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We construct the Lorentz-invariant chiral Lagrangians up to the order O(p*) by including A(1232) as an
explicit degree of freedom. A full one-loop investigation on processes involving A(1232) can be performed
with them. For the #AA Lagrangian, one obtains 38 independent terms at the order O(p?) and 318
independent terms at the order O(p*). For the zZNA Lagrangian, we get 33 independent terms at the order
O(p?) and 218 independent terms at the order O(p*). The heavy baryon projection is also briefly

discussed.
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I. INTRODUCTION

The lowest excited states of the nucleon are the four
A(1232) baryons, which play an important role in the low-
energy processes, such as the zN scattering, the magnetism
of the nucleon, the electromagnetic interactions of nucleons
and so on, because of the strong coupling between the A and
the nucleon. Their mass gap is around 300 MeV which is not
a big number and they may be treated as degenerate states in
the large NV limit [1,2]. At present, because of the difficulties
in solving the nonperturbative QCD problem, chiral per-
turbation theory (ChPT) [3-6] is still a feasible and efficient
method to describe the low-energy processes involving
pions and nucleons. Due to the above reasons, the effects
of the A baryons in ChPT are worth separated from low
energy constants (LECs) and one can included A baryons in
this framework as explicit degrees of freedom [7,8].

To include A in ChPT, one usually needs to set up an
expansion method, i.e. a power counting scheme, because a
new scale larger than the nucleon mass appears. In the pion
meson sector, the Lagrangian and the S-matrix are
expanded with the power of meson mass (or its energy-
momentum) over the scale of chiral symmetry breaking,
p/A, ~mg /A, with A, ~1 GeV. When the nucleon is
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included in ChPT, because its mass my is comparable to
A, this simple power counting becomes problematic. In
the literature, there are efforts to solve this problem with
heavy baryon formalism [9], infrared regularization [10],
or extended on-mass-shell (EOMS) regularization scheme
[I1]. After the introduction of the scale m,, a new
expansion parameter §/A, = (m —my)/A, is involved.
One may choose a power counting scheme, m, /A, ~5/A,
[8] or m,/A, ~ (6/A,)* [12], to calculate the S-matrix.
Much deeper understanding about the power counting
problems in ChPT with explicit A could be obtained in
the future once high order Lagrangians are given. At
present, the full chiral Lagrangian with A is still at low
orders and we would like to construct high order
Lagrangians in this paper. Here we will adopt the small
scale expansion scheme [8] and simply use p to denote m,
6, or the three momentum of the nucleon or A.

Up to now, the chiral Lagrangians for mesons have
been obtained up to the O(p®) order (two-loop level)
[4,5,13-20], including the whole 16 bilinear light-quark
currents (scalar, pseudoscalar, vector, axial-vector, and
tensor) of the special unitary group and the unitary group.
For baryon ChPT, the full Lagrangians up to the order
O(p*) (one-loop level) were completed recently [6,21-28].
For ChPT with A, the Lagrangian is only at the order O(p?)
(tree level) [8]. In principle, high order calculations of the
S-matrix in ChPT will improve the precision of the theory.
Specific processes using part of high order terms have
been studied, such as the nucleon-A transition [29-32],
the properties of A [33-40], scattering processes with
nucleon or A [41-50], and so on. Completing high
order Lagrangians with A is the first task in improving

Published by the American Physical Society


https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.97.014002&domain=pdf&date_stamp=2018-01-08
https://doi.org/10.1103/PhysRevD.97.014002
https://doi.org/10.1103/PhysRevD.97.014002
https://doi.org/10.1103/PhysRevD.97.014002
https://doi.org/10.1103/PhysRevD.97.014002
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

JIANG, LIU, and WANG

PHYS. REV. D 97, 014002 (2018)

the precision of ChPT and will be helpful to deeper
understanding of the chiral expansion in various processes.
In this paper, we would like to construct the chiral
Lagrangians with A up to the O(p*) order (one-loop level).

This work is organized as follows. In Sec. II, we provide
the basic properties of spin-% fields in the Rarita-Schwinger
formalism. It is the base for the discussion about A. In
Sec. IIT A, we review the building blocks for the con-
struction of the chiral Lagrangians without A. Some
properties also work in the A case. In Sec. III B, we
present the building blocks used in constructing chiral
Lagrangians with A. In Sec. IV, the properties of the
building blocks are given. With these properties, a sys-
tematic method for the construction of Lagrangians is
introduced. In Sec. V, we list our results and present some
discussions. Section VI is a short summary.

II. SPIN-3 FIELDS AND THEIR
BASIC PROPERTIES

A(1232) is a spin-3 field. There are many ways to
describe such a field [51-54]. In this paper, we adopt the
widely used vector-spinor representation Y (4 = 0, 1, 2, 3)
[53] to give the Lagrangian. However, the vector-spinor
representation (Rarita-Schwinger or RS field) contains two
unphysical spin-} degrees of freedom and one needs extra
conditions to restrict the representation. Because of the
unphysical spin—% components, an arbitrary unphysical
parameter A exists in the Lagrangian. Before the discussion
of A in ChPT, we first review some basic properties for the
free RS field. More details can be found in Refs. [51-64].

The general Lagrangian for the free RS field with mass
my is [55]

Ly =Y,AY,,
Ny = =[(i9 = ma)g® + IAGHO -+ 0F)
+ é (BA% + 24 + 1)y* Py
+ma(3A% 434+ 1), (1)
where A # —1/2 is an arbitrary real number. Generally

speaking, A can also be a complex number. In this case, the
Lagrangian needs some modifications [56,63],

Ay =~ {(i@ = ma)g + (AP + AT
+ % (BAA* + A + A" + 1)y Py
33
+ my | 3AA* +§A +§A* + 1 |r#yY]. (2)

Here, an overall minus sign has been chosen [8,65-68]. It
ensures that the spatial components of W* behave like a

Dirac field and the Hamiltonian is positive definite [65]. In
the following, A is considered to be real. A complex A
would only result in complicated expressions.

The above Lagrangian is invariant under the so called
“point” or “contact” transformation,

1
Y, -V¥, =Y, +§ay}4yy‘{’”, (3)
A—a 1
Ao A= : - 4
CASTe 9T )

which is not a symmetry of the Lagrangian because the
parameter A is changed. The choice for the value of A does
not affect physical quantities [63,67,69]. In studying
various physical processes involving the RS field, one
can choose any suitable A for the purpose of convenient
use. If A = —%, the original Rarita-Schwinger Lagrangian
is recovered [53]. If A = —1, the propagator has a very
simple and widely used form [60].

To restrict arbitrariness and to simplify the Lagrangian,
one may adopt the method proposed by Pascalutsa in
Ref. [61] where a point invariant RS field y/, = O}, =
(¢ +3Ar"y*)¥, is defined. Then the new form of the
Lagrangian reads

‘Cf = l/_/Aﬂ[\lwl//Azz ’

A = —(i) = mp) g + %y"}”(l’@ —mp)yrt. (5)

Now, all the variations to A are implicitly contained in y/,
and A" is independent of A.

With the Euler-Lagrange equation and some techniques
such as that given in the Appendix of Ref. [70], one obtains

(i —my)¥, =0, (6)
¥, =0, (7)
oY, =0. (8)

Equation (6) is the equation of motion for the RS field and
Egs. (7) and (8) are two subsidiary conditions to eliminate
the redundant components of the RS field. The redefined
field y/, also satisfies these equations.

When one considers interactions of A, e.g. AAy or ANz
interaction, a covariant derivative is needed in the
Lagrangian and one more free parameter (7 parameter)
also appears. To be consistent with the point transforma-
tion, this z parameter is necessary and its value can be
obtained from experiments [70].

The framework to include A in ChPT can be found in
Ref. [65]. It gives the method to separate out the redundant
degrees of freedom and reveal the physical degrees of
freedom explicitly. Later, a series of systematic works
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analyze the structures of chiral Lagrangian with 7 and A
fields and give the leading order Lagrangian [8,66,71,72].
In Ref. [67], the off-shell parameters in ChPT with A are
proved unphysical and can be removed. In the following
parts, we consider systematically the structures of chiral
Lagrangian with A and construct the Lagrangian to the
one-loop order by eliminating the redundant degrees of
freedom.

II1. BUILDING BLOCKS IN CONSTRUCTING
CHIRAL LAGRANGIANS

In ChPT, the Lagrangian is invariant with respect to
various QCD symmetries. We need to know the trans-
formations of various building blocks (baryon or meson
fields, external sources, or combined structures of them). In
this section, we review briefly the building blocks of chiral
Lagrangian without A and present new building blocks
involving A. The details for the former case can be found in
Refs. [4,5,13,14,17,20,25,26,28].

A. Building blocks without A

The two-flavor QCD Lagrangian £ can be written as

L= Locp +a(f + drs — s+ ipys)q. ©)

where EOQCD is the original QCD Lagrangian and ¢ is the
quark field u or d. We use s, p, v¥, and a* to denote scalar,
pseudoscalar, vector, and axial-vector external sources,
respectively. Conventionally, the tensor source and the 6
term are ignored. In ChPT, a* is usually traceless. If we use
S to denote the external source s, p, v¥, or a*, one can
divide it into a traceless part S (i = 1, 2, 3) and a trace
part S

S = SiT,' + Sslz,
si=Lisey, s, =Ls) (10)
_2 T £ _y_2 £

where 7' are Pauli matrices, I, is the 2 x 2 identity matrix,
and (---) denotes the trace of “:--” in isospin space. For
convenience, we here use the convention S'z; =St = S;1;.
In the following, we will perform similar decompositions
for the 2 x 2 matrices in the isospin space.

The QCD Lagrangian L{, exhibits a global SU(2), x
SU(2)g chiral symmetry when the light quarks are mass-
less. This symmetry is spontaneously broken into SU(2),,
and three Goldstone bosons (pseudoscalar mesons) appear.
These pseudoscalar mesons get their masses once the light
quark masses are considered. In ChPT, these mesons are
collected into an SU(2) matrix U whose transformation is

U — g, Ugh. Here g; and g represent SU(2), and SU(2),
chiral rotations, respectively. Usually, another field u is

defined through u? = U. It transforms as u — g uh’ =

hugf,e under the chiral rotation, where & is a compensator
field and a function of the pion fields.

To construct the chirally invariant Lagrangian, one
introduces several combinations of the external sources
and meson fields. Such structures, called building blocks,
are

w = i{u" (0" —ir')u — u(o" — il*)u'},

ye =u'yu' £uytu,

h = Vit + VPuk,

Y =uFPu + u' Fiu,

= uFPu" —u'FlYu = -Vrur + Ve, (11)
where ' =vt+a¥, IF = v* —a*, y = 2By(s +ip), Fiy =
Qur — o — i, ), P = 04 — o1 — i1 1], and
By is a constant related to the quark condensate. The

definition of the covariant derivative V¥ acting on any
building block X in Eq. (11) is

VEX = O#X + [T, X],
= L@ = iy @ = ). (12)

In constructing the Lagrangian, the following two relations
will be useful

[V, VX = [[*, X], (13)
™ = VATY — V'T* — [[¥,T]

1 i
= ] = (14)

Besides the above meson and external fields, we also
need baryons. In the following parts, the nucleon doublet is

denoted as
P
v = ( ) (15)
n

and its covariant derivative is defined as D*y = (O* +T*)y.
Note that we use a different symbol for the covariant
derivative acting on baryons in this paper.

B. New building blocks involving A
Unlike the nucleon, it is a bit complex to describe A
fields in the isospin space. In the literature, they are usually
denoted by an isovector-isospinor y/’l.‘ [8,65-68,71,72]. To
eliminate the two redundant isospin-1/2 degrees of free-
dom, a subsidiary condition is imposed

iy =0 (i=1,2,3). (16)
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The representation for the 7 = % components is

LAO—A++ "
1[5
WJ;Z_( )’

V2 \ A7 - JpAf

. L AO ++
P J A0 4 AT #
Tov2\ A hat )

2/ AT\
r=\a () (1)
where the signs are the same as those in Refs. [65,68].
A different overall sign was adopted in Ref. [8].

Note that each y/* is an isospin doublet and the index i
needs to be contracted with the isovector index of another
field. Thus we need to reveal the implicit isospin indices of
the building blocks in Eq. (11). Similar to Eq. (10), we
decompose each building block X (u#, h*, f4”, or y) with
the following formulas

X = XiTi +X512,

1 1
X; == (X1;), X, ==-(X). 18
=3 X, =2 (%) (18)
Specifically, one has
s = 2000 = 20°0%, (19)

which is related to the external source v* only.

When we consider only the zAA interactions, the chiral
Lagrangian is the linear combination of Oﬁ{lwy/j where
Oi«]ﬁ containing the pion fields and external sources with
various Lorentz structures depends on A. The LECs in the
Lagrangian are also A-dependent. For the zN A interactions,
some extra z, parameters are needed in the Lagrangian
because of the point transformation [70]. The interaction
terms have the form yO*@, , ,(z,)y"+H.c., where O
containing the pion fields and external sources with various
Lorentz structures is independent of A and

1
Opnpw(n) = G + [zn +3 (1+ 4Zn)A:| Yl

1
= (g/ta + Znyﬂya) (gau + 5‘47“71/)

1
= | % + 547" ) (o + 2n¥alu)
2
= ®n,;m(zn)07\y = OAﬂaGn,av(Zn)' (20)
Here, n denotes the order of a term and z, is a free
parameter which can be obtained from experiments. We do

not discuss how to determine z,, in this work. The LECs in
the zNA Lagrangian are independent of A.

One can absorb the arbitrary parameter A into the
redefinition of the RS field (as in the free RS case) and
use  yhy = (¢ +5AYY )wi, = Oy, and  yh =
0, (z,)Wai, = Oy, to construct chiral Lagrangian.
In this case, the 7#AA interaction terms have the form
l,'u’/ii(/),"f;,y/;j where O}, and the LECs are independent
of A, and the #NA interaction terms have the form
I;Z/Oiﬂl//;&,n.i +H.c..

To summarize, the building blocks in constructing chiral
Lagrangians with A are all X; and X, in Eq. (18), the Dirac
fields y and , the RS fields v/, @}, v/, ,, ;, and 4y , ;, and
their covariant derivatives. The covariant derivatives of
these building blocks are

VHXT = QUXT - il X T,
ViX, = X,
Dy = 0y + (T2 + i)y,

Diy™ = oy — 2ie Ty + Tidly™ + Tiy™, (21)

where I* =Tz’ +I%1,. As an alternative choice, in the
mAA case, one may adopt the redefined RS fields y/,; and
wh; (instead of w/ and *) and their covariant derivatives to
construct Lagrangians. We will discuss both cases later.

IV. CONSTRUCTION OF CHIRAL
LAGRANGIANS WITH A

In this section, we introduce the method to construct
chiral Lagrangians with A step by step. The construction
procedure in this method is very similar to that used to
construct the meson and meson-baryon chiral Lagrangians
in Refs. [20,28].

A. Power counting and transformation properties

We adopt the chiral dimensions for the building blocks
assigned in Refs. [4-6,8,14,25,26] and list them in the
second column of Table I. The covariant derivatives acting
on the meson fields and the external sources are counted as
O(p'), but those acting on the nucleon and A fields are
counted as O(p?). According to the low-energy approxi-
mation for the bilinear coupling, zAA or zNA, one assigns
the chiral dimensions for the elements of the Clifford
algebra, the Pauli matrices, and the Levi-Civita tensors in
the second column of Table II [25,26,68].

The chiral Lagrangian needs to be invariant under the
chiral rotation (R), parity transformation (P), charge con-
jugation transformation (C), and Hermitian transformation
(H.c.). It is necessary to know these transformation proper-
ties for the building blocks and other essential elements.

Under the chiral rotation R, the transformation for the
nucleon doublet is
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TABLE 1. Chiral dimension (Dim), parity (P), charge con-
jugation (C), and Hermiticity (H.c.) of the building blocks, where
c=—-c2=¢¥=1 and ¢/ =0 when i# j. The building
blocks in the first four rows are used in the chiral Lagrangian
without A. The building blocks in the last six rows are used in the
chiral Lagrangian with A.

Dim P C H.c.
u# 1 —u, ()T ut
Iz 2 —h,, ()T B
X+ 2 S ()" s
p 2 i T fE
u! 1 —Ui, cij u’; u!
" 2 —hi c,«jh’;b ¥
Xt 2 = CijX+.j ==
)(:\:,s 2 :I:)(:t,s }(i,s :t)(:l:,s
i 2 tf i FCij lf; W
}fs 2 fﬁsuu _flis ;-li—ys
y Sy = hy (22)

and those for the RS fields are [65]
vl S Khyt (i =1.2.3) (23)

where K;; = 1 (r;ht;h"). D"y also transforms in the same
way. From the definitions in Egs. (11) and (12), we have the
following chiral transformations for the building blocks
(and with their covariant derivatives)

x5 X' = nxn'. (24)

With the decomposition in Eq. (18), one gets the trans-
formation properties for X; and X as follows,

x S Kix;, X, 5X, (25)
TABLE II. Chiral dimension (Dim), parity (P), charge con-
jugation (C), and Hermiticity (H.c.) of the Clifford algebra
elements, the Levi-Civita tensors, and the Pauli matrices. The
subscript “AA” (“NA”) denotes the 7zAA (zNA) case. The
meaning of the plus or minus sign is explained in the text.

Dim Ppp Cap H.coap Pyva Cya Hecya
1 0 + + + - + +
75 1 - + - + + -
r 0 + - + - - +
rsrt 0 - + + + + +
ot 0 + - + - - +
e 0 - + + - + +
€tk 0 + - + + - +
7 0 + o+ + + 4+ +
Dy 0 + - - + + +

From Egs. (22), (23), and (25) and the property K' = K™,
it is obvious that a structure like J/XiDMl//’i‘ is chirally
invariant, where the isovector indices are contracted.

Now we move on to the parity, charge conjugation, and
Hermitian transformations. The transformation properties
of the building blocks X’s are simple [14,25,26] and we
collect them in the first four rows of Table I. Because the
parities of the Pauli matrices are even and X = X,;z; + X[,
X; and X, have the same parities as X. To consider the
charge conjugation transformations, we adopt the proper-
ties for the Pauli matrices used in Ref. [72]: 7/ = c'z;,
where ¢! = —¢? = ¢ = land ¢/ = O when i # j. If the
charge conjugation transformation of X is X S (=1)°xT,
one has

X, S (-1)X,. (26)

X' 5 (=1)eciix;,
Since the Pauli matrices are Hermitian, the Hermitian
transformations of X; and X, are the same as that of X.
All of these transformation properties are collected in the
last six rows of Table 1.

For the essential Clifford algebra elements and the Levi-
Civita tensors in chiral Lagrangians, they are invariant
under the chiral symmetry, but their parity, charge con-
jugation, and Hermitian transformation properties rely on
the coupling structure, zAA or zNA. There are some
differences between these two cases. Such transformations
for the RS field are correlated with the Clifford algebra
elements and also rely on the coupling structure. In the
following, we discuss their transformation properties.

We here adopt the similar method used in Refs. [8,25]
to analyze the transformations. In general, the invariant
monomials of the zAA chiral Lagrangian have the form

@i AYO. y" 4+ He., (27)

where “ - - denote some suitable Lorentz indices, A¥ is the
product of X; and X, and ®... is the product of a Clifford
algebra element I € {1,7,.7s.757,.0,,} the Levi-Civita
tensors €7 and ¢/*, and several covariant derivatives
D;D,, - - - acting on 4. For the zNA chiral Lagrangian, the
invariant monomials have the form

wALO. .y, +Hec. (28)

The meanings of the symbols are the same as those in the
zAA invariant monomials.

In Table II, we list the parity, charge conjugation, and
Hermitian transformation properties for the Clifford algebra
elements, the Levi-Civita tensors, the Pauli matrices, and
the covariant derivative of the RS field in these two cases.
The positions of the subscript or superscript indices may be
changed in the transformations and we present there only
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extra signs that one need to consider. Here follows some
explanations.
Under the parity transformation, we have

v vy, v = ot (29)
where the extra minus sign comes from the explicit
representation of the spm- fields given in Appendix A
of Ref. [8]. For convenience, we absorb this minus sign into
the Clifford algebra elements. Thus, a sign difference for
the Clifford algebra elements exists between the 7AA case
and the zNA case.

Under the charge conjugation transformation, the baryon
fields transform as

v S =i ) S =i @R, (30)
The factor ¢/ can be removed by c*ck/ = Y, which
ensures the invariance of the Lagrangian. The properties
of the Clifford algebra elements are the same as the ZNN
case [25], but one should note the sign difference for D¥y%.
In our convention [Eqs. (27) and (28)], in the #AA case, all
covariant derivatives acting on y/ will act on y// again after
the C transformation is imposed, while they, in the zNA
case, still act on ', ; after the C transformation. As a
result, a sign difference between the zAA and ZNA cases
exists (see Sec. IV B 3), which is shown in the last row of
Table II. Of course, a different convention does not affect
the final result of chiral Lagrangian. The remaining trans-
formation is for the Levi-Civita symbol €% which is
usually charge invariant. In Table II, for convenience, an
extra minus sign is added which comes from the determi-

nant of c;;,

. c . !
€l]kXinZk — €Jk( l)xcii/Xv(—l)) ij/Yj/(—l)ZCkk/Zk/

= (1) det(c,, ) ek XY ;Z;
—(=1)¥r2elik Xy 7, (31)

where x, y, and z are the C-parities of X;, ¥, and Z; in
Table I, respectively.

Under the Hermitian transformation, the signs for a
Clifford algebra element in the zAA, zNA, and zNN cases
[25] are the same, while the sign difference for D*y? is the
same as C transformations discussed above, which is
shown in the last row of Table II.

B. Linear relations

In constructing chiral Lagrangians, one needs to find out
all independent monomials which are invariant under
various transformations. Several linear relations are proved
to be useful. We collect all independent linear relations as
follows. Their Hermitian relations will not be given
explicitly.

1. Subsidiary condition

With the relations for the Pauli matrices and the Levi-
Civita tensors, e.g.

7,T; = 0;j —|—l€,jkr

TiTka = jkTi + 5,-ka - 5iij + ieijk’
51'1 5im 5in
€ijk€lmn — 5jl gim gin , (32)
5kl 5km 5kn

more complicated structures can be simplified to that with
one Pauli matrix and one Levi-Civita tensor at most.
Together with the subsidiary condition 7'y =0, terms
like e'*y/ and e'*z,y" can be removed because

elkyll = iyt — ithylr,
e ryt = (—id't) +is )y = iyl (33)

The former equation (the left-hand side without any Pauli
matrix) means that a term containing €/¥ whose index is
contracted with the RS field is the linear combination of
terms with one Pauli matrix. The latter equation means that
a term containing /¥ whose indices are contracted with a
Pauli matrix and the RS field is proportional to /.
Therefore, the invariant monomials with contraction struc-
tures on the left-hand sides can be removed. These relations
reduce most contraction possibilities for monomials con-
taining /. For a term with this Levi-Civita tensor, we only
need to consider the case that the index contraction occurs
among €/%, X’s, and one (at most) Pauli matrix.

Since the baryon field also contains the isospin index,
more relations constraining the chiral Lagrangians are
possible. Combine the two equations in Eq. (33) and the
last one in (32), one can remove the Levi-Civita tensor and
obtain, up to the O(p*) order, the following relation.

7z 0y + w"r Ol yt — l//,f O wh — Wi 0w
+ ‘/_/;Tiékj ) ll/lll - l/_/l;"'j5ki n ‘//7 =0, (34)

where O} does not contain e* and the Pauli matrix.

2. Schouten identity

For the Levi-Civita tensors £** and €'/* appearing in the
invariant monomials, one has the Schouten identities,

E‘”MPAG _ gavlpAﬂ _ gpo—/lpAzx _ EﬂyapAi _ gywlo-Ap — O,
eijkAl - eljkAi - €ilkAj - eilek =0. (35)

Combining the second identity with equations in (33), we
obtain two more relations

014002-6



CHIRAL LAGRANGIANS WITH A(1232) TO ONE LOOP

PHYS. REV. D 97, 014002 (2018)

kOl = Otk +P(i, . k),
Oyt — Oy — Oyl — /'Oy = 0, (36)

where P(i, j, k) means all permutations for the indices i, j,
and k and an odd permutation P(i, j, k) gives a minus sign.
The former equation indicates that we can remove terms
with €/* (there is no Pauli matrix in '), while the latter
equation [together with Eq. (33)] indicates that one of the
last two terms on the left-hand side can be removed. Several
similar relations about Lorentz indices also exist, which is
briefly discussed in the item (vii) of Sec. IV B 4.

3. Partial integration

The partial derivative acting on the whole monomial, O*
(monomial), can be discarded and one has

0= ll—/iuBﬂOmwkl + ll—/ivaOmwk/l + l/_/iDOmDﬂl//M,
0 = gD Oy +yVHO Y + O Diy”, (37)

where O is the product of A... and ©... in (27) or (28) and
“...” represent suitable indices. Because the covariant
derivative acting on the nucleon and A fields is counted
as O(p") and that on X; or X, is O(p'), we can simply
employ the following relations in reducing the number of
monomials [25,26],

ll—/iuB/lo--~l/jk/1 = O Dy,
D' Oyl = —y O DRyv (38)

The symbol “=" means that both sides are equal if high
order terms are ignored. For the purpose of constructing
Lagrangian in a unified way, we choose a convention for
the position of the covariant derivative acting on the RS
field. In the zAA case, we move all covariant derivatives to
the right-side A field. In the zNA case, we move all the
covariant derivatives to the A field no matter whether it is
on the left side or on the right side of a monomial. This
convention results in the sign difference for the charge
conjugation and Hermitian transformations of DHy?Y
between these two cases, which has been shown in Table II.

4. Equations of motion (EOM)

The lowest order EOM from the pseudoscalar chiral
Lagrangian is

V=3 (=500 (39)

where N is the number of quark flavors and we take
Ny = 2 here. This equation indicates that the monomials
including V,u* can be eliminated. Obviously, the higher

order EOM has additional terms on the right hand side and
they have no effects on the construction of chiral
Lagrangian. In Ref. [25], the EOM from the zNN chiral
Lagrangian has been used to restrict the structures of ©... to
a small set (see also Ref. [28]). Here, we constrain ©... in
Eq. (27) or (28) in a similar way.

When the interactions of A exist, the general 7AA chiral
Lagrangian has the form [§]

Lon = ‘/7;"4/\%.;‘!’1{’ (40)
Ny = =[P = ma)g + iAGD* + D1
+ % (3A2 + 24 + 1)y Py

+ma(3A2 +3A + 1)yﬂyv] 5+ O, (41)
where O’ denotes terms containing pion fields and
external sources. Each term in O, ; contains at least one
building block in Table I. Hence, O/, ; 1s at least at the order

O(p"). With the same technique to obtain Egs. (6)~(8), a
similar EOM and two subsidiary conditions are obtained,

(ip —mp)yt =0, (42)
Dy =0, (43)
vt = 0. (44)

The strict forms on the right-hand sides of the above
equations come from O}’ ; and they are at least at the
order O(p'). This even works if the discussion is only in
the O(p') order because we only use building-block-
independent terms [the terms in the square bracket in
Eq. (41)] to obtain the above equations.

If we replace w/ (isospin doublet) with y (isospin
doublet) in (42), one gets the nucleon EOM in Ref. [25].
This correspondence indicates that all the derivation tech-
niques used in Ref. [25] can be applied to the present case.
Hence, we may borrow directly the results obtained there. In
addition to these #NN-like structures of © ., the existence
of the Lorentz index in the RS field results in more
possibilities. Fortunately, the vector-spinor representation
of spin-3/2 fields has two subsidiary conditions and they
may be used to remove some structures. If we multiply I
(T e {1,74. 75,7574 06, }) in both sides of Eq. (44), we
obtain

0= FV#‘//; = Zl—‘a,ﬂl//;, (45)

where I',, denotes the elements in {1.y,.75.757,.0,}
(g™ and " may also be a part of [, ). This equation gives
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some similar relations as those from (42) discussed above,
which ensures that the Lorentz index of y// can be treated as
the index of a covariant derivative acting on the nucleon in
the ZNN case, i.e. the correspondence y* <> D*y may be
adopted [except Eq. (46) below]. Because of item (i) below,
the relations coming from Eq. (43) are the same as those
from Eq. (44). By using the baryon EOMs and the
subsidiary conditions, one gets all constraint conditions
in constructing chiral Lagrangians. We summarize the
constraint conditions as follows.
(i) The terms containing y* can be changed to those
with one more covariant derivative and the structure
y# alone does not appear in the Lagrangian.

(i) The Lorentz indices of D’s are different from that of
W} or ).

(iii) The indices of D’s are totally different and totally
symmetric. To reflect the symmetric nature, we use
the short notation D,,,.. to denote multiple deriv-
atives where

D,,,..=D,D,D,---
+ full permutation of D’s.  (46)

(iv) When e*# exists, neither ysy* nor o exists
because the combination can be converted to struc-
tures like (6#*D” + ---) or (ysy*D* + - --).

(v) The Lorentz indices of ysy* and o** are different
from that of y/ or ! and that of covariant derivative
acting on the baryon fields.

(vi) If A* = V#BY" in Eq. (27) or (28), the index of the
covariant derivative V¥ is different from that of the RS
field or that of D acting on the A or nucleon fields.
The contraction structure that the index of V¥ is the
same as that of y, or D, vanishes or has equivalent
descriptions if high order terms are ignored.

(vii) In constructing high order chiral Lagrangians, more
relations coming from the Schouten identity are
needed, see Eqgs. (A7)-(A10) in Ref. [28]. Simply
speaking, the sum of all permutations of five differ-
ent indices (one or two indices come from ysy* or
") vanishes up to high order terms, where an odd
permutation gives a minus sign.

(viii) The difference between y// and y/y; is of higher order
terms containing external sources. Hence, we could
use yy; instead of y# to construct the Lagrangians.

(ix) Because y/f contains a Lorentz index, additional
relations may be obtained. With Eq. (44) and the
formula

7YY =gt gt = gy — iy, (47)
we get

me" Dy, = yrysyt — yyswh,  (48)

oyl + oMyt + oyt = 0. (49)

The first equation means that the indices of £**” can
not be contracted with that of a covariant derivative
and that of the A field simultaneously. The second
one means that one of the three terms on the left-
hand side can be removed.
Up to the O(p*) order, all possible Lorentz structures of
®... are constrained to be

O(p")ana: 1,
O(P") zan-O(P?)ana s D, ysy*,
O(p?)ransO(P?)aya s 1.D*,ysy* DY 6t e,
O(P?)eans O(P*) awa s DF D" ysyt ysy* Do D,

eﬂv/l/) D/)’ elwllp De,
O(p4)7[AA . l’DﬂU’DIHJﬂ/),ysyﬂDy’ },SyﬂDyﬂf)’

oM, oM D’I/), e/,wip’ e/w/lp D/}(F’ €;4M/J Do-5 .

5. Covariant derivatives and Bianchi identity

From the relations in Eq. (13) and (14), one gets
VIV 4 VPTH 4 VAT = (). (50)

This Bianchi identity gives a relation between the covariant
derivatives of I* or f%’. To reveal the isovector indices
explicitly, we decompose Eqs. (13) and (50) with [ =
7, + "1, and get

[VE, VX = =2ie'* X ;T
vﬂl—‘li/ﬂ + vvr‘?ﬂ + vﬂrlill/ — O,
VATY: 4 VTH 4+ VAT = 0. (51)

The first equation means that the exchange of two covariant
derivatives acting on a building block is related to I'".
Because the right-hand side structure has been considered
in constructing Lagrangians, one of the two covariant
derivatives on the left-hand side can be removed. In other
words, we can treat the covariant derivatives acting on X; as
commutative operators. The last two equations indicate that
one of the three terms on the left-hand side can be removed.

6. Contact terms

The contact terms involve only A and nucleon fields and
pure external sources (F% , F;’, y, and ). The number of
such terms is small and we construct them separately. To
adopt the above constraint relations, we also use the
following formulas by revealing explicitly the sources in
Eq. (11),
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v 1 + v
Fy :EM'(f’i + f2)u,
v 1 v v
Fg :zu(fi — [,
1
X =Fulys +x)u.
o1, ,
xt=sul (e —pu's (52)

Up to the fourth chiral order, only the O(p*) zAA
Lagrangian contains contact terms. The total number of
the contact terms is six and we list them in the last items in
Table VI

7. More

Because the isovector indices of the building blocks are
given explicitly, the Cayley-Hamilton relation used in the
construction of meson or zNN chiral Lagrangians is
ignored. It has been implied in the Pauli matrix relations.
No more relations need to be considered in constructing
chiral Lagrangians with A.

C. Reduction of the monomials

It is helpful to create some rules to reduce conveniently
the constructed monomials with the above relations. Before
constructing the chiral Lagrangian, we use the following
rules to express the monomials in a unified form.

(i) The symbol £/ is moved to the far left and follows
an €%, if they exist. Behind these Levi-Civita
tensors is  or 4. The field y/ (with its covariant
derivatives) is moved to the far right. Between y (or
w¥) and v/, the building blocks X; and X, the Pauli
matrices, and the y matrices are placed in order.
Because X; and X, are C-numbers, their positions in
the Lagrangian are actually arbitrary.

(i) To set down the positions of X; and X, we assign a
number to each of them or to its covariant derivative
by ignoring its Lorentz and isovector indices tem-
porarily. One only cares about the relative magni-
tudes of the numbers and their absolute values are
not important. Table III shows an example. Each
combination of the building blocks is mapped to a
vector. In the combination of two u’s and one #,
for example, we have three permutations uuh —
(121,121, 151), huu — (151,121, 121), and uhu —
(121,151, 121). Of course, they are not different in
describing physical processes. In the construction of
chiral Lagrangian, we choose the combination with
the smallest vector where the smaller number is
placed as far left as possible, uuh in this example.

(iii) For the Lorentz and isovector indices, the rules are
the same as the building blocks. All indices are
numbered, too. We also give an example in Table III.
After the places of all the building blocks are fixed,

TABLE III. Numbering examples for building blocks (ignoring
indices) and their indices. Only the relative magnitudes (but not
the absolute values) of the numbers are meaningful.

Operator w(N) w(A) w(A) u Yu h T f_ -
Number 7301 7501 7521 121 122 151 101 181 ---
Lorentz Index ) v A p o
Number 1 2 3 4 5
Isovector Index i Jj k [ m
Number 16 17 18 19 20

each type of indices is also mapped to a vector. In the
case of Lorentz indices, for example, we have

lpugfu;h;;yyﬂwﬁ - (1,2,1,2,3,3), npu;‘u;h;ﬂyzwﬁ' -
(1,2,2,1,3,3),  yututhi,ry) — (2,1,1,2,3,3),
and so on. The possible sign problem in this
mapping is also considered. In the construction of

chiral Lagrangians, we choose the permutation with
the smallest vector, y'/u’;u’j“-hl’;yy’ly/ja(1,2,1,2,3,3).
In the case of isovector indices, a similar choice
procedure is employed. We have used the Einstein
summation convention, the commutation relations of
C-numbers, and the symmetric or antisymmetric
relations for f%*,, 1", e"* and so on in the above
rule creation process.

We say that a monomial obeying the above rules has a
standard form. With these rules, two monomials having the
same standard form are equal, and vice versa. Besides the
purpose of distinguishing monomials, the standard form is
also convenient in programming. The final results are all
presented in this form.

D. Classifications and substitutions

Although it is not difficult to obtain all possible invariant
monomials at a given order, the number of these monomials
is too large if the order is high and it makes the further
calculation complex. A more efficient method is to classify
all the monomials according to the numbers of external
sources, Levi-Civita tensors, and Pauli matrices. It means
that we can treat first the category with four pseudoscalar
sources without any Levi-Civita tensors or Pauli matrices,
then the category with three pseudoscalar sources plus one
vector current [or one covariant derivative, see Eq. (12)]
without any Pauli matrices or Levi-Civita tensors, and so
on. The reliability of this classification is ensured by the
linear relations in Sec. IV B. From these relations, it is
observed that only monomials in the same category can be
related. However, we need to deal with the contact terms
separately.

To simplify the calculation, we usually make the
following replacements,

v Y v Y
R R R R (53)
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which are acceptable since our purpose is only to construct
the general Lagrangians. The differences induced by these
replacements can be compensated by other terms contain-
ing u! at the same chiral order.

E. Independent linear relations
and chiral Lagrangians

With the above preparations and the systematic approach
to construct meson and meson-baryon chiral Lagrangians
in Refs. [20,28], we now construct chiral Lagrangnians
with A as follows.

First of all, because some linear relations in Sec. IV B
contain covariant derivatives, it is convenient for us to
reveal manifestly the covariant derivatives in #/* and "
through

R = VHrut + Vit (54)
==V + V. (55)

We use D;; to store all possible invariant monomials

constructed with W, W}, wi, Wy, 0 Wi, Wiy Xoi Ko
R, T, T, 2, and their derivative forms and use E; ; to
store all possible monomials revealing the covariant deriv-
atives (constructed with w, Wi/, w/', W'y, . wh il ya
X+ 1%, T, and their derivative forms). Here, the index i
labels the categories and the index j labels the monomials
inside the category i. The linear relations between D; ; and
E;; are

D;;= ZAi,jkEi.ka (56)
T

where the coefficient matrix A; for the category i is easy to
obtain with Egs. (54) and (55).

Next, by applying the linear relations in Sec. IV B, we
can find the constraint relations about E; ,

> RijxEiy =0, (57)
k

where R; is the linear relation matrix for the category i.
Usually, not all of these relations are independent. To
extract the independent ones, we transform the matrix R; to
the reduced row echelon form (row canonical form) S;. The
rank of R; or S; is equal to the number of independent linear
relations and each nonzero row-vector of S; gives a linear
relation. That is, the independent constraint equations read

Zsi,jkEi,k =0. (58)
k

With these constrains, Eq. (56) can be revised to the
form

Di,j = ZA:'AjkEisk’ (59)
k

where the matrix A} is from the matrices A; and S; after all
linear dependent constraints are removed.

Then, one extracts the independent terms. Now, the
independent terms in D; are corresponding to the indepen-
dent rows of A} or the independent columns of A}". Similar
to the processing of Eq. (57), one transforms the matrix A/
to the reduced row echelon form. Then the labels of the
independent terms in D; and thus the final results can be
extracted. The standard form defined in Sec. IV C ensures
that all the linear relations have been used and all the
independent monomials of E;; are really independent.

After that, one constructs the contact terms. Because
such terms connect monomials in different categories, we
collect all the D; ; and E; in two big column vectors D}
and Ej, respectively, and collect all A] ;; in a big diagonal
block matrix A}k. By repeating the same steps from Eq. (56)
to Eq. (59), one gets the independent terms containing
contact terms. In fact, such terms can be constructed by
hand since the number is small.

Lastly, according to the hermiticity, one adds an extra i to
some terms to ensure that the LECs are real. The
Lagrangian with the original building blocks is also
recovered with (53).

V. RESULTS AND DISCUSSIONS

With the steps given above, we obtain the minimal chiral
Lagrangians with A up to the order O(p*). As a cross
check, we have confirmed the zZNN Lagrangians obtained
in Ref. [25]. Because the building blocks there are different
from ours, the following relations and Eq. (32) are
employed in this confirmation process,

(XY) = 2X'Y; 4 2X,Y,,
(XYZ) = 2i€*X,Y ;Z; + 2X'Y, Z, + 2X'Z,Y  + 2V Z,X,
+2X,Y,Z,. (60)

A. O(p') order

At the lowest chiral the obtained #zAA

Lagrangian is

order,

L0l = =7, (1P = ma)g” + iA( D" + D)
+ ; (3A% +2A + ' pr
+ma(3A% 4+ 34 + l)y”y”} wi
+ C(ll)ll_/i””j”Tj}’SJ’ul//iw (61)

while the result from Ref. [8] is
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£ = =0 [(D = ma)g™ + iA(#D* + 7 D)

+ % (3A2 + 24 + 1)y Py

+ mp(3A% +3A + 1)y +%Ws

g g i
- 52( U+ ufy)ys + fy”ﬂysr”} W (62)

The g, term and the c(l1> term have the same structure.

However, the former Lagrangian does not contain the g,
and g; terms. The nonexistence of the g, and g5 terms
comes from Egs. (43) and (44) or the item v in Sec. [V B 4.
Recall that these terms are involved only when the RS field
is off the mass shell where the spin-1/2 components
contribute [8]. In the RS representation, these components
are unphysical and their contributions do not enter the
S-matrix elements [67,73]. In Refs. [67,73], it has been
proved that the redundant off-shell parameters can be
absorbed into redefinitions of LECs and these two terms
are not necessary. The relations g, = Ag; and g3 =
—1(1+2A+3A%)g, derived in Ref. [74] also indicate
that they are not independent. Now, with the A EOM and
|

2) _

L

subsidiary conditions in Eqs. (42)—(44), we have eliminated
the spin-1/2 contributions from the Lagrangian. Therefore,
this elimination procedure gives the same feature that the g,
and g3 terms are not necessary.

For the lowest order zNA Lagrangian, our result is the
same as that in Ref. [8],

! —
E;(TA;A = gﬂNAWu?WA.n,M + H.c. (63)

B. O(p?) order
The obtained O(p?) zAA chiral Lagrangian is written as

11
LR =>"ca’o?. (64)
n=1

There are 11 independent terms and we list them in
Table IV. The number of the terms are exactly the same
as that from Ref. [8]. Note that the original Lagrangian in
Ref. [8] is given in the heavy baryon formalism. The
relativistic form is (we have changed their notations
to ours)

i

i 1 . i 4 i . i 4
A i e Wy — iazvf’:\i“””ﬂDuMi\,l + az@yutuyy, + 2“4‘,‘/’;\5“””1%21//2,4 +as@l, (0 = Xs)Way

. i 1 . i — ; i — ; : — P i i
+ agipl, f 1wy + Eaﬂy/ﬁifﬂwl//; + dagipyuyutyry, — 2a0h ' u Doy g, + 24000y (w4 ugu® )y,

T/ N
+ 200y Un Wy, -

Their transition rules can be found from the following
Eq. (72). In the third column of Table IV, we show the
relations between the LECs based on the transition rules.

For the O(p?) #NA chiral Lagrangian, we obtain three
independent terms,

)

— v
Yut W Ty sy Wa nju

2). iy
+dY g Py sy Wan, +He. (66)

2 2N _ . 2
‘cle\)’A = d )v/u‘”u’”fﬂsmw,n, vt ds

From Ref. [8], a different set of relativistic terms is,

2 1. ; o ,
ﬁ;(ﬂ\)/A = <_§b1lWﬁ,1.ifﬂuﬂy7’5}’” + byiy 5 f L D”
- i | i
+ b3 leZX.B,ivMMUDU - §b4l//i,4,,-uﬂuy757/y

1

5 by;‘lﬁ_s,iuﬂu"’“}gyy) w + H.c. (67)

We find the following correspondence between these
two sets of terms: d(lz) < by, dg2> <> bs, and dgz) <~ b;.

(65)

[
Because of the item (vi) in Sec. IV B 4, the b, and b5 terms
can be eliminated. Reference [75] also points out that the b4
term in Eq. (67) is redundant.

C. O(p®) and O(p*) orders
We define the O(p?) and O(p*) chiral Lagrangians as

Lo =3 "a oy, (68)
L= "d" (P + Hee.). (69)

where m = 3 or 4 denotes the chiral dimension, cff"> and

d"™ are the LECs, and O™ and P"™ are independent
interaction terms. The results are listed in Appendix. In the
O(p?) (O(p*)) wAA Lagrangian, there exist 38 (318)
independent terms and we show them in Table V (VI).
The last six items in Table VI are contact terms. In the O(p?)
(O(p*)) xNA Lagrangian, there are 33 (218) independent
terms and we present them in Table VII (VIII). Note that the
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TABLEIV. Terms in the O(p?) 7AA chiral Lagrangian and the
LEC relations between our cﬁf) and a,, in Eq. (113) of Ref. [8].

N

o @)

cll

1 @y, 2a10+ ag
2 g, 2ay0—ay
3 P utw g, 4ag

4 l/_/l.”ujﬂujbl//iu 2all

5 l/_/mujyujbl//iﬂ as

6 l/‘/lﬂ ulzb ”’MDMWM _4a9

7 1/_/114 l'ij ujADb/ll//iu —2a2

8 il/_/_w.f.s,_+ﬂbl//iv ae + a7/2
9 il/_/l”erj,,Dle//w de

10 l/_/‘m)(-o—‘,sl//iﬂ ap

11 VT as

z, parameters are different for the zNA Lagrangians at
different orders, but we do not distinguish them explicitly in
the former notations.

D. Point transformation

Now we move on to the point transformation [Egs. (3)
and (4)] for the constructed chiral Lagrangian. Under this
transformation, the RS field is not invariant but the
structure of the Lagrangian should be invariant. As a result,
the LECs in the Lagrangian are dependent on the arbitrary
unphysical parameter A in the zAA Lagrangian. To reduce
the uncertainty, one can also adopt the redefined RS field
Wi = Owi, = (¢ +3A7"7")y;, instead of yf as a
building block in the construction of chiral Lagrangians.
In this scheme, the RS field is point invariant and all the
LECs are independent of A. The structure of the above 7AA
chiral Lagrangian is not changed except the first part of
Eq. (61) which now turns into [8,61]

iy 1 . ;
Loda =Wl | (P =m)g" =2y (P =m)ry |+
(70)

The difference in the chiral Lagrangian caused by the
replacement y* — y/,; can be ignored due to the item (viii)
in Sec. IV B 4. For the zNA chiral Lagrangian, we have
presented the results with v/, , ;. One should note that the
definition v/, , . = @/, (z,)y;, is adopted when we use
the original RS field y/ in the zAA Lagrangian while the
definition v/, , ; = 07" (z,)y;, is adopted when we use the
redefined RS field y/;. Here, @ (z,) and ©,(z,) are
defined in Eq. (20).

E. Heavy baryon projection

In this subsection, we briefly discuss the heavy baryon
formalism in the small scale expansion scheme and only

give the correspondence between the leading structures in
the nonrelativistic case and in the relativistic case. More
details can be found in Refs. [8,25].

To give a heavy baryon Lagrangian, the four-momentum
p,, of the baryon is written as

Pt = myvt + kH, (71)

where m, is the nucleon mass in the chiral limit, v# is the
four-velocity with > =1, and k* is a small off-shell
momentum. The nucleon field y is projected into a “large”
(light) component N and a “small” (heavy) component &
while the RS field is projected into a “large” spin-3/2
component 7%, a small spin-3/2 component, and four
spin-1/2 components. In the heavy baryon formalism,
the mentioned two small components and the spin-1/2
components of the RS field are all integrated out and the
chiral Lagrangian involves only the large components N
and T%. This nonrelativistic reduction results in some
changes for the ©... in (27) or (28). Between the relativistic
and nonrelativistic interaction Lagrangians (the lowest
kinetic term needs separate treatment), the rules of corre-
spondence are

11,
o vk,
ysyt < —28%,
o < 2et My, S, = —2i[SH, 8],
v < N
W T,
Dy < —imgv* T, (72)

where $¥ = %ySJ/““ v, is the Pauli-Lubanski spin vector and
D* is the covariant derivative acting on the RS field. With
these rules, it is easy to obtain the chiral-invariant terms
without recoil corrections in the heavy baryon formalism.
To get the complete Lagrangians (including 1/m, correc-
tions) in this formalism, one needs the strict integration
procedure given in Ref. [8].

VI. SUMMARY

In this paper, we present a systematic method for the
construction of chiral Lagrangians with A(1232). It is
suitable for computer programming and has been applied to
constructing meson [20] and meson-baryon [28] chiral
Lagrangians. With this method, we complete the minimal
chiral Lagrangians with A, L., and L ya, up to the
O(p*) (one-loop) order. We also briefly discuss the proper-
ties of the point transformation and the heavy baryon
projection for the results.

With the chiral Lagrangians up to O(p*) constructed in
this paper, further studies in both the heavy baryon
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APPENDIX: INDEPENDENT TERMS IN O(p®) AND O(p*) CHIRAL LAGRANGIANS WITH A(1232)

TABLE V. Terms in the O(p*) zAA chiral Lagrangian where 0% is defined in Eq. (68).

1 g W Ty sy 14 g uf 9, Dy, + He. 27 W s

2 @ u W uM iy sy, + Hee. 15 P urf9 Dy, + He. 28 W i uysy, Doy, + Hee.
3 W utul sy, + He. 16 vl f_"* Dy + He. 29 Wt f s wtysy i + He.
4 Pirut sy, 17 P f_ D 30 WL W sy

5 FHutw uM ey sy + He. 18 @ ui, WDy, + Hee. 31 WV fo ) Dariy

6 i uw My sy, 19 @ ur W, Dy, + He. 32 WV f I D,

7 wul o uF ey sy, wi; + Hee. 20 ' u WD,y 5, + He. 33 ' uty ysy g, + He.

8 U M Ty sy, 21 wHEVE L sy, 34 G ST

9 ' utwuteiysy, D, + He. 22 W o wysywis + Hee. 35 WY TSV Wi

10 g uwu e ysy Dy, 2w uysyw, + He. 36 iptuly Doy, +He

11 P uufu Ty sy, D, 24 Wt f sy + He 37 WY SY W

12 Wt u,f_7*D,yj; + He. 25 W f sy, + Hee. 38 NS

13 g utf /Dy + He. 26 i f I utysypi + Hee

TABLE VI. Terms in the O(p*) zAA chiral Lagrangian where 0" is defined in Eq. (68).

n 0, " 0,

1 W g, uM vy, 160 ' f o uf Dy, + Hee.
2 W uuwufuk g, + He. 161 i f L ub Dy, + Hee.
3 wituY uf”uj uk 162 Wy f Pl uf Dy, + He.
4 it u; uf,,uj “uky, + Hee. 163 g f o i Dy, + Hee.
5 Wt u  utt Ltkﬂl//jb 164 W f o futut Dy, + Hee.
6 wrutw itk 165 g f o fufuT Dy, + Hee.
7 wrutul u ugy, 166 Wt f o utut Dy,

8 wirul bty 167 W utub Dy, + He.
9 l/_/i”ujp ujyuklukll//w 168 il/_/iMerjﬂuujlukalepl//ib

10 R u gy, 169 Wy f I, uk Dy, + He.
11 lpi”uj”ujﬁuk,,ukﬂy/,-ﬂ 170 T vkt 0w, + Hee.
12 W uu ufut Dy, 171 v wtu e, + Hee.,
13 W uuwufub D,y + He, 172 P, / L uiutT ey, + Hee.
14 i urul ufuk Dy, 173 wHf, 1 “utuktie,,p 1, + Hee.
15 whutul ufub D)y, + He. 174 g, f””uj’lukf’rka,,ix//,ﬂ + H.c.

(Table continued)
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TABLE VI. (Continued)

n o) " oY

16 wrutw M Dy, 175 W f ot f*ysy, D, + He.
17 wutwl ufut Dy, + Hee. 176 W f i fysvaDow,, + Hee.
18 it ul uF g Dy, 177 W f oyt f - ysy,D,w, + Hee.
19 Ut uuu Dy, 178 wprf o Pysy D, + Hee.
20 l/_/i”u]ﬂu Vuklukawll//ip 179 il/_/iﬂf+iblf—j/4p}’57/prl//j/1 +H.c.
21 Wl ”Mkl”kaApl//w 180 i f I Pysy, Doy + Hee.
22 y?f/‘uf”uj wuy "D,y 181 ilj/"/‘fﬂ-”’lf_j/’ySij/,y/jﬂ + H.c.
23 wruutuk u Dy, 182 wprf o Pysy,Day i, + Hee.
24 l/_/i”ui uliu/l)u Dvlpal//kﬂ 183 “//Wf J Df p75}/uDﬂl//tp +H.c.
25 P uu u P D ey 184 Wt f 9 f_ysyDywi, + He.
26 W wg W uf ut o,y + Hee. 185 s, Mf—//’}’snDﬂll/m

27 Wy uwl ufut e,y 186 W f Py sy, Doy,

28 ', uj”u’duk GMW,/, 187 Wy f o h*ysy, Dy, + Hee.
29 i€ M u g, wut u ey, + Hee., 188 W f L W ysyaDyw;, + Hee,
30 ie Jkl//i”ujﬂuk” M u"’ Dy, + Hee. 189 Wy f o Ry sy, Dy, + Hee.
31 R uj, u u u™ T i6,,y,, + Hae. 190 W f 2 hd Pysy, Dy, + Hee.
32 i uu f Ty sy, Dy, + Hee. 191 W f 0 Pysy, Dy 4 Hee.
33 g u f 0Ty sy, Dy, + Hee. 192 W f b Lysy Doy, + Hee.
34 Wl f_0T sy, Dy, + Hee. 193 Wt f o Pysy, Do, + Hee.
35 g f sy, Dy, + He. 194 Wt f I hysy, D, + Hee.
36 P uu f sy, Dy, + Hee. 195 W f L hiysy, Dy, + He.
37 wrutul, f T ysy, Dy, + He. 196 Wt f P h ysy, Do

38 whutul f T ysy, Dy, + He. 197 W f Py sy Do

39 wrutul f _Tysy, Dy, + He. 198 W f R sy Do

40 wrutwl f sy, Dy, + He. 199 W f By sy, Do + Hee.
41 wrutul f sy, Dy, + He. 200 W f Y57, D oW i

42 wrutul, f_*ysy,D oy, + He. 201 WY f g uPysy, Doy, + Hee.
43 wruu f5 Piysy, Dy, + Hee. 202 W f o wPysy, Dy, + Hee.
44 wruu fRPiysy, Dy, + Hae. 203 W L ysy, Dy, + Hee.
45 wruwtf K, Piysy, Doy, + Hee. 204 WY P ysy Do,

46 wrutu f5PTiysy,D o, + Hee. 205 WY P ysy, Do,

47 wuu f5Pysy, Doy, + Hee. 206 W I ugysy Do,

48 wruu f5Piysy, Do, + Hee. 207 e f iaf W e 4+ Hee.
49 uwtf K Prysy, Dy, + Hee. 208 ey f 10 f - 3w e + Hee.
50 i uwhf P Tiysy Dy, + Hae. 209 iy f 10 f - oW, + Hee.
51 wuu f5 P eiysy, Do, + Hee. 210 iy f o f - Wie + Hee.
52 wruu f5 Py, Doy, + Hae. 211 e f i " + Hee.

53 wruu f5 Py, Do, + Hee. 212 eyt f i h e, + Hae.

54 i uu f5 Pt iysy, Do, + Hee. 213 iy f 1 0 wie + Hee

55 wuu f5 0 ysy, Dy, + Hee. 214 ie Pt N f Lia"wl gy, 4+ Hee.
56 wrul it f Ty sy, Dy, + Hee. 215 iyt N e,

57 lI/'”M/”“J”f—klkaYSHDpll/m +H.c. 216 Wt fs it f7Pjysy, Dy, + Hee.
58 il f vy sy, Do, 217 W f s f T ysy Do, + He.
59 Fruuw f0ysy,Dyey, + Hee. 218 Wt fo P TrsY Do

60 W, W h Ty sy, Dy, + Hee. 219 W ATy, Doy

61 W, Wy sy, Dy, + Hee. 220 W fs T ysy, Dy, + Hee.
62 W, W BTy sy, Dy, + Hee. 221 W f W Tysy, Doy, + Hee.
63 W, W BTy sy, Dy, + Hee. 222 W A T ysy, Dy,
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TABLE VI. (Continued)

n o n o\’

64 @ u, u Ty sy, Dy, + Hee. 223 W o 0 LT sraD Wy

65 g utw W sy, Dy, + Hee 224 i f s W LTy, Dot

66 wurul W4T ysy, Dy, + Hee. 225 Wt fs RIPOT sy, Do i
67 it ul W rysy, Dy, + Hee. 226 N f L uP Ty sy, Do,
68 wuul W Tysy, Dy, + Hee. 227 WV s Ty, Dy
69 P utw BTy sy, Dy, + Hee. 228 WV f W T sD
70 W ur uth Tiysy, Dy, + Hee. 229 ey f s f 0Ty, + Hee.
71 @ uwht Py sy, Dy, + Hee. 230 i f sl T + Hee.
72 W uwhk P riysy, Doy, + Hee. 231 iy N W Ty,

73 ‘piﬂuiyuﬂhkupfk%}’pD/leu +H.c. 232 ll_,iﬂf+i}lbf+jvllwﬂ

74 wi”ui”uj’lhk,lf’rjysyl,Dyl//kﬂ + H.c. 233 ll_/i”f+iMf+j;w’//j,1

75 @l u i Wy sy, Dy, 4+ Hee. 234 A B RN

76 wrufwt oy sy, D) owy, + Hee. 235 Ff I i Wi

7 l/_’i””iy“ﬂhk{mTjYSVADw)erku +H.c. 236 l/_,iﬂf+jmf+jl/}»l/,iﬂ

78 l/_/i”uiuuﬂhkpuTjﬁprwlﬂl/’ku +Hec. 237 l/_/i/lf+iﬂyf+ﬂle//W/j/’

79 e gy f 0T, + Hee. 238 Dy

80 e, f ot + Hee. 239 Do

81 et g, u f %, T, + Hee. 240 I D,

82 e W f X T, + Hee. 241 G D

83 ey, u f KT, + He. 242 W f ot f o,

84 eyt wow f 5t + Hee 243 W e,

85 et uouwl  f %, + Hee. 244 W fs i foi 0w

86 eyt uu o f KT, + He. 245 l/_/i"f+j,4”fs.+/7jll/iz +H.c.

87 et wl uf K T, + Hee. 246 I T W

88 0w, i 0Ty, + Hee, 247 W P TDy, + Hee.
89 et g, ul kR ot i, 4+ Hee. 248 Ff P TD W

90 0w, Rk Ty, + Hee. 249 il/_/iﬂf+jyyfs,+lp1j6bﬂyliﬂ +Hec.
91 T R 250 Uy Wy

92 VA B BV 251 U g

93 VA ey 252 U g W

94 VA B Ve 253 Wty

95 VA R BTN 254 W Wi

96 wrf Dy, 255 Fruf iy Dy,

97 Gf_AAfPD, 256 ruuy Dy

98 G D 257 gy Ty, + He.

99 YD, 258 i u K,

100 G f D, 259 whurul gy Ky, + He.

101 wprf_rf%e,,y;, 260 rutw K,

102 Wt e, 261 P utw g iy, + He.

103 Fhy I, + He, 262 wrutw o,

104 FRP D + Hee. 263 ity o,

105 q?i/‘hf””f_j/y/iﬁ + H.c. 264 ll_/i””jyujb)mkfkll/iﬂ

106 Fhy, Y f%D,y, + Hee. 265 wuwty KDy, + Hee.
107 FhAAf Dy, + Hee. 266 rututy oDy,

108 FERA I ,PD, s, + Hee. 267 rututy FoD,y,

109 gh, f_ 7Dy, + Hee. 268 i f_ P Tysy Doy, + He.
110 GBI E D, 269 P hyTysy D+ He.
111 W h, f 6y, + He. 270 i uN g JysyDyw;, + He.
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TABLE VI. (Continued)

n o n o\’

112 wh,,, i, 271 e f xS, + He
113 G hjulW]/A 272 5*‘fif’lpiﬂuiva+jw_,-p +H.c.
114 g 273 WV L Wi

115 ik h’”ﬂh,wﬂ//m 274 WV T,

116 y?i”h,»ﬂ”hﬂ"DMl//jl, 275 W f i x w4+ Hee,

117 G LD, 276 W Wi

118 Wh YR Dy, 271 W fs X s, Wiv

119 FHhh, Dy, 278 Wt A AT Wi

120 FHERPRIPD oW iy 279 wprfd, WesTiVi

121 WHERAR LD,y 280 VA Sy aelen

122 W, ey, 281 T Wi

123 Wi, VY f Iy, + Hee. 282 T X Wi

124 G urN Iy, + He. 283 T T

125 NIy, + He 284 it uty_ysy, Dy, + He.
126 gl NV f iy, + Hee 285 ey i,

127 FrUN s, 286 iy uruy _*eysy, Dy, + Hee.
128 wHuNA 2Dy, + He. 287 gt ut uty _*tiysy, Dy, + Hee.
129 FHuNAf_ D, 288 iy utwhy _*rysy, D, + Hee.
130 Wy ity + Hee. 289 eyt ul )y *riwy, + He.
131 WSty + Hee. 290 eyt foap s,

132 Wty 291 l"/_/':”f—i,f)(—‘j'//ju +H.c.

133 W f Lt wufyy + He. 292 ' hy y -y, + He.

134 W f ity 293 W Wi

135 il/_/iﬂfs,+yluibujly/jﬂ 294 Wprh Py jDMl//j” + H.c.

136 s utu Dy, 4+ He. 295 iy hivhy Dy

137 Wt fo L utuw? D,y + He. 296 w/’”ul”Vbx_ v, +He.

138 W fy o udui Dy, 297 i uN Ly,

139 Wy f L wtu Dy, + He. 298 Wt T

140 Wt H”uj’lu 7D, i, 299 Wty Dy,

141 W f g, u?D, oy, + Hee. 300 Wt Ly Ty,

142 ”.fs,+/4 uuw’e,y;, +He. 301 W f M Tysy Dy, + He.
143 W f L uf o,y + Hae. 302 Iy rsr Dy

144 i fs wtuf oy, + He. 303 s srsr D,

145 i f+,-/ufuu“z Wi+ He. 304 P f v, + He.
146 W f i, + He. 305 e T X Wi

147 Wy f ol uwtuk Ty, + He. 306 G X - Wi

148 Wt f, ,”ﬂuf”u VT + Hee. 307 ll_/i”fs.+w1)(—j7j}’57’uD/1‘l/iﬂ

149 WM kT, + Hee 308 Iy Tivsr.Daw,

150 Wt f Pl kT, + Hee. 309 G il T

151 W Y, ub ey, + Hee. 310 g wf X5V

152 Wt fo g et Ty, + Hee. 311 i,

153 Wt i Ty, 312 TR ATV

154 Wt g uM i, + Hee 313 W (F " Fr, )wiy + Hec.

155 iy?i”f+jﬂ”uj’1uk,{rky/ib 314 l/_/iﬂ<FLMFLM>l//m + H.c.

156 W f g,k T, 315 @ (Fr, FL”)Dyyri, + He.
157 W f L WDy, + He, 316 u/’”< F " F1,”)Dyw, + Hee.
158 W f o w ik T,D, oy, + He. 317 oYW

159 ilfli”f+,-”"uﬂukﬂ1jD,1pl//k,, + H.c. 318 wt detyy;, + H.c.
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TABLE VII. Terms in the O(p3) zNA chiral Lagrangian where P< ) is defined in Eq. (69).

n ) n P n P

1 l[/Ml”M uj l//A n,jvu 12 l/_/uiﬂf—jMTj}/SyﬂDul//A,n.i/l 23 l/_/fs,+”bui/16yyl//A,n,M

2 l//l/ll”bl, u]yl//A,n,ju 13 l/_/ui”f—jMTjVS7uD/4V/A,n,i/1 24 il/_/eriﬂbuj/ATil//A,n,jv

3 Puru WD Wa g i 14 gt f Ty sy Dowa i 25 Wpf " u i

4 Puru D i 15 Gur Ty, Doa p 26 W f T DA
5 W uuto  wa , 16 GUrh Ty sy, Daa p ja 27 W f " utt Dy 0
6 ieijkl/_/u ”I/t Dul uTkWAn v 17 gﬂmpl//u f jbﬂTIWA n,jp 28 l/_/f+iwuﬂri6ybl//A,n,j/1
7 ”kl//u ”M u TkD/Ml//A n,ly 18 eﬂmpl//u f WA nip 29 l/_/f+i”yu'MTjo-quA.n¢i/1
8 Ukl//ul'uu] uMTka;wy/A,n.M 19 v”f— " WA,n,w 30 '/_/ui”)(—}—.sl//A.n.iﬂ

9 l/_/uiﬂf—jbi‘[inVﬂDbWA,n.ji 20 il/_/vﬂf—ibiﬂluul//A,n.i/l 31 l/_/uiﬂ}(+j’ril//A.n,jﬂ

10 l/_/uiﬂf—jMTWSyuDﬂWA,n,j/l 21 il/_/fsﬁrlwuiﬂl//mn.iv 32 l/_/uw)(#iTjWA,n,iﬂ

11 Ut f Iy sy, D ju 22 W f s P uDywa i 33 VY _Wa i

TABLE VIII. Terms in the O(p*) zNA chiral Lagrangian where PV is defined in Eq. (69).

n P n P n P

1 b, W Uy sy W s 74 WM hi 2 TysyiWan 147 Wpfvf I D

2 l/_/uiﬂuiﬂujbukﬂTjVSyAWA,nAku 75 l/_/hilwhjﬂ/)TinYMDMWA.n,jp 148 l/_/eri#Df—MﬂTt ML/DAI//A n,jp
3 lP”’"‘Mi””{u”lejYSVDWA,n,kA 76 U7hf””hﬂ/’TgVSHDunA,n,jp 149 ll7f+f”bf—’_’l”fz"uny'l/A,n,J/;
4 l/_/ul_Muiyu{ﬂuleﬂ/S}//W/A,n,ku 71 l/7M'_”Vyf—j_MTiJ/S}’»l//A,n.j/l 150 l/_/erl_”yf—j.AijUﬂbD/ll//A.n,ip
5 W”f"Mi"”"’uuklfk?’shlllmn.ﬂ 78 l/_/u{”vﬂf—j'MijS}/vl//A,n,M 151 l/_/erm'uf—://lprjo-/MDvl//A,n,ip
6 lﬁ”f”Mi””{ﬂulekVSJ’zllfA,n.,fu 79 Wuf”vyf—{ﬂﬁTiysprA.n,jz 152 iV7f+f”Dh{ﬂ'lTiDuWA.n,jz

7 Pt U ur iR Ty sy W 80 GurNYf I sy Wani 153 Wpfhi 2Dy gy

8 Pt Wiy sy, Dy g, 81 GurN I A ysy Wan i 154 Wpfhi Dy i

9 Ut u Wi Ty sy, Dywa i 82 WU f Iy sy WA 155 Wpfhi Dy

10 puru Wi Ty sy, Diwa 83 Gt f I ATy W 156 W f R TD WA
11 l/_/umuiyuﬂukpfj}/SyiD;wWA.n.kp 84 l/_/ui”vbf—jylijSyly/A,n,iy 157 ”/_/f i,uvhj/l/)l. D/M/)WA,n,iy
12 l/_/uiuuiyuﬂukajYS%lDypl//A,n,ku 85 '/_/Mi”vthTﬂsJ’p'//Ai,n‘jA 158 74 v ik pTlo-/u/Dll//A,n,jp
13 Putu Wi Ty sy ,DyWa i 86 WurN AT sy WA i 159 W 16,DWa
14 l/_/ui”uiyyj/lukﬂ?_jyﬁpruAu/A,n.ky 87 eﬂyﬂl)l/?ffiuuffj/lgTiDpWA.n,_ja 160 l/_’erl:whj:/ll)TjO-;lel//A,n.ip
15 8””%’7'/7”[;4”_iﬁujv“kﬂij'l/A.n,ko 88 Eﬂyﬂp‘/_/h{uﬂf—{mTiDp'l’A,n.jn 161 ll_/f+mbhj_/lpfj_(’mlDul//A,mip
16 l/_/ul_ﬂuipf—].MDul//A.n’j/l 89 S”M‘)l/?hlﬂaf—.ju/lTijl//A,n,iﬁ 162 il/_/vﬂerl.yyuj./lTiDuWA,n.ji
17 purul f 1 Dy 90 W, Wy sy Wi 163 AV SR T Y DN/
18 l/_/ui”uiyf—ju/lD/lWA.n,ju 91 il/_/f+lﬂuu uj V5VaWAn, Jv 164 ”//vﬂf i DMMT DI./UIA n,id
19 l/_/ul:ﬂujiyf—iMDul//A.n,j/l 92 il/_/f+l_/wul uj.;t}/Sypl//A,n.j/I 165 “//vﬂf I”D’TlMTJD/ll//A,n.w
20 l/_lul.”u]lyf—i,ulDbl//A.n,jl 93 il/_/f+l'mjuilu]./tVSyll//AA,n.jv 166 il/_/v”vyf+llle/5}/vl//A.n¢M

21 Gurw f o Dywa 94 WL utul sy Wan 167 WV LY SYWaia
22 l/_/ul‘ﬂujluf—iyllDﬂl//A,n.jﬂ 95 il/_/fﬁ—fﬂbuj‘uujinyyWA,n,il 168 lpf+fybfs,+ﬂiy57/bWA,n.i/l

23 l/_/ul_ﬂujyf—i.leil//A.n,jﬂ 96 il/_/f+{/wuj.ﬂujAySY/lWA.n,ib 169 l/_/erl_ﬂy.fs.+pi}/5yzll//A.n,ip

24 l/_/ul”uiuf—'/ApD;wll//A,n.jp 97 il/_/f+mbuﬂuﬂ»ySyﬂWA,n,iv 170 l/_/ermyfs.Jrlp}/S}/ﬂlel//A,n.ip
25 l/_/ui”ujbf—i/lﬂDﬂMl//A.n,jp 98 il/_/f+i’wui/lM'WJ/S}/”DMWA,n,j/} 171 l/_/f+i”yfs,+/lp}/5YAD;4pl//A.n,iu
26 l.l/_/ull”Miyf—{/lpay/lDyWA.n.jp 929 il/7f+fﬂbui/lu{pySYﬂDy/)y/A.il,jA 172 S”Dlpy_/f-kl;fyfs.+igDpl//A.n,io’
27 il/_/“’_”“i_”f—WUMDpll/A,n,ju 100 il/_/f+l/wuijuj.pYS}/MDllpl//A,n,ju 173 l/_/f#_””fﬂ/TiYsYul//A,n,j,l
28 ill_/”'l” uj.bf—ilpaﬂbDll//Aﬁ.j/) 101 il/_/f+{”Vuilu{p75leMﬂWA.tl,ju 174 lprrl‘ﬂyf+'/.,417i757ﬂ//A,n.jv
29 l.l/_/ullﬂ Mjlbf—i/lpaﬂlDul//A.n,jp 102 il/_/f+l'ﬂuui'/lumJ/S}/pDMlWA.n,jv 175 l/_/f+l‘yywaJ‘ApTi}/SyuDMWA.n,jp
30 ”l_/ulllujl/f A ﬂD/)l//A n,jv 103 ”/_/f-é—ljubu{ﬂujﬂySnyull//A,n,ip 176 l/_/f-%—wyf—%—lﬂﬂri}ﬁyﬁD;t/)l//A,n,jb
31 ”//Mm ijf po-wlD/tl//A n,jp 104 il/_/f+wbuﬂujﬂyﬁyﬂDlpl//AA,n.iu 177 Eﬂmpl/_/f+l/wf+j,161iDpl//A,n.jo'

(Table continued)
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TABLE VIIL (Continued)

n P£z4) n P£l4) n P£z4)

32 utug W'Dy, 5 105 W f o utuysy,D W 178 Gur Uty Tysy Wan
33 puruh D i 106 7y YL DRV 179 GUP U Y Y SY WA
34 utuh Dy, 107 ifﬂm)’l_/f+iﬂu”i"“j,le'l/A.n,jﬁ 180 GUr U Y TSV A
35 gutu Dy s 108 e f L, sz“ "D, A i 181 PUr Wy TS A
36 Puru WD Wa iy 109 wpfs o u ,4 lySyDWA A 182 Gur Uy TSV A
37 Puru WD Wan 110 Wpfs Mu u ,4 z?’SV/ll//A v 183 i€ gut uty sy
38 Wputu W6, D, iy 111 W Pl Ty sy W 184 €U Uy TSy WA
39 Ut u Wi, Dy i, 112 wf M u /MM TiYsY AW Aniv 185 Wy sDuWani

40 Ut h*6,,D,w4 0 i 113 W fs U Ty sy, Wa 186 Fhy . Dy

41 iy‘/u"” W h6,,Dya 114 W fs Pt u Ty sy, Dywa 187 Ff - T WA
42 i€ gutut f Dy, 115 W s U P Tysy,DyWan i 188 W T D i
43 l€”kl//14,”u,”f—l/TkDﬂ//A_n,w 116 W fs U wPTiysy, D Wan 189 Fh™ y JTD iy iy

44 i€ gutu' f D a 117 ll//fs, ”DMMMJPTI}/S?/ADupWA,n.]U 190 Whi””Z+jTjDﬂl//A,n,iu

45 i€ guru f_ Dy 118 W f s Pt u Ty sy, Dya g jy 191 WV Y YV Ay
46 i€ guru L Dy 119 PG f st WOTD W s o 192 W fs XYY Wani
47 ieMgutu DA 120 PG T D W 193 W™y sy Waniv
43 eRgupul f 16,004 01, 121 g f i up u Ty sy Wa 194 Wy Ty sy, Wan
49 eRgutul f_006,,D W0y 122 R f o i U Ty sy WA 195 WLy Ty sy Wam i
50 eRgutu 7 t6,,D a1, 123 Mg fo it utul Ty sy Wa 196 Wty IDwa gy
51 ekgupuf_ Akao'/ulD/)l//A iy 124 ek f L M u; Aul WTKYSYAW Ay 197 wpuuy D,
52 i€ gutuh! Fo D, 125 g f i uul )Ty sy, Wan 198 puruy Dy, i
53 lelljlkll/’/i/‘”,”hZ”ATkDN/A.n,zu 126 eljjikl/_/f-%—i’wujiulﬂrkySYﬂlel//A,n.lp 199 't uy_ TiDWa
54 i€ gutul b T Dy 0 127 M f o ufu' iy sy, DypWan i 200 Wty TiDWa gy
55 i€ Mgutu W oD wa 128 g f L u uP iy sy, Dy an 201 egutu }( " DWa
56 i€ gutu hi 1D WA iy 129 g f i u uP Ty sy, DyWan 202 ”ky/ul”u YTk D an iy
57 eMgutu M t6,,D0 4 5 130 Mg f L u U Ty sy, DA 203 Wy ysY W aniv
58 eMgutu W6, Dwa 131 eI f ot D g i 204 W™ y_ YV aniv

59 WM A ysy W 132 e by f U T DA s 205 N Y _ sy ani
60 W sy aWan 133 W fs " f- L Dowani 206 WurN Y _ YsYWanin
61 Wf_ M Iy, Duan i, 134 W fs " DaWan 207 Wy Itysy, Wan
62 I I2y5y,D, W 135 Ffs " - H0,,DWa iy 208 Wy sy Wani
063 Wh* f 3 sy Wan i 136 Vs - 6,Dya i, 209 Wh™ y_ITysy,Wan
64 Wh* f 3 TysyWan 137 W fs "R Dy i 210 Wh™y _ITysy,Wani
05 Wh ATy sy wa i 138 W f R D i 211 Ny Ty sy, Wan
66 Wh* f 3 sy Wa i 139 W fs R D,y Wa i 212 WurN Y Ity sy Wan
07 Wh* f_I02ysy,DyWa iy 140 Wfs " h6,Dw s i 213 WUy Iy sy, Wa i
68 Wh* f_I02ysy,DuWa n iy 141 WS h*6,D s i 214 WpurN Y Iy sy Wi
69 Wh* Ty sy,D, W i 142 WV s u DA 215 fs "7 "DWann

70 Wh* f 9T y5y, Dy s nip 143 VAV SRS TR NIV 216 Wf "y D

71 Wh* f 0T y5y,D W A nip 144 Wpfmf I Dy, 217 Wy ItDwa g
72 Wh* f 0T y5y,D WA i 145 Wpf v f I D 218 WMy ITDwa
73 Wh R ATy sy Wan 146 W f A D
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