð64Þ

In the above, Eb ¼ Ef þ p0, p0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
and f� are

the distribution functions for the quarks/antiquarks, fb is
the meson distribution function, and,Cj’s are weight factors
given as

C0 ¼ 1; C3 ¼
m2

M − 2m2 − 2Efp0

2p2
; C4 ¼ −

Ef

p0

:

ð65Þ
The integration limits are given by

Emax;min ¼
1

2m2

h
ðm2

M − 2m2Þp0 � jpjmM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

M − 4m2

q i
:

ð66Þ

Further, the degeneracy factors d3;4 are 3 for pions and 1
for sigma, while d0 is −3 for pions and 1 for the sigma
meson. To calculate the total relaxation time for a quark of
species a, we compute the total interaction frequency as
ωtotal
q ðEaÞ ¼ ωðEaÞ þ ωqπðEaÞ. One can define an average

relaxation time for the quarks similar to Eq. (47) as
τ̄totalq ¼ 1

ω̄total
q

,

ω̄total
q ¼ 1

nq

Z
dp

ð2πÞ3 fqðEÞω
total
q ðEÞ: ð67Þ

IV. RESULTS

A. Meson scatterings

Let us first discuss the results arising from meson
scattering alone. Using Eqs. (46), with constant jMj2 as
discussed, we have plotted the average relaxation times for
the σ meson and π mesons in Fig. 5. The relaxation times
are minimum at the transition temperature. Because of
larger mass of σ mesons below the transition temperature,
τ̄σ is much larger as compared to τ̄π. They become almost
degenerate after the chiral transition, as may be expected
from the behavior of their masses beyond the transition
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temperature. We may comment here that the particle with
larger relaxation time dominates the viscosities as it can
transport energy and momentum to larger distances before
interacting. In Fig. 6, we have shown the behavior of the
specific viscosities (normalized to entropy density) as a
function of temperature. In Fig. 6(a), we have plotted the
temperature dependence of the ratio η=s for μ ¼ 0. The
behavior of this ratio is essentially determined by the
behavior of the relaxation time. Similar to Fig. 5, η=s shows

a minimum at the crossover temperature, and the value at
the minimum is about η=s ∼ 0.053, which is slightly lower
than the KSS bound of 1=4π. We note that we have
considered here only the contributions from meson scatter-
ings. As we shall see later, inclusion of quark degrees of
freedom increases the ratio. We have also compared with
linear sigma model calculations [38] in which the quark as
well as Polyakov loop contributions are not taken into
account. The general behavior of the present calculations is
similar to earlier calculations in the sense of having a
minimum at the chiral crossover temperature. However, the
magnitude of the ratio at the critical temperature is smaller
compared to Ref. [38]. This is probably due to the fact that
the entropy density in the present calculations has con-
tributions including those of the gluon included through the
Polyakov loop potential. The large entropy density, we
believe, decreases the magnitude of the ratio.
In Fig. 6(b), the ratio of bulk viscosity to entropy is

plotted, which shows a maximum at the transition temper-
ature. We have also plotted in the same figure the results
without quarks and the Polyakov loop potential. The
present results show a distinct peak structure in the ζ=s
ratio at the crossover temperature. Let us note that such a
peak is expected as an effect of large conformality violation
at the transition temperature as indicated in lattice simu-
lations [28,60]. In Ref. [38], a peak structure is seen for a
heavier sigma meson (mσ ¼ 900 MeV), which was inter-
preted as an effect of stronger self-coupling λ for higherMσ.
However, in the present case, this arises with quark and
Polyakov loop degrees of freedom even with a lighter
Mσ ¼ 600 MeV. The other characteristic feature of the
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FIG. 6. Computations show mesonic contribution calculated using only meson-meson interactions. (a) Shear viscosity–to-entropy
ratio for μ ¼ 0. Present results are shown by solid lines. The two dot dashed curves correspond to results of the linear sigma model of
Ref. [38] corresponding two different masses for sigma mesons. (b) Bulk viscosity–to-entropy ratio for μ ¼ 0. Results for current
calculations are shown by the solid line. The other results correspond to the work by Kapusta et al. (short dashed line) of the linear sigma
model with (mσ ¼ 600 MeV) and Kapusta et al. (dash dot curve) for the linear sigma model with mσ ¼ 900 MeV [38].
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FIG. 5. Average relaxation time for pions (solid line) and sigma
meson (dotted line). Only meson-meson scatterings are consid-
ered here.
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present calculation is that, beyond the critical temperature,
the ratio ζ=s falls at a slower rate as compared to results of
previous calculations. This has to do with the fact that the
velocity of sound approaches the ideal gas limit slowly as
the effect of Polyakov loops on the quark distribution
function remains significant beyond the critical temper-
ature. In fact, at the transition temperature, the value of the
Polyakov loop remains about half its value of the ideal
limit. Apart from this, the masses of mesons also get
affected by the quark distribution functions significantly
beyond the critical temperature. These nonideal effects lead
to a slower decrease of the ratio beyond the critical
temperature.

B. Quark scatterings

Next, we discuss quark scattering. In Fig. 7, we show the
behavior of average relaxation time for quark scattering.
The quark scattering through the exchange of mesons is
shown by the solid line in the figure. Let us recall that
the average relaxation time is inversely proportional to the
transition rate, which is related to the cross section. The
dominant contribution here comes from the quark-
antiquark scattering from the s channels through propaga-
tion of the resonance states, the pions, and the sigma
mesons. The masses of the sigma meson decrease with
temperature, becoming a minimum at the transition temper-
ature, leading to an enhancement of the cross section.
Beyond this, the cross section decreases due to the increase
in the masses of the mesons. This, in turn, leads to a
minimum in the relaxation time.
The average relaxation time for quarks including the

quark meson scattering along with the quark scattering is
shown as the dashed curve in Fig. 7. This curve lies below
the quark-quark scattering curve as there is an additional
contribution to the transition rate from the quark meson
scattering. Below the critical temperature, the quark meson
scattering dominates over the quark-quark scattering due to
the smaller mass of the pions as compared to the massive
constituent quarks. Beyond the critical temperature, one
would have expected the quark meson scattering contri-
bution to be negligible because of the suppression due to
the large meson masses. However, as was noted earlier,
beyond the critical temperature, there are poles in the
scattering amplitude in the u channel for quark-pion
scattering as the pion mass becomes larger than the quark
masses. This is, however, regulated by the finite width of
the quarks as calculated in Eq. (62). Nonetheless, the
contribution of the quark-pion scattering to the total quark
interaction frequency ωqπðEÞ is non-negligible beyond the
critical temperature.
We next discuss the contribution of different scatterings

to the specific shear viscosity η=s. The same is shown in
Fig. 8(a) for vanishing chemical potential. The contribution
from the mesons to the shear viscosity arising from the
meson scatterings only is shown by the green dashed curve,

while the effect of including the meson-quark scattering is
shown by the maroon dotted curve. Similarly, the quark
contribution to this ratio η=s arising from quark-quark
scattering only is shown by the red solid line, while the
total contributions including the quark-pion scattering is
shown by the blue dotted line. This also demonstrates the
importance of the scattering of quarks and mesons to the
total viscosity coefficient. The total contributions from both
the quarks and mesons is shown as the black dashed curve
in Fig. 8.
In a similar manner, various contributions to the specific

bulk viscosity (ζ=s) coefficient are shown in Fig. 8(b). As
may be observed, while no peak structure is seen for this
coefficient from the contributions arising from quarks
scatterings only, such a structure is seen only when one
includes the quark meson scattering. The total effect is
shown as a black dashed curve in Fig. 8(b).
In Fig. 9, we compare the present results with earlier

works on the NJL model. As may be noted, in general,
the behavior is similar regarding the shear viscosity–to-
entropy ratio. Both NJL as well as the present calculations
of the PQM model show the similar behavior of having a
minimum at the transition temperature as in Refs. [24,25].
The results of Ref. [35], on the other hand, show a
monotonic decrease with temperature. The bulk viscosity–
to-entropy ratio here, however, shows a much faster rise as
the temperature is lowered below the critical temperature.
In fact, both the specific viscosities rise much faster
compared to NJL models below the critical temperature
in the PQM model considered here. The reason could be
due to the fact that the entropy density for the PQM model
is smaller compared to NJL models. The Polyakov loop
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FIG. 7. Average relaxation time for quarks arising from quark
scattering. The solid curve corresponds to quark quark-quark and
quark-antiquark scattering with meson exchange. The dashed
curve corresponds to including the effect of quark meson
scatterings. Both the curves correspond to the μ ¼ 0 case.
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decreases as the temperature is lowered, which leads to a
suppression of quark distribution functions, leading to
decrease of entropy density at a faster rate as compared
to the NJL model. Moreover, within the present approxi-
mation, pions do not contribute to the thermodynamics

here. Further, for temperature larger than the critical
temperature, the bulk viscosity vanishes slowly with an
increase in temperature as compared to the NJL model.
This is due to the fact that the Polyakov loop variable takes
its asymptotic values only at very high temperatures.
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FIG. 9. (a) Shear viscosity–to-entropy ratio for μ ¼ 0. Present results are shown by solid lines. The dotted line corresponds to results of
the NJL model of Ref. [24], the short dashed curve corresponds to results of Marty et al. Ref. [35], and the long dashed curves
correspond to the results of Deb et al. of Ref. [25]. (b) The results of the bulk viscosity–to-entropy ratio compared with other results in
NJL models. The notation is similar to that of (a).
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FIG. 8. Different contributions for specific viscosity coefficients. η=s is shown in the left, while ζ=s is shown on the right. In both the
figures, contributions from the quarks with relaxation time computed using only quark-quark scattering(red solid line) and also
including quark-meson scattering(blue dotted line) are shown as a function of temperature. The contribution of the mesons due to
meson-meson scattering (green dashed curve) and including meson-quark scattering (maroon short dashed curve) is also shown. The
total contribution from the quarks and mesons is shown by the black long dashed curve. All the curves correspond to the μ ¼ 0 case.
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Next, we discuss the effect of finite chemical potential on
the transport coefficients. To begin with, let us note that the
average relaxation time τ̄a as in Eq. (67) depends both on
the transition rate and the density of the particles in the
initial state. To this end, let us discuss the case of T > Tc.
Here, the quark densities are larger than those of antiquarks.
Further, the dominant contribution in this range of tem-
peratures arises from ud̄ → ud̄ scatterings. As there are
fewer antiquarks to scatter off, the average transition
frequency of quark-antiquark scattering decreases. This

leads to τ̄qðμÞ > τ̄qðμ ¼ 0Þ. On the other hand, for the
antiquarks, there are more quarks to scatter off than
compared to the case of μ ¼ 0. Hence, this leads to
τ̄q̄ðμÞ < τ̄q̄ðμ ¼ 0Þ. This expected behavior is seen in
Fig. 10. Next, let us consider the case T < Tc. In this
case, the antiquark density is heavily suppressed due to
constituent quark mass, and the chemical potential and
dominant contribution for quark relaxation time therefore
arises from quark-quark scatterings. This leads to
τ̄qðμÞ < τ̄qðμ ¼ 0Þ. On the other hand, for the antiquarks,
though their number density is smaller, their interaction
frequency is enhanced both by the larger amplitude for
Mud̄→ud̄ scattering and the larger number of quarks as
compared to case at μ ¼ 0. This leads to τ̄q̄ðμÞ <
τ̄qðμ ¼ 0Þ < τ̄q̄ðμ ¼ 0Þ. This general behavior is reflected
in the average relaxation time dependence on T in Fig. 10
below the critical temperature.
In Fig. 11, we have shown the results for the viscosities

at μ ¼ 100 MeV. Figure 11(a) shows the variation of the
specific shear viscosity (η=s) as a function of temperature
for zero and finite chemical potential. The behavior of shear
viscosity essentially follows that of the behavior of the
relaxation time. η=s has a minimum at the critical temper-
ature with η=sjmin ∼ 0.23 (μ ¼ 0) due to suppression of the
scattering cross section at higher temperature. At finite μ,
the ratio is a little higher as compared to the value at
vanishing μ. This is due to two reasons. First, the relaxation
time at nonzero chemical potential is larger, and, moreover,
the quark density also becomes larger at finite chemical
potential. At temperatures below the critical temperature
and near the critical temperature, η=sðμÞ < η=sðμ ¼ 0Þ
as the relaxation time is lower. However, at lower
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FIG. 11. Viscosities for μ ¼ 100 MeV. The left figure shows η=s as a function of temperature for μ ¼ 0 MeV (solid line) and
μ ¼ 100 MeV (dotted line). The right figure shows the ratio ζ=s as a function of temperature.
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FIG. 10. Average relaxation time of quarks and antiquarks
for μ ¼ 100 MeV. The solid line corresponds to the case
of μ ¼ 0 MeV.
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temperatures, the meson scattering becomes significant,
and η=s for finite chemical potential becomes similar to that
at vanishing chemical potential as is observed in the figure.
In Fig. 11(b), we have plotted the bulk viscosity–to-

entropy ratio for μ ¼ 0 MeV and μ ¼ 100 MeV. It turns
out that at finite μ the specific bulk viscosity is smaller than
the value at μ ¼ 0 MeV. The reason for it is the fact that the
dominating contribution to the finite μ arises from the term
M2 − TM dM

dT − μM dM
dμ in the expression for ζ=s in Eq. (35).

This is due to the sharp variations of the order parameters at
finite chemical potential as may be observed in Fig. 3.
As this term contributes negatively to the expression for ζ,
the specific bulk viscosity at finite μ is lower than that
at μ ¼ 0 MeV.
In Fig. 12, we have shown the results for thermal

conductivity. We have plotted here the dimensionless
quantity λ=T2 as a function of temperature. We have
plotted the results for μ ¼ 100 MeV. As is well known,
thermal conduction, which involves the relative flow of
energy and baryon number, vanishes at zero baryon density.
In fact, λ diverges as 1=n2, as may be expected from the
expression given in Eq. (36). However, in the dissipative
current, the conductivity occurs as λn2 [61,62], and the heat
conduction vanishes for μ ¼ 0 [63]. On the other hand, in
some cases, such as when the pion number is conserved,
heat conduction can be sustained by pions. In the presence
of a pionic chemical potential corresponding to a conserved
pion number, thermal conductivity can be nonzero at
vanishing baryonic chemical potential. This has been the
basis for the estimation of thermal conductivity at zero
baryon density but finite pion density [31,40,47]. However,
in the present case, we consider the case of vanishing pion
chemical potential and show only the contribution of
quarks to thermal conductivity.

As expected from the behavior of the relaxation time, the
specific thermal conductivity has a minimum at the critical
temperature similar to Ref. [25] for the NJL model. The
sharp rise of λ=T2 can be understood by performing a
dimensional argument to show that at very high temper-
ature when chiral symmetry is restored the integral
increases as T3 while the prefactor w=ðnTÞ grows as T2

for small chemical potentials. Apart from this kinematic
consideration, the integrand further is multiplied by τðEÞ,
which itself is an increasing function of temperature
beyond Tc. This leads to the sharp rise of the ratio λ=T2

beyond the critical temperature. Below the critical temper-
ature, however, the ratio decreases, which is in contrast to
the NJL results of Ref. [25]. The reason is twofold. First, the
magnitude of the relaxation time decreases when quark
meson scattering is included as compared to quark-quark
scattering as shown in Fig. 7. Apart from this, in the
integrand, the distribution functions are suppressed by
Polyakov loops as compared to the NJL model. As the
antiquark densities are suppressed compared to quark
densities at finite chemical potential, the high-temperature
behavior is decided by the quark-quark scattering.

V. SUMMARY

Transport coefficients of hot and dense matter are
important inputs for the hydrodynamic evolution of the
plasma that is produced following a heavy ion collision. In
the present study, we have investigated these coefficients,
taking into account the nonperturbative effects related to
chiral symmetry breaking as well as confinement properties
of strong interaction physics within an effective model, the
Polyakov loop extended quark meson coupling model.
These coefficients are estimated using the relaxation time
approximation for the solutions of the Boltzman kinetic
equation.
We first calculated the medium-dependent masses of the

mesons and quarks within a mean field approximation. The
contribution of the mesons to the transport coefficients has
been calculated through estimating the relaxation time for
the mesons arising both from meson-meson scattering and
meson-quark scattering. The contribution to the transport
coefficients arises mostly from the meson scatterings at
temperatures below the critical temperature, while above
the critical temperature, the contributions arising from the
quark scatterings become dominant. In particular, quark
meson scattering contributes significantly to the relaxation
time for the quarks both below and above the critical
temperature. The quark-pion scattering above the critical
temperature gives significant contribution due to the pole
structure of the corresponding scattering amplitude.
One important approximation in the present analysis is

that the kinetic terms for the mesons are not modified at
finite temperature and meson dispersion relation remains
similar to those at the zero-temperature relativistic dis-
persion relation. The only temperature effect that remains
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FIG. 12. Thermal conductivity in units of T2 as a function of
temperature for μ ¼ 100 MeV.
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in the meson dispersion lies in the temperature-dependent
meson masses obtained through the curvature of the
effective potential [54]. A more realistic approach would
be to use effective field theory to have different dispersion
relations for the mesons [64] depending upon their veloc-
ities and calculate the scattering processes to estimate the
viscosities. However, such an approach is beyond the scope
of present work in which we have restricted ourselves to
thermal and density effects included in the masses and
widths for the mesons.
In general, the effect of Polyakov loops lies in sup-

pressing the quark contribution below the critical temper-
ature. This leads to, in particular, the suppression of thermal
conductivity at lower temperature arising from quark
scattering. The effect of Polyakov loop also is significant
near and above the critical temperature. Indeed, both the

quark masses as well as Polyakov loop order parameter
remain significantly different from their asymptotic values
near the critical temperature. It will be interesting to
examine the consequences of such nonperturbative features
on the transport coefficients of heavy quarks as well as on
the collective modes of QGP above and near the critical
temperature. Some of these works are in progress and will
be reported elsewhere.
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