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Consequences of nonstandard Higgs couplings in the final-state distributions of the process eþe− →
ZHH are studied. We derive an analytic expression for the differential cross section, which has in the most
general case nine nonzero functions. These functions are the coefficients of nine angular terms, depend on
the Higgs couplings, and can be experimentally measured as observables. Symmetry properties of these

nine functions are carefully discussed, and they are divided into four categories under CP and CP ~T. The
relations between our observables and the observables which exist in the literature are also clarified. We
numerically study the dependence of our observables on the parameters in an effective Lagrangian for the
Higgs couplings. It is shown that these new observables depend on most of the effective Lagrangian
parameters in different ways from the total cross section. A benefit from longitudinally polarized eþe−

beams is also discussed.

DOI: 10.1103/PhysRevD.97.013005

I. INTRODUCTION

One of the main targets of experiments at future eþe−
colliders is the measurement of the trilinear self-coupling
λH of the Higgs boson [1–5]. The process eþe− → ZHH is
expected to be the best reaction to measure λH in the earlier
stage of experiments [6–16] (i.e. the center-of-mass energyffiffiffi
s

p ≃ 500 GeV) for the discovered Higgs boson with mass
≃125 GeV [17,18]. The process is sensitive to the cou-
plings HHZZ [19] and HHZγ, too, which cannot be
accessed through single Higgs boson production processes
such as eþe− → ZH.
Because of its importance, many authors have inves-

tigated the process. The total cross section in the standard
model (SM) was calculated for the first time in Ref. [19].
This work was followed by several studies [20,21]. These
papers numerically calculated various distributions of the
final particles, too. The one-loop radiative corrections to the
process were calculated in Refs. [22,23]. The total cross
section in the minimal supersymmetric extension of the SM
[24–28], that in composite Higgs models [29,30], and that
in other several new physics models [31] have also been
studied in detail. References [25–27] included the analytic
form of the two Higgs energy distributions. The accuracy of
measuring λH through the process eþe− → ZHH at future
eþe− colliders has been studied in Refs. [6–16] by

assuming that all the other couplings are the SM values.
The expected constraints on several parameters (including
parameters which affect λH) in an effective Lagrangian
have been discussed in Refs. [32–35]. Reference [33]
included the analytic form for the invariant mass distribu-
tion of the two Higgs bosons.
Most of the above studies, however, restricted them-

selves to the total cross section as input from the experi-
ments. This will not be a problem, if one intends to
determine only one parameter such as λH. However, if
one intends to determine more than one parameter at the
same time as studied in Refs. [32–35], measuring only the
total cross section is not enough and one needs to consider
other observables such as the invariant mass distribution
of the two Higgs bosons [33,34]. The purpose of this paper
is to introduce such observables in a rather different way.
We find nine observables as the coefficients of nine angular
terms in the differential cross section, one of which is
directly related to the total cross section. The other eight
observables have not been studied in the literature.
Symmetry properties of the nine observables are clarified,
and they are divided into four categories under CP and
CP ~T [36]: four even-even, one even-odd, two odd-even,
and two odd-odd. The CP-odd observables directly mea-
sure CP nonconservation and the CP ~T-odd observables
rescattering effects. To our knowledge, any CP-odd and/or
CP ~T-odd observables in this process have not been
constructed so far.
This paper is organized as follows. In Sec. II, we explain

kinematics of the process eþe− → ZHH. In Sec. III, we
give an analytic expression for the differential cross section.
The differential cross section has nine nonzero functions in
the most general case, and these nine functions can be
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measured experimentally. We rederive the analytic forms of
the observables which exist in the literature and have been
widely used, such as the invariant mass distribution of the
two Higgs bosons. We show that all of these observables
are directly related to just one of our nine functions. The
analytic form of the Z boson polar angle distribution is also
derived. In Sec. IV, the symmetry properties of the nine
functions are studied. In Sec. V, we form observables in
terms of our nine functions and numerically study the
dependence of these observables on the parameters in an
effective Lagrangian for the Higgs couplings. We show
that our new observables depend on most of the effective
Lagrangian parameters in different ways than the total cross
section. It is also shown that the sensitivity of the CP ~T-odd
observable can be significantly enhanced by means of
longitudinally polarized eþe− beams. Section VI summa-
rizes our findings.

II. KINEMATICS

Our coordinate system in the center-of-mass (c.m.)
frame of the colliding eþe− beams is described in
Fig. 1.1 The four-momentum and helicity of each particle
are shown in parentheses. A single object as the sum of the
two Higgs bosons is represented by 2H, whose four-
momentum is qμ. We choose the direction of q⃗ as the z
axis and the p⃗1 × k⃗ direction as the y axis. The scattering
p1 þ p2 → kþ q takes place in the x‐z plane. The polar
angle of the Z boson from the electron momentum direction
is denoted by Θ. Because we neglect the e� masses and e−

and eþ always construct a four-vector in our process, the
helicity of eþ is always opposite to that of e−. In this

coordinate system, the four-momenta can be parametrized
as follows:

pμ ≡ ðp1 þ p2Þμ ¼ ðE; 0; 0; 0Þ;

pμ
1 ¼

E
2
ð1; sinΘ; 0;− cosΘÞ;

pμ
2 ¼

E
2
ð1;− sinΘ; 0; cosΘÞ;

kμ ¼ ðw; 0; 0;−lÞ;
qμ ¼ ðq1 þ q2Þμ ¼ ðE − w; 0; 0; lÞ; ð2:1Þ

where E is the eþe− c.m. energy, w is the energy of the Z
boson: w ¼ ðE2 þm2

Z −Q2Þ=ð2EÞ whereQ2 ¼ q · q, −l is
the momentum of the Z boson: l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 −m2

Z

p
, and qμ1;2 are

the four-momenta of the two Higgs bosons. We parametrize
qμ1;2 in the rest frame of qμ as

qμ ¼ ðq1 þ q2Þμ ¼ ðQ; 0; 0; 0Þ;
qμ1 ¼ ðQ=2; r sin ξ cosϕ; r sin ξ sinϕ; r cos ξÞ;
qμ2 ¼ ðQ=2;−r sin ξ cosϕ;−r sin ξ sinϕ;−r cos ξÞ; ð2:2Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2=4 −m2

H

p
. Since we cannot distinguish the

two Higgs bosons, we define the regions of the angles as
0 ≤ ξ ≤ π=2 and 0 ≤ ϕ ≤ 2π and identify the Higgs boson
whose momentum along the z axis is positive as the Higgs
boson that has qμ1. The four-momenta qμ1;2 in our e

þe− c.m.
frame can easily be obtained by a single boost along the
positive direction of the z axis,

qμ1 ¼
�
E − w
2

þ l
Q
r cos ξ; r sin ξ cosϕ; r sin ξ sinϕ;

l
2
þ E − w

Q
r cos ξ

�
; ð2:3aÞ

qμ2 ¼
�
E − w
2

−
l
Q
r cos ξ;−r sin ξ cosϕ;−r sin ξ sinϕ;

l
2
−
E − w
Q

r cos ξ

�
: ð2:3bÞ

We introduce the four-momenta tμ and uμ of the intermediate Z boson or the photon A in the diagrams (2) and (3) of
Fig. 2, respectively,

tμ ¼ ðkþ q1Þμ

¼
�
Eþ w

2
þ l
Q
r cos ξ; r sin ξ cosϕ; r sin ξ sinϕ;−

l
2
þ E − w

Q
r cos ξ

�
;

uμ ¼ ðkþ q2Þμ

¼
�
Eþ w

2
−

l
Q
r cos ξ;−r sin ξ cosϕ;−r sin ξ sinϕ;−

l
2
−
E − w
Q

r cos ξ

�
: ð2:4Þ

1Figures 1, 2, 3, 4 are drawn by using the program JaxoDraw [37].
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III. DIFFERENTIAL CROSS SECTION

We present an analytic expression for the differential
cross section by assuming nonstandard Higgs couplings.
The effective Lagrangian, from which we obtain the Higgs
couplings, will be given in Sec. V. The Feynman diagrams
contributing to the scattering amplitudes of the process
eþe− → ZHH with our nonstandard Higgs couplings are
shown in Fig. 2. It is an easy task to derive the scattering
amplitudes in terms of the kinematic variables defined in
Sec. II. We find that the amplitude-squared summed over
the Z boson helicity λ for a given electron helicity τ has the
following form in the most general case:

X
λ¼�;0

jMλ
τj2 ¼ F1ð1þ cos2ΘÞþF2ð1− 3cos2ΘÞþF3 cosΘ

þF4 sinΘcosϕþF5 sin2Θcosϕ

þF6sin2Θcos2ϕþF7 sinΘ sinϕ

þF8 sin2Θ sinϕþF9sin2Θ sin2ϕ; ð3:1Þ

where the Θ and ϕ dependences are completely factorized
and the nine functions Fi as the angular coefficients are
independent of these two angles: Fi ¼ Fiðτ; Q; ξÞ.2 The
nine functions Fi depend on the Higgs couplings. The
explicit expressions of Fi are provided in the Appendix in
terms of effective Lagrangian parameters given in Sec. V.
The nine functions Fi can be experimentally determined
by measuring the angles Θ and ϕ, and therefore used to
study the Higgs couplings. For an approach to isolate the
functions, see Eqs. (3.28) and (3.29) of Ref. [38]. By means
of Eq. (3.1), the complete differential cross section for a
given electron helicity τ is given by

dσðτÞ
dΩ

≡ dσðτÞ
d cosΘdQ2d cos ξdϕ

¼ 1

1024π4
l
E3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
H

Q2

s X
λ¼�;0

jMλ
τj2: ð3:2Þ

By performing the integration over ϕ, we obtain the
analytic form of the cosΘ distribution,

Z
2π

0

dϕ
dσðτÞ
dΩ

¼ 1

512π3
l
E3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
H

Q2

s
½F1ð1þ cos2ΘÞ

þ F2ð1 − 3cos2ΘÞ þ F3 cosΘ�; ð3:3Þ

where the other six terms were eliminated by the integra-
tion. The numerical studies of the cosΘ distribution in the
literature (e.g. [8,34]) actually probe the three coefficients,
which can be obtained by integrating Eq. (3.3) over Q2

and cos ξ,

dσðτÞ
d cosΘ

¼
Z ðE−mZÞ2

4m2
H

dQ2

Z
1

0

d cosξ
Z

2π

0

dϕ
dσðτÞ
dΩ

¼
Z ðE−mZÞ2

4m2
H

dQ2

Z
1

0

d cosξ
1

512π3
l
E3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

4m2
H

Q2

s

× ½F1ð1þ cos2ΘÞ þF2ð1− 3cos2ΘÞ þF3 cosΘ�:
ð3:4Þ

By further integrating Eq. (3.3) over cosΘ, we obtain

dσðτÞ
dQ2d cos ξ

¼
Z

1

−1
d cosΘ

Z
2π

0

dϕ
dσðτÞ
dΩ

¼ 1

192π3
l
E3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
H

Q2

s
F1; ð3:5Þ

where the other two terms were eliminated by the integra-
tion. From this, we can easily obtain the analytic form of

FIG. 1. Left: The coordinate system in the c.m. frame of the colliding eþe− beams. The four-momentum and helicity of each particle
are shown in parentheses. A single object as the sum of the two Higgs bosons is represented by 2H, whose four-momentum is qμ. The
direction of q⃗ is chosen as the z axis and the p⃗1 × k⃗ direction as the y axis. Right: The coordinate system in the c.m. frame of the two
Higgs bosons (i.e. the rest frame of qμ). The parametrization of the four-momenta in this frame is given in Eq. (2.2).

2The functions Fi depend on the eþe− c.m. energy (i.e. E in
our notation); hence Fi ¼ Fiðτ; Q; ξ; EÞ is the more appropriate
expression. However, we regard E as a fixed value and do not
write E explicitly in the arguments of functions throughout the
paper.
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the Q2 distribution which has been numerically studied
e.g. in Refs. [9,14] and that of the cos ξ distribution
which Ref. [7] mentions can be a good observable for
measuring λH,

dσðτÞ
dQ2

¼
Z

1

0

d cos ξ
1

192π3
l
E3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
H

Q2

s
F1; ð3:6aÞ

dσðτÞ
d cos ξ

¼
Z ðE−mZÞ2

4m2
H

dQ2
1

192π3
l
E3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
H

Q2

s
F1: ð3:6bÞ

The total cross section for a given electron helicity τ is
given by

σðτÞ ¼
Z ðE−mZÞ2

4m2
H

dQ2

Z
1

0

d cos ξ
1

192π3
l
E3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
H

Q2

s
F1:

ð3:7Þ

We introduce the scaling variables

x1 ¼
2q01
E

; x2 ¼
2q02
E

: ð3:8Þ

Note that q01 and q
0
2 are defined in Eq. (2.3). By straightfor-

ward variable conversions in Eq. (3.5), we obtain

dσðτÞ
dx1dx2

¼ 1

192π3
F1; ð3:9Þ

which has been derived in Refs. [25–27], and

dσðτÞ
dQ2dðt · tÞ ¼

1

192π3E4
F1; ð3:10Þ

which has been derived in Ref. [33]. Note that the phase
space region 0 ≤ ξ ≤ π=2 [see below Eq. (2.2)] corre-
sponds to x1 ≥ x2 and t · t ≥ u · u. The four-momenta tμ

and uμ are defined in Eq. (2.4). We emphasize that the
observables that exist in the literature and are rederived
above in Eqs. (3.6), (3.7), (3.9), and (3.10) are directly
related to the function F1, which is just one of the nine
functions in the differential cross section.

IV. SYMMETRY PROPERTIES

The conditions imposed by symmetries lead to con-
straints on some of the nine functions Fi. The picture in
Fig. 3 shows the original states and the states after the
charge-conjugation (C) and parity (P) transformation. After
the CP transformation, the states are simply rotated around
the y axis by π, and we make the four-momentum qμ come
back to the original position. Note that we always have a
freedom of performing three-dimensional spatial rotations.
While qμ is unchanged, the four-momenta qμ1 and qμ2 are
changed by the CP transformation and the rotation as

qμ1 ¼
�
E − w
2

þ l
Q
r cos ξ; r sin ξ cosϕ; r sin ξ sinϕ;

l
2
þ E − w

Q
r cos ξ

�
;

⟶
CP

�
E − w
2

þ l
Q
r cos ξ;−r sin ξ cosϕ;−r sin ξ sinϕ;−

l
2
−
E − w
Q

r cos ξ

�
;

⟶
Rotation

�
E − w
2

þ l
Q
r cos ξ; r sin ξ cosϕ;−r sin ξ sinϕ;

l
2
þ E − w

Q
r cos ξ

�
: ð4:1Þ

Notice that only the y component of qμ1 changes sign,
which indicates that the azimuthal angle ϕ is 2π − ϕ
after the transformations. Therefore, CP invariance
leads to the following relation for the differential cross
section:

dσðτ;Θ; Q; ξ;ϕÞ ¼ dσðτ;Θþ π; Q; ξ; 2π − ϕÞ; ð4:2Þ

where the one on the left-hand side corresponds to the
original states shown in the left picture of Fig. 3 and the one
on the right-hand side corresponds to the states after the CP

FIG. 2. Feynman diagrams for eþe− → ZHH with our effective Lagrangian Eq. (5.1). The four-momentum of each particle is shown
in parentheses.
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transformation and the rotation shown in the right picture
of Fig. 3. The explicit form of the right-hand side of this
equation is, from Eqs. (3.1) and (3.2), given by

dσðτÞ
d cosΘdQ2d cos ξdϕ

¼ 1

1024π4
l
E3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
H

Q2

s
½F1ð1þ cos2ΘÞ

þ F2ð1 − 3cos2ΘÞ − F3 cosΘ − F4 sinΘ cosϕ

þ F5 sin 2Θ cosϕþ F6sin2Θ cos 2ϕþ F7 sinΘ sinϕ

− F8 sin 2Θ sinϕ − F9sin2Θ sin 2ϕ�: ð4:3Þ

Let us remind the reader that Fi are independent of Θ and
ϕ; thus they have the same forms in both sides of Eq. (4.2).3

In Eq. (4.3), we observe that the four terms of the nine
terms change sign. These terms, namely the F3, F4, F8, and
F9 terms, are CP-odd. The four functions F3, F4, F8, and
F9 must be zero if CP is conserved. In other words,
observation of nonzero values in these four functions
signals CP nonconservation.
Second, the picture in Fig. 4 shows the original states and

the states after the C, P, and time-reversal transformation
without interchanging the initial and final states (i.e. it does
not reverse the time flow from the initial state to the final
state). We denote it by ~T. CP ~T invariance leads to the
following relation for the differential cross section:

dσðτ;Θ; Q; ξ;ϕÞ ¼ dσðτ;Θþ π; Q; ξ;ϕÞ; ð4:4Þ

where the one on the left-hand side corresponds to the
original states shown in the left picture of Fig. 4 and the one
on the right-hand side corresponds to the states after the
CP ~T transformation shown in the right picture of Fig. 4.
The explicit form of the right-hand side of this equation is,
from Eqs. (3.1) and (3.2), given by

dσðτÞ
d cosΘdQ2d cos ξdϕ

¼ 1

1024π4
l
E3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
H

Q2

s

× ½F1ð1þ cos2ΘÞ þ F2ð1 − 3cos2ΘÞ − F3 cosΘ

− F4 sinΘ cosϕþ F5 sin 2Θ cosϕþ F6sin2Θ cos 2ϕ

− F7 sinΘ sinϕþ F8 sin 2Θ sinϕþ F9sin2Θ sin 2ϕ�;
ð4:5Þ

where we observe that the three terms of the nine terms
change sign. These terms, namely the F3, F4, and F7 terms,
are CP ~T-odd. The three functions F3, F4, and F7 must be
zero if CP ~T is conserved. In other words, observation of
nonzero values in these three functions signals CP ~T
violation, which indicates the existence of rescattering
effects [36]. In Table I, we summarize the symmetry
properties of the functions. Notice that F3 and F4 are both

FIG. 4. The states after the CP and time-reversal transformation
without interchanging the initial and final states ( ~T) are shown.
The helicity of each particle is shown in parentheses.

FIG. 3. The states after the CP transformation are shown. At the second step, a rotation around the y axis by π is performed. The
helicity of each particle is shown in parentheses.

TABLE I. Symmetry properties of the nine functions in the
differential cross section. The symbolþ (−)means that the function
is even (odd) under CP or CP ~T. Observation of nonzero values in
theCP-odd functions signalsCP nonconservation. Observation of
nonzero values in theCP ~T-odd functions indicates the existence of
rescattering effects. The symbol ∘ in the last column indicates that
the function can be suppressed without polarized eþe− beams.

Symm. properties

Functions CP CP ~T Beam pol.

F1 þ þ -
F2 þ þ -
F3 − − ∘
F4 − − ∘
F5 þ þ -
F6 þ þ -
F7 þ − ∘
F8 − þ -
F9 − þ -

3We actually perform the rotation in order to make all of Fi
invariant. Some of Fi are not invariant without the rotation. Even
without the rotation, however, our conclusion that the F3, F4, F8,
and F9 terms are CP-odd should remain the same, as long as
physics is invariant under three-dimensional spatial rotations.
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CP-odd and CP ~T-odd. Once we experimentally confirm
that both the CP-odd functions (i.e. F8 and F9) and the
CP ~T-odd function (i.e. F7) are small, we may ignore F3

and F4 since these are doubly suppressed.

V. NUMERICAL STUDIES

We obtain nonstandard Higgs couplings to the Higgs
boson itself, the Z boson, and the photon from the
following effective Lagrangian [39]:

Leff ¼ ð1þ δ1Þm2
Z
H
v
ZμZμ þ

X
V¼Z;A

�
δV2

H
v
ZμνVμν þ δV3

1

v
½ð∂μHÞZν − ð∂νHÞZμ�Vμν þ ~δV4

H
v
Zμν

~Vμν

�

þ ð1þ δ5Þm2
Z
H2

2v2
ZμZμ þ

X
V¼Z;A

�
δV6

H2

2v2
ZμνVμν þ δV7

H
v2

½ð∂μHÞZν − ð∂νHÞZμ�Vμν þ ~δV8
H2

2v2
Zμν

~Vμν

�

þ δAA2
H
v
AμνAμν þ ~δAA4

H
v
Aμν

~Aμν −
m2

H

2v
ð1þ δ9ÞH3 þ δ10

H
v
ð∂μHÞ2; ð5:1Þ

where Zμν ¼ ∂μZν − ∂νZμ, Aμν ¼ ∂μAν − ∂νAμ, Zμ is the Z
boson field, Aμ is the photon field, ~Zμν ¼ 1

2
ϵμνρσZρσ and

~Aμν ¼ 1
2
ϵμνρσAρσ with our convention ϵ0123 ¼ þ1, and v is

the vacuum expectation value of the Higgs doublet field:
v−2 ¼ ffiffiffi

2
p

GF. All of the 18 coefficients δi are zero at the
tree level in the SM. The five operators whose coefficients
are ~δV4 , ~δ

V
8 , and ~δAA4 are CP-odd, and the other 13 operators

are CP-even. If both the CP-even operator(s) and the
CP-odd operator(s) exist, the theory is not CP conserving.
If we consider the SUð2Þ ×Uð1Þ gauge invariant dimen-
sion six operators which consist of the gauge boson fields
and the Higgs doublet field, there are eight CP-even
operators and five CP-odd operators [39,40] which con-
tribute to the Higgs couplings relevant to our process and
their effects can be expressed as their contributions to our
18 coefficients δi. In addition, twoCP-even operators affect
our process through the renormalization of the SM param-
eters and the external Z and Higgs fields [39]. Feynman
diagrams for the process eþe− → ZHH with this effective
Lagrangian have already been shown in Fig. 2. We have 12
diagrams maximum. The nine functions Fi in Eq. (3.1) in
terms of δi are provided in the Appendix.
We integrate the differential cross section in Eq. (3.2)

over Q2 and cos ξ,

dσðτÞ
dcosΘdϕ

¼F 1ð1þ cos2ΘÞþF 2ð1− 3cos2ΘÞþF 3 cosΘ

þF 4 sinΘcosϕþF 5 sin2Θcosϕ

þF 6sin2Θcos2ϕþF 7 sinΘ sinϕ

þF 8 sin2ΘsinϕþF 9sin2Θ sin2ϕ; ð5:2Þ
where

F iðτÞ ¼
Z ðE−mZÞ2

4m2
H

dQ2

Z
1

0

d cos ξ
1

1024π4
l
E3

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
H

Q2

s
Fiðτ; Q; ξÞ: ð5:3Þ

Let us remind the reader that the total cross section is
directly related to F 1ðτÞ,

σðτÞ ¼ 16

3
πF 1ðτÞ: ð5:4Þ

We assume unpolarized eþe− beams and define observ-
ables as

Ai ≡
P

τF iðτÞP
τF 1ðτÞ

: ð5:5Þ

The symmetry property of Ai is the same as that of the
corresponding function Fi. We note the advantages of the
observables Ai:

(i) Some of systematic uncertainties such as the lumi-
nosity uncertainty cancel.

(ii) We expect that F i (i ¼ 2; 3;…; 9) depend on the
Higgs couplings in different ways from F 1 (i.e. the
total cross section) so that F i (i ¼ 2; 3;…; 9)
provide us different information on the Higgs
couplings. The observables Ai have the form that
is sensitive to the difference between F i
(i ¼ 2; 3;…; 9) and F 1 in the dependence on the
Higgs couplings.

For our numerical results, we set E ¼ 500 GeV,
mZ ¼ 91.188 GeV, ΓZ ¼ 2.5 GeV, mH ¼ 125.5 GeV,
ΓH ¼ 0 GeV, and e ¼ ffiffiffiffiffiffiffiffi

4πα
p

with α ¼ 1=128.4 We assume
that the Z boson and the Higgs bosons can be recon-
structed. The phase space integration is performed with the
program BASES [41].
We numerically study the dependence of Ai on the

parameters in our effective Lagrangian. The single Higgs
couplings to vector bosons such as HZZ may be precisely
determined by measuring the polarization of the Z boson in
the process eþe− → ZH [39,42–44]. Therefore, we focus

4The effect of a nonzero value for ΓH which is as small as the
SM value is invisible in the following numerical results including
the results in the right panel of Fig. 6.
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on the dependence on the parameters which cannot be
accessed by single Higgs boson production processes. We
choose as a benchmark point

δZ2 ¼ δA2 ¼ δAA2 ¼ −δZ3 ¼ −δA3 ¼ −0.05: ð5:6Þ

The other parameters are set to zero. The total cross section
with this choice is in agreement with the SM value within
10%. In Fig. 5, the observables A2, A5, and A6 are shown
as deviations caused by adding nonzero parameters δ9
(solid curve), δ10 (dashed curve), δZ6 (dotted curve), and δZ7
(broken curve). In the left panel the parameters take
positive values, and in the right panel the parameters take
negative values. The results show that A2;5;6 depend little on
δ9. This indicates that F 2;5;6 have the similar dependences
on δ9 asF 1. The results also show that A2;5;6 depend largely

on δ10, δZ6 , and δZ7 . This indicates that the observables
F 2;5;6 depend on these parameters in different ways
from the total cross section. In the left panel of Fig. 6,
the CP-odd observables A8 and A9 are shown as deviations
caused by adding nonzero CP-odd parameters ~δZ8 (solid
curve) and ~δZ8 ¼ ~δA8 (dashed curve). The results show that
A8;9 approach zero as the CP-odd parameters become
small, as expected. These observables are nonzero only
when CP is violated. (Even if rescattering effects exist,
these observables are identically zero as long as CP is
conserved.)
Because of the existence of the overall τ in the functions

F3, F4, and F7, the corresponding observables A3, A4, and
A7 can be suppressed. Longitudinally polarized eþe−
beams will be useful to study these three functions. We
define observables as

FIG. 5. A2, A5, and A6 are shown as deviations caused by adding nonzero parameters δ9 (solid curve), δ10 (dashed curve), δZ6 (dotted
curve), and δZ7 (broken curve). In the left panel the parameters take positive values, and in the right panel the parameters take negative
values.

FIG. 6. Left: CP-odd observables A8 and A9 are shown as deviations caused by adding nonzero parameters ~δZ8 (solid curve) and
~δZ8 ¼ ~δA8 (dashed curve). Right: CP ~T-odd observables A7 and B7 are shown as deviations caused by adding nonzero imaginary parts in
the parameters δZ6 (solid curve) and δ10 (dashed curve).
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Bi ≡ ð1þP−Þð1−PþÞF iðþÞþ ð1−P−Þð1þPþÞF ið−Þ
ð1þP−Þð1−PþÞF 1ðþÞþ ð1−P−Þð1þPþÞF 1ð−Þ

;

ð5:7Þ

where P− (−1 ≤ P− ≤ 1) and Pþ (−1 ≤ Pþ ≤ 1) denote
the degrees of longitudinal polarization of the electron
and the positron, respectively. We choose ðP−; PþÞ ¼
ð−0.8; 0.3Þ [1]. In the right panel of Fig. 6, the CP ~T-
odd observables A7 and B7 are shown as deviations caused
by adding nonzero imaginary parts in the parameters δZ6
(solid curve) and δ10 (dashed curve).

5 For the results in this
panel, we choose as a benchmark point

δZ2 ¼ δZ6 ¼ −δZ3 ¼ −δZ7 ¼ −δ10 ¼ −0.1; ð5:8Þ

and the other parameters are set to zero. The total cross
section with this choice is in agreement with the SM value
within 30%. The results show that B7 > A7; i.e. the
sensitivity to rescattering effects can be significantly
increased by means of longitudinally polarized eþe−
beams.6 These observables are nonzero only when rescat-
tering effects exist. (Even if CP is violated, these observ-
ables are identically zero unless rescattering effects exist.)
Note that the SM predictions in theseCP ~T-odd observables
are nonzero. The decay width in the Z boson propagators
contributes to these observables, since it indeed reflects the
rescattering effect of the light fermions in the propagating Z
boson. The contribution is, however, negligibly small as we
can observe in our results (i.e. A7 and B7 approach
identically to zero as the imaginary part of δZ6 or that of
δ10 becomes small).

VI. SUMMARY

In this paper, we have derived the analytic expression for
the differential cross section that in the most general case
has the nine nonzero functions Fi (i ¼ 1; 2;…; 9), for the
process eþe− → ZHH. The functions Fi are the coeffi-
cients of the nine angular terms, depend on the Higgs
couplings, and can be experimentally measured as observ-
ables. We have rederived the analytic forms of the observ-
ables which exist in the literature and have been widely
used. We have found that all of these observables are
directly related to F1, which is just one of our nine
functions. We have derived, for the first time, the analytic
form of the Z boson polar angle Θ distribution, which is
related to three of our nine functions: F1, F2, and F3. We
have divided the nine functions into four categories under

CP and CP ~T: four even-even (F1, F2, F5, F6), one
even-odd (F7), two odd-even (F8, F9), and two odd-odd
(F3, F4). This result is summarized in Table I.
We have introduced an effective Lagrangian for non-

standard Higgs couplings to the Higgs boson itself, the Z
boson, and the photon, and numerically studied the
dependence of F i [this is obtained by integrating Fi over
Q2 and cos ξ; see Eq. (5.3)] on the parameters in the
effective Lagrangian. For this purpose, we have formed
new observables Ai and Bi [Eqs. (5.5) and (5.7)] in terms of
F i. These observables are defined in such a way that the
differences between F i (i ¼ 2; 3;…; 9) and F 1 in the
dependence on the Higgs couplings become apparent.
Since F 1 is directly related to the total cross section
[Eq. (5.4)], by means of Ai and Bi, we can learn whether
F i (i ¼ 2; 3;…; 9) provide us different information about
the Higgs couplings than the total cross section. We have
found that the three observablesF 2;5;6 have similar depend-
ences on the constant shift of the trilinear self-coupling of
the Higgs boson [i.e. δ9 in Eq. (5.1)] as the total cross
section, while they have quite different dependences on the
other CP-even parameters (i.e. δ10, δZ6 , and δZ7 ) than the
total cross section. This is shown in Fig. 5. The twoCP-odd
observables F 8;9 and the CP ~T-odd observable F 7 clearly
have advantages over the total cross section in determining
CP-odd parameters and in observing rescattering effects,
respectively, since the total cross section is both CP-even
and CP ~T-even. We have shown that the CP-odd observ-
ables F 8;9 directly measure CP violation, by showing that
F 8;9 approach identically to zero as the CP-odd parameters
(i.e. ~δZ8 and ~δA8 ) become small. This is shown in the left
panel of Fig. 6. Finally, we have shown that the use of
longitudinally polarized eþe− beams can enhance the
ability of the CP ~T-odd observable F 7 which measures
rescattering effects. This is shown in the right panel of
Fig. 6.
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APPENDIX: THE EXPLICIT EXPRESSIONS
OF THE FUNCTIONS Fi

In this appendix, we provide the explicit expressions of
the functions Fi in Eq. (3.1) in terms of the kinematic
variables introduced in Sec. II and the effective Lagrangian
parameters in Eq. (5.1). We write Fi as

Fiðτ; Q; ξÞ ¼
X
λ¼�;0

fiðτ; Q; ξ; λÞ=v4; ðA1Þ

where fi are functions of the Z boson helicity λ in addition
to τ, Q, and ξ, and have the following forms:

5Rescattering effects can be approximately included by
allowing imaginary parts in the Higgs couplings [36].

6This benefit from polarized beams, however, becomes less
clear whenHZγ,Hγγ, and/orHHZγ couplings are turned on, due
to the interference between the diagrams exchanging the Z boson
and those exchanging the photon.
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f1 ¼
1

2
ðjNðþ; λÞj2 þ jNð−; λÞj2 þ jNð0; λÞj2Þ;

f2 ¼
1

2
jNð0; λÞj2;

f3 ¼ τðjNðþ; λÞj2 − jNð−; λÞj2Þ;
f4 ¼

ffiffiffi
2

p
τRe½Nð0; λÞ�Nðþ; λÞ þ Nð−; λÞ�Nð0; λÞ�;

f5 ¼
1ffiffiffi
2

p Re½Nð0; λÞ�Nðþ; λÞ − Nð−; λÞ�Nð0; λÞ�;

f6 ¼ Re½Nð−; λÞ�Nðþ; λÞ�;
f7 ¼

ffiffiffi
2

p
τIm½Nð0; λÞ�Nðþ; λÞ þ Nð−; λÞ�Nð0; λÞ�;

f8 ¼
1ffiffiffi
2

p Im½Nð0; λÞ�Nðþ; λÞ − Nð−; λÞ�Nð0; λÞ�;

f9 ¼ Im½Nð−; λÞ�Nðþ; λÞ�: ðA2Þ

The functions Nðσ; λÞ in the above equations receive
contributions from the Feynman diagrams shown in
Fig. 2. The contribution from diagram (1) of Fig. 2, in
which the intermediate vector boson V is the Z boson
(V ¼ Z) or the photon (V ¼ A), is given by

NV
1 ðσ ¼ �; λ ¼ �Þ ¼ gVτ EσδσλDVðpÞDHðqÞ

× ½3m2
Hð1þ δ9Þ − δ10ð2m2

H þQ2Þ�
× ðaþ bEw − cE2 − dm2

Z þ iλ~eElÞ;
NV

1 ðσ ¼ 0; λ ¼ �Þ ¼ 0; NV
1 ðσ ¼ �; λ ¼ 0Þ ¼ 0;

NV
1 ðσ ¼ 0; λ ¼ 0Þ ¼ −gVτ EDVðpÞDHðqÞ

× ½3m2
Hð1þ δ9Þ − δ10ð2m2

H þQ2Þ�
× ½ða − cE2 − dm2

ZÞwþ bEm2
Z�=mZ;

ðA3Þ

where the couplings gVτ are

gZþ ¼ 2mZ

v
sin2θw; gZ− ¼ 2mZ

v
ð−0.5þ sin2θwÞ;

gAþ ¼ gA− ¼ −e; ðA4Þ

and

DiðpÞ ¼ ðp · p −m2
i þ imiΓiÞ−1 ðA5Þ

denotes the propagator factor for a particle i with its
four-momentum p, mass mi, and decay width Γi.
The coefficients a, b, c, d, ~e are written in terms
of the effective Lagrangian parameters as follows:
When V ¼ Z,

a ¼ 2m2
Zð1þ δ1Þ; b ¼ 4ðδZ2 − δZ3 Þ;

c ¼ d ¼ −2δZ3 ; ~e ¼ −4~δZ4 : ðA6aÞ

When V ¼ A,

a ¼ 0; b ¼ 2ðδA2 − δA3 Þ; c ¼ −2δA3 ;

d ¼ 0; ~e ¼ −2~δA4 : ðA6bÞ

The contribution from diagram (2) of Fig. 2, in which
the intermediate vector boson V1ð¼ Z; AÞ has the four-
momentum pμ and V2ð¼ Z; AÞ has the four-momentum tμ,
is given by

NV1V2

2 ðσ ¼ �; λ ¼ �Þ ¼ gV1
τ EσDV1

ðpÞDV2
ðtÞ

�
δσλ½ā1ā2 þ ~e1 ~e2Et3ðlt0 þ wt3Þ þ iλā1 ~e2ðlt0 þ wt3Þ − iλ~e1ā2Et3�

−
1

2
r2sin2ξðXt þ iσ ~e1b2Elþ iλb1 ~e2El − σλ~e1 ~e2EwÞ

�
;

NV1V2

2 ðσ ¼ 0; λ ¼ �Þ ¼ −
1ffiffiffi
2

p gV1
τ EDV1

ðpÞDV2
ðtÞr sin ξ½ā1b2lþ t3Xt þ ~e1 ~e2Eðlt0 þ wt3Þ

þ iλðā1 ~e2wþ b1 ~e2t3El − ~e1ā2EÞ�;

NV1V2

2 ðσ ¼ �; λ ¼ 0Þ ¼ 1ffiffiffi
2

p gV1
τ EσDV1

ðpÞDV2
ðtÞr sin ξfðlt0 þ wt3ÞXt − b1ā2Elþ ~e1 ~e2Et3m2

Z

þ iσ½ā1 ~e2m2
Z − ~e1ā2Ewþ ~e1b2ðlt0 þ wt3ÞEl�g=mZ;

NV1V2

2 ðσ ¼ 0; λ ¼ 0Þ ¼ −gV1
τ EDV1

ðpÞDV2
ðtÞ½ā1ā2w − ā1b2lðlt0 þ wt3Þ − t3ðlt0 þ wt3ÞXt

þ b1ā2t3Elþ ~e1 ~e2Em2
Zr

2sin2ξ�=mZ; ðA7Þ
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where

Xt ¼ ā1c2 þ b1b2Ew − b1c2Et0 þ d1ā2 − d1b2ðwt0 þ lt3Þ

þ d1c2t · t − η
1

m2
Z
ðā1 − b1Et0 þ d1t · tÞ

× ½ā2 − b2ðwt0 þ lt3Þ þ c2t · t�: ðA8Þ

Let us remind the reader that the μ ¼ 0, 3 components of tμ

(i.e. t0 and t3) which appear above do not depend on ϕ; see
Eq. (2.4). The coefficients ā1;2 are given by

ā1 ¼ a1 þ b1Et0 − c1E2 − d1t · t;

ā2 ¼ a2 þ b2ðwt0 þ lt3Þ − c2t · t − d2m2
Z: ðA9Þ

The coefficients ai, bi, ci, di, ~ei (i ¼ 1, 2) and the
parameter η in Eq. (A8) take the following values:
When ðV1; V2Þ ¼ ðZ; ZÞ,

a1 ¼ a2 ¼ 2m2
Zð1þ δ1Þ; b1 ¼ b2 ¼ 4ðδZ2 − δZ3 Þ;

c1 ¼ d1 ¼ c2 ¼ d2 ¼ −2δZ3 ; ~e1 ¼ ~e2 ¼ −4~δZ4 ; η ¼ 1:

ðA10aÞ

When ðV1; V2Þ ¼ ðA; ZÞ,

a1 ¼ 0; b1 ¼ 2ðδA2 − δA3 Þ; c1 ¼ −2δA3 ;

d1 ¼ 0; ~e1 ¼ −2~δA4 ;

a2 ¼ 2m2
Zð1þ δ1Þ; b2 ¼ 4ðδZ2 − δZ3 Þ;

c2 ¼ d2 ¼ −2δZ3 ; ~e2 ¼ −4~δZ4 ; η ¼ 1: ðA10bÞ

When ðV1; V2Þ ¼ ðZ; AÞ,

a1 ¼ 0; b1 ¼ 2ðδA2 − δA3 Þ; c1 ¼ 0;

d1 ¼ −2δA3 ; ~e1 ¼ −2~δA4 ;

a2 ¼ 0; b2 ¼ 2ðδA2 − δA3 Þ; c2 ¼ −2δA3 ;

d2 ¼ 0; ~e2 ¼ −2~δA4 ; η ¼ 0: ðA10cÞ

When ðV1; V2Þ ¼ ðA; AÞ,

a1 ¼ 0; b1 ¼ 4δAA2 ; c1 ¼ 0;

d1 ¼ 0; ~e1 ¼ −4~δAA4 ;

a2 ¼ 0; b2 ¼ 2ðδA2 − δA3 Þ; c2 ¼ −2δA3 ;

d2 ¼ 0; ~e2 ¼ −2~δA4 ; η ¼ 0: ðA10dÞ
The contribution from diagram (3) of Fig. 2, in which
the intermediate vector boson V1ð¼Z; AÞ has the four-
momentum pμ and V2ð¼ Z; AÞ has the four-momentum uμ,

can be obtained by the simple replacement tμ → uμ in
Eq. (A7),

NV1V2

3 ðσ ¼ �; λ ¼ �Þ ¼ NV1V2

2 ðσ ¼ �; λ ¼ �Þjtμ→uμ ;

NV1V2

3 ðσ ¼ 0; λ ¼ �Þ ¼ −NV1V2

2 ðσ ¼ 0; λ ¼ �Þjtμ→uμ ;

NV1V2

3 ðσ ¼ �; λ ¼ 0Þ ¼ −NV1V2

2 ðσ ¼ �; λ ¼ 0Þjtμ→uμ ;

NV1V2

3 ðσ ¼ 0; λ ¼ 0Þ ¼ NV1V2

2 ðσ ¼ 0; λ ¼ 0Þjtμ→uμ ;

ðA11Þ

where the minus sign in the second and the third equations
originates from the existence of the overall r [the replace-
ment tμ → uμ can be translated into r → −r; see Eq. (2.4)].
The replacement tμ → uμ must be performed in Eqs. (A8)
and (A9), too. The coefficients ai, bi, ci, di, ~ei (i ¼ 1, 2)
and the parameter η take the same values as Eq. (A10).
The contribution from diagram (4) of Fig. 2, in which the
intermediate vector boson V is the Z boson (V ¼ Z) or the
photon (V ¼ A), is given by

NV
4 ðσ ¼ �; λ ¼ �Þ ¼ gVτ EσδσλDVðpÞðaþ bEw− cE2

− dm2
Z þ iλ~eElÞ;

NV
4 ðσ ¼ 0; λ ¼ �Þ ¼ 0; NV

4 ðσ ¼ �; λ ¼ 0Þ ¼ 0;

NV
4 ðσ ¼ 0; λ ¼ 0Þ ¼ −gVτ EDVðpÞ

× ½ða− cE2 − dm2
ZÞwþ bEm2

Z�=mZ:

ðA12Þ

The coefficients a, b, c, d, ~e are written as follows:
When V ¼ Z,

a ¼ 2m2
Zð1þ δ5Þ; b ¼ 4ðδZ6 − δZ7 Þ;

c ¼ d ¼ −2δZ7 ; ~e ¼ −4~δZ8 : ðA13aÞ

When V ¼ A,

a ¼ 0; b ¼ 2ðδA6 − δA7 Þ; c ¼ −2δA7 ;

d ¼ 0; ~e ¼ −2~δA8 : ðA13bÞ

The sum of all the functions in Eqs. (A3), (A7), (A11), and
(A12) provides the functions Nðσ; λÞ in Eq. (A2),

Nðσ; λÞ ¼ NZ
1 ðσ; λÞ þ NA

1 ðσ; λÞ þ NZZ
2 ðσ; λÞ þ NAZ

2 ðσ; λÞ
þ NZA

2 ðσ; λÞ þ NAA
2 ðσ; λÞ þ NZZ

3 ðσ; λÞ
þ NAZ

3 ðσ; λÞ þ NZA
3 ðσ; λÞ þ NAA

3 ðσ; λÞ
þ NZ

4 ðσ; λÞ þ NA
4 ðσ; λÞ: ðA14Þ
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